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The Controllability of Power Grids in Comparison with Classical
Complex Network Models

Yi-Jia ZHANG†, Zhong-Jian KANG†a), Xin-Feng LI††, Nonmembers, and Zhe-Ming LU††b), Member

SUMMARY The controllability of complex networks has attracted in-
creasing attention within various scientific fields. Many power grids are
complex networks with some common topological characteristics such as
small-world and scale-free features. This Letter investigate the controllabil-
ity of some real power grids in comparison with classical complex network
models with the same number of nodes. Several conclusions are drawn
after detailed analyses using several real power grids together with Erdös-
Rényi (ER) random networks, Wattz-Strogatz (WS) small-world networks,
Barabási-Albert (BA) scale-free networks and configuration model (CM)
networks. The main conclusion is that most driver nodes of power grids
are hub-free nodes with low nodal degree values of 1 or 2. The controlla-
bility of power grids is determined by degree distribution and heterogeneity,
and power grids are harder to control than WS networks and CM networks
while easier than BA networks. Some power grids are relatively difficult
to control because they require a far higher ratio of driver nodes than ER
networks, while other power grids are easier to control for they require a
driver node ratio less than or equal to ER random networks.
key words: power grids, complex networks, controllability, driver nodes

1. Introduction

Complex network theory and its application have attracted
many scholars to research since the small-world [1] and
scale-free [2] features were found in 1998 and 1999, re-
spectively. Complex networks can be abstracted from many
systems in our everyday life, e.g., traffic networks, power
grids, and Internet. Some scholars are engaged in the mod-
els and static properties of complex networks [3]. Some au-
thors are interested in the dynamic behaviors and properties
in complex networks [4]. Some researchers are devoted to
important node mining and community detection problems
in complex networks [5]. Among all topics, controlling is
one of the most challenging problems, and thus significant
efforts have been devoted to understanding the controllabil-
ity of the complex network recently [6]–[8]. Controllability
is characterized by the minimum number of driver nodes
which can offer full control over the network.

Large-scale grid interconnection of electrical energy
can realize long-distance transmission and make the power
distribution economically reasonable. However, it not
only brings considerable economic benefits, but also brings
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greater uncertainty in grid operation and makes the analysis
of operating status and dynamic properties of the power grid
more difficult. In recent years, many researchers have paid
much attention to analyzing power grids based on the com-
plex network theory [9] in three aspects: to reveal the topol-
ogy characteristics [10]; to reveal the inherent vulnerabili-
ties and weaknesses [11]; to analyze the mechanism of cas-
cading failures [12]. Since there are relatively few research
works on the controllability of power grids, this Letter fo-
cuses on this topic according to the controllability research
fruits in complex networks.

2. Exact Controllability Theory

A complex network is controllable if imposing appropriate
external signals on a subset of its nodes, the system can
be driven from any initial state to any final state in finite
time. The minimal set of driver nodes required to control
a network is called the minimum driver node set (MDNS).
The minimum number of driver nodes is denoted by ND and
the controllability of a network is defined as the ratio of the
number of driver nodes (ND) to the total number of nodes in
the network (N), i.e., nD = ND/N. A controllable complex
network with N nodes can be described by the following
linear ordinary differential equation

ẋ = Ax + Bu (1)

where x = (x1, x2, . . . , xN)T denotes the states of N nodes,
and A ∈ RN×N is the coupling matrix of the network, in
which ai j represents the weight of a directed link from node
j to i (for undirected networks, ai j = a ji). u is the control-
ling vector with m controllers, i.e., u = (u1, u2, . . . , um)T,
and B ∈ RN×m is the control matrix. The classic Kalman
rank condition stipulates that Eq. (1) can be controlled from
any initial state to any final state in finite time if and only
if rank[B,AB,A2B, . . . ,AN−1B] = N. Thus, in order to
fully control the complex network, we should choose an ap-
propriate B and u. The central goal is to find a matrix B
corresponding to the minimum number ND of independent
drivers or controllers required to control the whole network.
According to the results of Liu et al. [6] and Yuan et al. [7],
we have

ND = min{rank(B)} (2)

Considering the PBH rank condition [13], for an arbi-
trary network, Yuan et al. [7] proved that ND is determined
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by the maximum geometric multiplicity μ(λi) of the eigen-
value λi of A, i.e.

