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LETTER

The Structural Vulnerability Analysis of Power Grids Based on
Overall Information Centrality

Yi-Jia ZHANG†, Zhong-Jian KANG†a), Xin-Ling GUO††, Nonmembers, and Zhe-Ming LU††b), Member

SUMMARY The power grid defines one of the most important tech-
nological networks of our times and has been widely studied as a kind of
complex network. It has been developed for more than one century and
becomes an extremely huge and seemingly robust system. But it becomes
extremely fragile as well because some unexpected minimal failures may
lead to sudden and massive blackouts. Many works have been carried out
to investigate the structural vulnerability of power grids from the topologi-
cal point of view based on the complex network theory. This Letter focuses
on the structural vulnerability of the power grid under the effect of selec-
tive node removal. We propose a new kind of node centrality called overall
information centrality (OIC) to guide the node removal attack. We test the
effectiveness of our centrality in guiding the node removal based on several
IEEE power grids. Simulation results show that, compared with other node
centralities such as degree centrality (DC), betweenness centrality (BC) and
closeness centrality (CC), our OIC is more effective to guide the node re-
moval and can destroy the power grid in less steps.
key words: power grids, complex networks, vulnerability, centrality, over-
all information

1. Introduction

Outages of power systems affect a country severely in many
respects, and the catastrophic consequences of blackouts
may remind terrorists to mount attacks by exploiting the
vulnerabilities of power systems. Many scholars have been
interested in this topic and carried out lots of works in this
area [1], [2]. Unfortunately, these works are mostly based on
classical and detailed physical models which need complete
information including system operation data. In fact, neither
attackers nor defenders can predict the exact system operat-
ing states before the attacks are really preformed. Therefore,
the problem of malicious threat should be analyzed from sta-
tistical and general perspective by a new theory.

In the past two decades, complex networks have re-
ceived considerable attention, especially since the small-
world [3] and scale-free [4] properties were discovered in
many real networks. Since power grids have been widely
thought of as a typical type of complex network, many
works have utilized complex network concepts and proper-
ties to analyze the structural vulnerabilities [5] or cascading
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failure mechanisms [6] of power grids. For most real com-
plex networks, they are considerably resilient against ran-
dom removal or failure of individual units. However, when
the highly connected elements are the target of the removal,
they may be very fragile. Such guided attacks have dramatic
structural effects, typically leading to network fragmenta-
tion for many small-world networks with skewed power-
law degree distributions [7], [8]. Power grids, having less
skewed exponential degree distributions and often without
small-world topology, display similar patterns of response
to node loss [9].

From a topological viewpoint, various measures of the
importance of a network element (link or node), i.e. the
relevance of its location in the network with respect to a
given network performance, can be introduced to guide the
node removal. Typically, different node centralities [10]–
[13], such as degree centrality (DC), betweenness centrality
(BC) and closeness centrality (CC), can be used to guide the
node removal. In this Letter, we present a new kind of node
centrality to guide the node removal. The proposed central-
ity will be compared with some existing centralities, as well
as the random removal scheme, in attacking several IEEE
power grids.

2. Proposed Centrality

2.1 Existing Centralities

In this Letter, we model a power grid as an undirected and
unweighted network. For a power grid with N nodes and M
transmission lines, we can describe it as a complex network
G(V, E), where V is the set of nodes and E is the set of links
with |V | = N and |E| = M. Centrality measures are used to
rank the relative importance of nodes or links in a complex
network. There are various centrality measures for a node.
Here, we introduce the definitions of three kinds of widely
used centralities, i.e., degree centrality (DC), betweenness
centrality (BC), and closeness centrality (CC).

