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Stereo Matching Based on Efficient Image-Guided Cost
Aggregation
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SUMMARY Cost aggregation is one of the most important steps in lo-
cal stereo matching, while it is difficult to fulfill both accuracy and speed.
In this letter, a novel cost aggregation, consisting of guidance image, fast
aggregation function and simplified scan-line optimization, is developed.
Experiments demonstrate that the proposed algorithm has competitive per-
formance compared with the state-of-art aggregation methods on 32 Mid-
dlebury stereo datasets in both accuracy and speed.
key words: stereo matching, guidance image, cost aggregation, guided
filter, bilateral filter

1. Introduction

Stereo matching is a hot research topic in computer vision,
and numerous papers have been proposed to achieve accu-
racy and speed requirements. According to one survey pa-
per [1], most algorithms could be classified into global and
local methods. Although many global stereo matching al-
gorithms could generate accurate disparity results, they cost
more time due to inevitable iterations. Instead, local algo-
rithms are adopted in many existing implementations. How-
ever, many existing local algorithms fail to produce accurate
disparity maps with low computation cost because they lack
efficient cost aggregation. Therefore, efficient cost aggrega-
tion is essential for local algorithms.

To get higher-accuracy disparity results, cross-based
aggregation methods [2], [3] were proposed to form a shape-
adaptive support region for each pixel. This method helped
improve the performance on depth discontinuities and tex-
tureless regions. However, it is an expensive cost to compute
the adaptive support region for each pixel. Adaptive ker-
nel window [4] was adopted to improve the performance on
depth discontinuities. The extra cost is to compute the adap-
tive support arms. Full-image guided cost aggregation [5]
was proposed to get the surplus support information from
the whole image instead of computing the support region
for each pixel. In addition, methods of filtering on the cost-
volume (i.e., based on guided filter [6] and based on bilat-
eral filter [7]) have been common in recent years. These fil-
ters perform well in preserving edges, but the performance
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Fig. 1 Framework of local stereo matching. Our aggregation method
consists of guidance image computation, fast cost aggregation and simpli-
fied scan-line optimization.

and computation cost are affected by the filters’ kernel sizes.
The performance of the bilateral filter based cost-volume is
excellent [7], however, the computation cost of this method
is relatively high. Moreover, in order to speed up the cost ag-
gregation, the GPU implementation was later proposed [8].
This method achieves good speed, but with limited accu-
racy. We also find that the performance of filters’ edge-
preserving and homogeneous-area-smoothing are important
for improving the results accuracy [6], [7], but the compu-
tation cost of the filtering-based cost-volume is also high.
Being motivated by the above methods, we propose a novel
image-guided aggregation method fulfilling both speed and
accuracy.

The proposed method consists of three main steps:
guidance image computation, fast cost aggregation and sim-
plified scan-line optimization, as shown in Fig. 1. The guid-
ance image, instead of the traditional raw image, guides the
cost aggregation and cost optimization, which has been lit-
tle investigated in stereo vision. We mainly take the guided
filter and the bilateral filter to generate the guidance im-
ages for their good edge-preserving and homogeneous-area-
smoothing performance. The structure of our fast aggrega-
tion is similar to the structure in one paper [8]. But we pro-
pose a polynomial increment step strategy, which can im-
prove the aggregation effect with fewer iterations to achieve
good results. Furthermore, a simplified scan-line optimizer
is applied after the fast cost aggregation to further smooth
the results. By applying this novel aggregation method
to local stereo matching, competitive performance can be
achieved. The main features of our method, i.e., fast cost
aggregation, guidance image model and simplified scan-line
optimization, are detailed in Sect. 2. Experiments and dis-
cussions are presented in Sect. 3 and we conclude this letter
in Sect. 4.
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2. Our Cost Aggregation Model

2.1 Guidance Image Model

In most implementations, raw input stereo image was di-
rectly (or processed with simple median filter) used in cost
aggregation. There are few papers on discussing how to
generate efficient enhanced content (i.e., enhanced edges)
to improve the aggregation performance. Although there
are some cost aggregation methods [6], [7] conducted by fil-
tering on the 3D cost-volume, and these filters have excel-
lent performance on edge-preserving, the computation cost
is usually expensive. We found that the filters’ good edge-
preserving and homogeneous-area-smoothing performance
could help improve results accuracy. Thus, we propose to
take these filters to generate the 2D guidance image to guide
the cost aggregation instead of taking the filters to aggregate
the matching cost directly. In this way, the computation is
reduced from 3D space to 2D space. Moreover, since the
guidance image inherits the filters’ performance, this image
guided cost aggregation could generate relatively good re-
sults. This special image guided cost aggregation has been
rarely studied in stereo vision.