ND = max
i
{μ(λi)} (3)

where μ(λi) = dim Vλi = N − rank(λiIN − A) and λi (i =
1, 2, . . . , l) are the distinct eigenvalues of A. For a symmetric
coupling matrix A, its geometric multiplicity equals to the
algebraic multiplicity. Thus, for an undirected networks, ND

is determined by the maximum algebraic multiplicity δ(λi)
of λi [7], i.e.

ND = max
i
{δ(λi)} (4)

Thus, we can calculate the ND value of an arbitrary net-
work topology using Eqs. (2)-(4). Then, the measure of con-
trollability nD can be calculated as follows [6]:

nD = ND/N (5)

3. Controllability of Power Grids in Comparison with
Classical Complex Network Models

In this Section, we focus on testing the exact controllability
values of eight power grids, which are all modeled as undi-
rected and unweighted networks and the number of drivers
(ND) is calculated based on Eq. (3) throughout the paper.
The six IEEE power grids are with 30, 57, 118, 145, 162
and 300 nodes respectively. One Chinese power grid is the
North-East China (NEC) power grid with 127 nodes, and the
other is the Middle China (MC) power grid with 302 nodes.
For comparison, we also generate 8 ER random models, 8
WS small-world models, 8 BA scale-free models and 8 CM
networks [14] that have the same degree distributions as the
power grids.

Firstly, we show some basic topological features of all
these models in Table 1. These topological features include
the number of nodes N, the number of links M, the average
degree 〈k〉, the clustering coefficient C, the diameter D and
the average path length L. In Table 1, INF means infinite
if the generated network is not connected. From this table,
we can see that most power grids are small-world networks,
since their average path lengths are comparable to those of
corresponding WS models and their clustering coefficients
are far larger than those of corresponding ER models. Sec-
ondly, we calculate the exact controllability values of the
networks in Table 1, the results are shown in Fig. 1. We can
see that IEEE118, IEEE145 and NEC127 have far higher nD

values than their corresponding ER networks, thus they are
hard to control. On the contrary, other IEEE power grids
together with the MC302 network have nD values no larger
than their corresponding ER networks, thus they are easy to
control. Most corresponding BA networks are harder to con-
trol than power grids except IEEE118, while WS networks
are easier to control than power grids. In addition, the nD

values of power grids are larger than or equal to their cor-
responding CMs with the same degree distributions, which
may imply that degree distribution is the main factor but not

Table 1 The topological features of power grids and corresponding ER,
WS, BA and CM networks with the same number of nodes.

the only one that determines networks’ controllability. The
difference may be attributed to that the average path length
of power grids is larger than that of corresponding CMs
because real power grids are designed under some spatial
constraints such as the positions of power stations and the
length of high-voltage transmission lines. Thirdly, we show
for each real-world power grid, which nodes are selected as
the driver nodes. Here, we only show the results of three
networks, i.e., IEEE30, IEEE118 and MC302, as given in
Figs. 2-4 respectively. In each figure, all nodes are drawn
in sizes in proportion to their nodal degree values, and the
square nodes stand for the controllers, while round ones are
regular nodes.

From Fig. 2, we can see that, for IEEE30, the number
of driver nodes is 2, i.e., Node 8 and Node 30, and their
degree values are 2 both. Thus the controllability value is
nD = 2/30 = 0.0667, and the average degree value of the
driver nodes 〈k〉D = 2, which is less than the overall average
degree value 〈k〉 = 2.733. From Fig. 3, we can see that, for
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Fig. 1 Comparisons of the controllability values between all power grids
and corresponding ER, WS, BA and CM network models.