The simplest centrality for a node is its degree. This
centrality represents the connectivity of a node to the rest of
the network and reflects the immediate chance for a node to
exert its influences to the rest of the network. For a power
grid with N nodes, the degree of Node vi (1 ≤ i ≤ N),
denoted as ki, is defined as the number of links connected
to it. Then, the degree centrality of Node vi, which is a
normalized value, can be defined as follows:
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CD
i =

ki

N − 1
(1)

Node betweenness is one of the most widely used cen-
trality measure. This measure reflects the influence of a
node over the flow of information between other nodes, es-
pecially in cases where the information flow over a network
primarily follows the shortest available path. Given an undi-
rected graph G(V, E), the betweenness of Node vi, denoted
as Bi, is defined as the number of times the node vi acts as a
bridge along the shortest path between two other nodes:

Bi =
∑

all j, k
j�k�i

σ jk(vi)

σ jk
(2)

where σ jk denotes the number of shortest paths from Node
v j to Node vk and σ jk(vi) is the number of those paths that
pass through Node vi. Then, the betweenness centrality of
Node vi, i.e., the normalized value of Bi, can be defined as
follows:

CB
i =

Bi

(N − 1)(N − 2)/2
(3)

The closeness centrality of Node vi describes the level
at which Node vi can on average reach all other nodes in the
network. It is the mean geodesic distance (i.e., the shortest
path length in hops) between Node vi and all the other nodes
reachable from it:

CC
i =

∑

v j∈V, j�i

di j

N − 1
(4)

where di j is the shortest path distance between Node vi and
Node v j.

2.2 Overall Information Centrality

Although the degree centrality is easy to calculate, using the
degree centrality to identify the node importance is incom-
plete because it only considers the direct connections to a
target node. That is, the degree centrality is hard to charac-
terize the global feature of the network. The betweenness
centrality and closeness centrality are effective, but they are
computationally intensive for large-scale networks. It may
be more reasonable to use the information of a node itself
and its neighbors to better characterize the centrality. Thus,
we propose a new kind of centrality called overall informa-
tion centrality, which can be described as follows.

Given an undirected unweighted graph G(V,E), we de-
fine pi as the probability of picking a random link involving
Node vi as follows:

pi =
ki

N∑

j=1

k j

(5)

That is, pi is the ratio of Node vi’s degree to the aggregate

degree of all nodes. Borrowing Shannon’s information the-
ory, we can define the self information of Node vi as follows:

si = −pi log pi = − ki∑

j

k j

log
ki∑

j

k j

(6)

Since our centrality is called overall information, we
also need to define the mutual information related to Node
vi. In general, the overall information o is the weighted sum
of the self-information s and mutual information m, i.e., o =
s + αm, where α is a weight to control the influence from
neighbors. Assume N(vi) is the set of directly-connected
neighbors of Node vi, we can define the mutual information
of Node vi as follows:

mi =
∑

j:v j∈N(vi)

s j −
∑

j:v j∈N(vi)

s j|i (7)

where s j|i is conditional information defined as follows:

s j|i = −p j|i log p j|i (8)

where p j|i is a conditional probability defined as follows:

p j|i =
k j∑

l:vl∈N(vi)

kl

(9)

In this Letter, we set α = pi, thus the overall informa-
tion of Node vi can be defined as:

oi = si + αmi = si + pi

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

j:v j∈N(vi)

s j −
∑

j:v j∈N(vi)

s j|i

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (10)

Since node centrality is a normalized value within the
interval [0, 1], we can finally define the overall information
centrality (OIC) as follows:

COI
i =

oi

max
1≤ j≤N

{o j} (11)

3. Structural Vulnerability Analysis of Power Grids
Guided by Centralities

The basic idea for analysis of structural vulnerabilities of
power grids based on complex network theory is to com-
pare the network performance before and after the attacks
or failures of some components. Thus, we need at least two
indices, one is for the guidance of element removal from the
power grid, the other is to characterize the network com-
pleteness of the remained graph after each step of attacking.
In this Letter, we call the former index as the guidance in-
dex, while the latter as the vulnerability index. That is to
say, the centralities presented in Sect. 2 are used as guid-
ance indices. For vulnerability indices, several metrics have
been proposed to evaluate the completeness of the network
in the literatures, the frequently used ones including the rel-
ative size of giant component, efficiency, and the average



LETTER
771

geodesic distance [14], [15]. In this Letter, we use the rela-
tive size of giant component to measure the vulnerability of
power grids. The relative size of giant component R′ indi-
cates the ratio of the size of the largest connected sub-graph
Rt to the size of the whole network R0 as follows:

R′ =
Rt

R0
(12)

where R0 is the size of giant component of the initial net-
work (i.e., R0 = N if the original network is connected), Rt

is the size of giant component of the remained network after
the t-th step of node removal guided by the guidance index.
The detailed process can be described as follows:

Step 1: Calculate the centralities Ci (1 ≤ i ≤ N) of
all the nodes in the original graph G(V, E), and sort them in
descending order with C1 ≥ C2 ≥ . . . ≥ CN . Set t = 0 and
f = 0, where t denotes the number of iterations performed
while f means the fraction of nodes removed. Set R0 = N
for the connected network G(V, E).

Step 2: Let t = t+ 1, remove Node vt from the network
(also all the links connected to it), obtaining the resulting
graph Gt(V, E).

Step 3. Calculate the size of giant component of
Gt(V, E) denoted as Rt, let f = t/N, and then calculate the
corresponding relative size of the giant component R′ based
on Eq. (12). Record the pair ( f ,R′) in the resulting data list.

Step 4. Repeat Steps 2 and 3 for at most N − 1 times
until Rt = 1.

Step 5. Finally, based on the recorded data list, we draw
the resulting chart to reflect the relationship between f and
R′.

4. Experimental Results

In this Section, we adopt five IEEE power grids as well as
the US power grid to test the effectiveness of the proposed
centrality in analyzing the structural vulnerability of power
grids. These six power grids are with 30, 57, 118, 145, 162
and 4941 nodes respectively. Firstly, we show some basic
topological features of these power grids in Table 1, includ-
ing the number of nodes N, the number of links M, the av-
erage degree <k>, the clustering coefficient C, the diameter
D and the average path length L. We also show the degree
distributions of these power grids in Fig. 1. From Table 1,
we can see that the IEEE145 power grid obviously exhibits
the small-world property because its clustering coefficient
is large and its average path length is short. From Fig. 1,
we can see that for all power grids, the degree value 2 has
the maximal occurrence probability, if we remove the point
of degree 1, all degree distributions are close to power-law
distribution, so these six power grids tend to be scale-free.

In order to show the superiority of our centrality in
guiding the network attack, we compare our overall infor-
mation centrality (OIC) with four schemes, i.e., random
remove (RR), degree centrality (DC) based, betweenness
centrality (BC) based and closeness centrality (CC) based
schemes. The comparison results are shown in Fig. 2, where

Table 1 The topological features of six IEEE power grids

Fig. 1 Degree distributions of six power grids.

the abscissa axis f means the fraction of removed nodes
and the longitudinal axis R′ denotes the relative size of gi-
ant component. From Fig. 2, we can see that, for all power
grids, the random remove scheme is the worst scheme to at-
tack the power grid. For most power grids, our centrality
can best guide the node remove process to fragmentize the
network as soon as possible. Especially, for the US power
grid, our scheme only need to destroy less than 8 percent of
the nodes to divide the network into pieces. However, for
the IEEE145 power grid, the BC centrality is better than our
centrality at the beginning. This may be related to the av-
erage degree, because the descending order of the average
degree is IEEE145 > IEEE162 > IEEE118 > IEEE57 >
IEEE30 > USPower, while the performance is just oppo-
site. That is, the less the average degree is, the more impor-
tant the mutual information tends to be, and thus the more
effective our centrality is. Fortunately, nearly for all power
grids, most nodes has the degree value 2, which makes our
centrality more effective.

5. Conclusions

This Letter investigates the structural vulnerability of power
grids based on centralities. According to our simulation
tests, we find that some power grids are small-world net-
works with relatively high coefficient and small average path
length. And power grids have a nearly power-law degree
distribution, showing scale-free properties. The proposed
overall information centrality considers not only the self
information of each node but also the mutual information
between the node and its neighbors. From the simulation
results, we can conclude that our centrality is better than
other centralities, especially for the power grids with a small
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Fig. 2 Attacking performance comparisons among different attacking strategies based on six test
power grids.

average degree value.
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