To the bilateral filter [12], geometric relationship and
color dissimilarity are considered in the weight strategy.
Suppose pixel q(i, j) is in the support window of pixel
p(x, y), then the filter weight w(p, q) between pixel p and
q is as

Wb f
p,q(I) = exp(−ΔS 2

pq/(2δ
2
s) − ΔC2

pq/(2δ
2
c)), (1)

where ΔS pq and ΔCpq are the Euclidian distance of spatial
distance and color dissimilarity, respectively. δs and δc are
two constants. Square function is added for ΔS pq and ΔCpq,
which is different from the weight strategy in one paper [7].
This filter weight attenuating rapidly when the spatial Eu-
clidian distance ΔS pq or the color difference in RGB space
ΔCpq increases, which enhances the local structures.

The guided filter [9] is widely used in stereo vision, but
almost all the applications take the guided filter to process
the cost-volume in three-dimensional space. Herein, we take
this filter to generate the guidance image. Suppose pixels
p and q are in the support window wk centered at pixel k,
and we take the gray scale guidance image I for simplified
description. Then the weight between p and q is given by:

Wg f
p,q(I) =

1

|w|2
∑

k:(p,q)∈wk

(1 +
(Ip − μk)(Iq − μk)

δ2k + ε
), (2)

where δk and μk are the variance and the mean of I in the
support window wk centered at pixel k. The total number of
pixels in wk is denoted as |w|2 and ε is a parameter to control
the averaging strength.

In this letter, we mainly consider these two filters gen-
erated guidance images. The support window size of these
two filters can be set relatively small, thus the computation
cost, especially for the bilateral filter, can be very low.

Fig. 2 The polynomial increment step cost aggregation. (a) and (b) Ag-
gregation in horizontal and vertical directions along the 1-D space, corre-
spondingly. (c) Aggregation in range [−7, 7] with three iterations.

2.2 Fast Cost Aggregation

We define the raw matching cost as C, the guidance image as
G, and the aggregated cost as C1. As shown in Fig. 2, aggre-
gation is decomposed into two orthogonal 1-D aggregations,
namely separately aggregating in horizontal and vertical di-
rections as the aggregation structure in one paper [8]. New
step strategy is adopted to aggregate the cost with fewer it-
erations in our method, moreover, the guidance image is ap-
plied to provided enhanced content for the support weight.

Matching cost is aggregated in horizontal direction ac-
cording to Figs. 2 (a), followed by the vertical aggregation
as shown in Figs. 2 (b). In such a way, aggregation is com-
puted in two 1-D support areas, rather than the traditional
ones directly in the 2-D support areas, which could largely
reduce the computation cost. Figures 2 (c) shows an exam-
ple of aggregating cost in horizontal direction with three it-
erations in range (−7, 7). Suppose the basic step size is r,
then the step size in the next iteration is a polynomial in-
crement 2r + 1, namely offset = 1, 3, 7, 15 for the first four
iterations. The corresponding aggregating range is 1, 4, 11,
26. This step size is designed to aggregate all the cost be-
tween the offset pixels without optimizing training. Some
overlaps are allowed between different iterations for fully
extracting the local information and controlling the step size
not to increase too quickly, because the information near the
center pixel is more representative than the far away pixels’
in some way.