Fig. 2 The topology of the IEEE30 power grid, where squared nodes
denote the controllers.

IEEE118, the number of driver nodes is 25 and 〈k〉D = 2.32
that is less than 〈k〉 = 3.03, and thus nD = 25/118 = 0.2119.
From Fig. 4, we can see that, for MC302, ND = 32 and
〈k〉D = 1.47 that is less than 〈k〉 = 2.62, and thus nD =

32/302 = 0.106.

4. Analysis

From Sect. 3, we can see that the IEEE118 power grid re-
quires about 20 percent of the nodes to control the whole
network, while NEC127 and MC302 power grids only re-
quires about 10 percent of the nodes. Thus, the IEEE118
power grid is harder to control than Chinese power grids.
Furthermore, from Figs. 2-4, we can see that the driver
nodes of power grids tend to be low degree nodes but
adjacent to high degree nodes. To verify our hypothe-
sis, we compare the average degree of driver nodes, all
nodes, neighbors of all nodes, and neighbors of driver
nodes as shown in Fig. 5. The results demonstrate 〈k〉D <

Fig. 3 The topology of the IEEE118 power grid, where squared nodes
denote the controllers.

Fig. 4 The topology of the Middle China power grid (MC302), where
squared nodes denote the controllers.

〈k〉 < 〈k〉neighbors < 〈k〉neighbors,D for all power grids except
IEEE118, revealing that the driver nodes are inclined to be
Hub-free nodes, which corresponds to Liu et al.’s conclu-
sion, but to be adjacent to high degree nodes, which has not
been noticed before our work. To further characterize the
driver nodes, we also investigate the betweenness centrality
(BC) and closeness centrality (CC) of driver nodes in Ta-
ble 2. It shows that the mean BC value of driver nodes is
much less than that of overall nodes whereas the mean CC
value is comparable to that of overall nodes, which indicates
that the driver nodes tend to avoid bottleneck nodes whereas
the CC value has no obvious relationship with the controlla-
bility.

Liu et al. have concluded that the major factors that
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Fig. 5 The comparison of the average degree of driver nodes, all nodes,
neighbors of all nodes, and neighbors of driver nodes.

Table 2 The mean betweenness centrality and closeness centrality of
driver nodes and the whole network.

Fig. 6 Plot of nD as a function of H/〈k〉 for power grids and their corre-
sponding ER, BA and CM networks.

influence the controllability are degree distribution and het-
erogeneity, where the latter can be defined as follows:

H =

√∑
i
(ki − 〈k〉)2

N
(6)

Based on Eq. (6), we can calculate the heterogeneity
values for six power grids shown in Table 2. We can see
that IEEE118 has the largest heterogeneity, followed by
NEC127 and MC302. According to Liu et al.’s conclusion,
the controllability of a network is determined by both aver-
age degree and heterogeneity, that is, the less average degree
a network has, or the more heterogeneity it has, the larger nD

value it has, i.e.

nD ∝ H
〈k〉 (7)

Based on Eq. (7), we can calculate the ratio H/〈k〉 as given in
Fig. 6. It clearly show the trend that nD increases with H/〈k〉,
which well agrees with Liu et al.’s conclusion. However,

IEEE118 stands out as an outlier once again; the reason is
still under research.

5. Conclusion

This Letter investigates the exact controllability of power
grids. We find that most power grids have a nearly power-
law degree distribution, showing scale-free properties. For
IEEE118, IEEE145 and NEC127 power grids, their nD val-
ues are far higher than those of the corresponding ER net-
works, and thus they are relatively hard to control, while
other IEEE power grids and the MC302 power grid are rel-
atively easy to control since they have nD values not larger
than ER networks. For each power grid, the average de-
gree and betweenness centrality of driver nodes are far less
than those of the whole network, which indicates that the
driver nodes are inclined to be Hub-free and avoid bottle-
neck nodes. Finally, the controllability of a network is deter-
mined by both average degree and heterogeneity, and sparse
heterogeneous power grids are hardest to control.
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