In each iteration, three pixels (i.e., center pixel p and
pixels a and b at −r and +r offset) are taken into consid-
eration. In this way, only 3 ∗ 3 = 9 discrete pixels are
needed to compute the aggregated cost for the center pixel
in (−11, 11) aggregating range. Aggregation in the vertical
direction can be computed in the similar way. Different it-
erations can be employed according to specific applications.
Moreover, adaptive support weight strategy is adopted for
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the aggregation between the center pixel and the offset pix-
els. The adaptive weight w(p, q) considers the geometric
relationship and color dissimilarity between the center pixel
p(x, y) and the offset pixel q(i, j). The guidance image G,
instead of the raw image, is adopted to compute this weight
based on

wp,q(G) = exp(−ΔS pq/λs − ΔCpq/λc), (3)

where λs and λc are two constant parameters. This weight is
computed based on the guidance image G instead of the tra-
ditional raw input image to offset the sampling in the aggre-
gation. At each iteration, the target pixel’s cost at disparity
d is updated as follows:

C1(p, d) = C(p, d) + w(p, p + r)C(p + r, d)

+w(p, p − r)C(p − r, d). (4)

2.3 Simplified Scan-Line Optimization

To further remove the ambiguities in matching cost, a sim-
plified scan-line optimizer with smoothness constraints is
applied after the fast cost aggregation. This simplified scan-
line optimization is based on Hirschmüller’s semi-global
methods [10]. But only four simplified scan-line processes
are adopted and these processes are independently in orthog-
onal directions, i.e., two along vertical direction and two
along horizontal direction. Suppose the scan-line direction
is θ, then the cost Cθ2(p, d) of pixel p at disparity d is updated
according to:

Cθ2(p, d) = C1(p, d) + min(Cθ2(pθ, d),Cθ2(pθ, d ± 1) +

p1,min
k∈D

Cθ2(pθ, k) + p2) −min
k∈D

Cθ2(pθ, k), (5)

where D is the disparity range, and pθ is the previous station
of pixel p alone the direction θ. p1 and p2 (p1 ≤ p2) [3]
are the penalty terms for smoothness and they are defied as
follows:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p1 = π1, p2 = π2, i f AD1 < T, AD2 < T,

p1 = π1/5, p2 = π2/5, elsei f AD1 > T, AD2 > T,

p1 = π1/3, p2 = π2/3, otherwise, (6)

where π1, π2 and T are constant parameters. AD1 is the color
difference between the previous station pixel pθ and current
pixel p in the left guidance image GL. Similarly, AD2 is the
color difference in the right guidance image GR. Finally, we
generate the smoothed cost C3(p, d) according to

C3(p, d) =
1
4

∑

θ

Cθ2(p, d). (7)

3. Experiment Results

Experiments are carried out on the Middlebury stereo
benchmark [1] to demonstrate the performance of proposed
cost aggregation. Four standard images pairs (i.e., Teddy,
Cones, Venus, and Tsukuba) (defined as M4) are taken

Fig. 3 Experimental results on Tsukuba dataset. Red pixels are the mis-
matched ones in all region. (a) Based on Cross [2], (b) based on Exp-
Step [8], (c) based on GFiltering [6], (d) based on FullImage [5], (e) based
on OurBF, (f) based on OurGF.

into consideration. Furthermore, except Midd1, Midd2,
Monopoly and Plastic, 28 more datasets (defined as M28)
in 2001, 2003, 2005 and 2006 datasets on Middlebury stereo
benchmark are also all considered. Thus, experiments are
carried out on total 32 stereo datasets (M32). Our method
is implemented with both bilateral filter and guided filter
generated guidance images, i.e., OurBF and OurGF meth-
ods, respectively. Moreover, four state-of-art cost aggre-
gation functions, i.e., aggregation based on cross-skeleton
structure (Cross) [2], aggregation based on exponential step
structure (ExpStep) [8], aggregation based on guided filter
based filtering (GFiltering) [6], and aggregation based on
full-image guided strategy (FullImage) [5], are also imple-
mented in our experiments for comparison. During the eval-
uation, all these functions are performed in the cost aggrega-
tion step, and all the other steps (i.e., cost computation, dis-
parity selection and post-processing) are kept the same. Cost
computation is computed based on the AD-gradient measure
as defined in the paper [6]. The ’winner-takes-all’ strategy
is used to select the disparity. The cross checking and a
weighted median filter are performed as the post-processing.

Parameters for our aggregation functions are set as {λs,
λc}={14/255,14/255}. We set {δs, δc}={3, 0.3} for the bilat-
eral filter and ε = 0.10 for the guided filter. The parame-
ters for simplified scan-line optimization, i.e., { T , π1, π2},
have some slight adjustments according to different guid-
ance images. We set them as {11/255, 0.5/255, 15/255} for
the guided filter and {11/255, 0.8/255, 17/255} for the bilat-
eral filter. Our approach has been implemented on a 3.0GHz
CPU processor with MATLAB implementation.

Figure 3 and Fig. 4 show the generated disparity maps
based on different cost aggregation functions. We can ob-
serve that the low-texture regions in our disparity maps are
filled with the exact values and smoothed well, e.g., the
background on Tsukuba and Art, while these regions are
filled with some outlier blocks based on the other meth-
ods. Edge preserving is also difficult for many local stereo
matching methods. We can see that the edges in our pro-
posed methods are also preserved well, e.g., the edges of the
desk and the carton on Tsukuba, however, the other meth-
ods exist some irregularities along the edges. These results
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Fig. 4 Experimental results on Art dataset. Red pixels are the mis-
matched ones in nonocc region. (a) Based on Cross [2], (b) based on Exp-
Step [8], (c) based on GFiltering [6], (d) based on FullImage [5], (e) based
on OurBF, (f) based on OurGF.

Table 1 Experimental results of different cost aggregation methods

Aggregation
Method

M4 Avg.
Error

M32
Avg. All

Error

M32 Avg.
Nonocc
Error

Avg.
Time

OurBF 5.26% 9.03% 5.60% 1.00

OurGF 5.34% 9.05% 5.62% 1.02

SSMP [11] 5.38% 9.56% 6.13% 1.04

GFilter [6] 5.82% 9.41% 6.02% 2.64

Cross [2] 6.37% 11.07% 7.79% 1.98

FullImage [5] 6.43% 10.13% 6.68% 0.21

ExpStep [8] 8.51% 10.51% 6.47% 0.42

demonstrate that the proposed method is good for preserving
the edges and smoothing the homogeneous areas in disparity
maps. The guidance image partly contributes to this perfor-
mance, because our guidance image inherits some proper-
ties of the bilateral filter and the guided filter.

Quantitative evaluation results on both M4 and M32
are provided in Table 1. M4 error is the average error
on all, nonocc and disc regions. The average aggregation
time is a relative time compared with OurBF method. All
the methods are experimented with the same conditions ex-
cept the aggregation functions. Moreover, the results of
recent proposed state-of-art method (SSMP) [11] are also
provided for comparison. According to Table 1, the pro-
posed methods achieves the lowest error percentages com-
pared with all the other methods, which demonstrates that
our method is competitive with all the other methods in ac-
curacy. OurBF even achieves higher accuracy compared
with OurGF, from which we can see that the bilateral fil-
ter is a little more robust in extracting local information.
Our method is competitive with SSMP [11]. More impor-
tantly, the computation cost of the proposed methods is also
competitive with the other methods [2], [6], [11]. The com-
putation cost of bilateral filter based cost-volume filtering
method [7] was expensive with relatively large kernel win-
dow size, thus, the guided filter based cost-volume filter-
ing method [6] was proposed later to reduce the computation
cost. OurGF method (with guided filter) has sharply reduced

the time cost compared with the guided filter based cost-
volume filtering method [6] on CPU. Moreover, the speed of
the bilateral filter based OurBF method is even a little faster
than the guided filter based OurGF method. In this way, our
method has some competitiveness on speed. These results
demonstrate the effectiveness of the proposed method. Fur-
thermore, parallel optimization could also be taken to fur-
ther speedup our method.

4. Conclusion

A new cost aggregation method is proposed for local stereo
matching. This new solution consists of guidance image,
fast cost aggregation and simplified scan-line optimization.
The guidance images inherit the performance of the guided
filter and the bilateral filter, which fulfill the requirements of
edge preserving with low complexity. The fast cost aggrega-
tion could aggregate the cost with an efficient step strategy.
The simplified scan-line optimization could further smooth
the disparity maps. We have applied this method in local
stereo matching. Experimental results demonstrate that our
method is competitive with all the other methods in both ac-
curacy and speed. Moreover, our method is also suitable for
parallel. Efforts will be made to speed up this method to
achieve real-time stereo matching on GPU.
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