
1720
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

LETTER

Robust Object Tracking with Compressive Sensing and Patches
Matching

Jiatian PI†a), Keli HU††b), Nonmembers, Xiaolin ZHANG†, Member, Yuzhang GU†, Nonmember,
and Yunlong ZHAN†, Student Member

SUMMARY Object tracking is one of the fundamental problems in
computer vision. However, there is still a need to improve the overall
capability in various tracking circumstances. In this letter, a patches-
collaborative compressive tracking (PCCT) algorithm is presented. Ex-
periments on various challenging benchmark sequences demonstrate that
the proposed algorithm performs favorably against several state-of-the-art
algorithms.
key words: object tracking, compressive sensing, patches matching, fea-
ture extraction

1. Introduction

Visual object tracking has drawn significant attention be-
cause of its critical role in many applications. Although
great progress has been made in the past decade, it remains
a challenging problem due to baffling conditions, such as
illumination variations, background clutter and shape defor-
mation.

The process of object tracking could be described as
a dynamic state estimation problem, and the state informa-
tion is usually the appearance representation. As the most
fundamental appearance representation, raw pixel values [1]
are widely employed in visual object tracking because of
their simplicity and efficiency. Despite this, without fea-
ture extraction, the raw pixel representation is susceptible
to complicated appearance changes. A local template-based
method represents an object using a set of part templates,
such as local histograms [2]. In contrast to the global visual
representation, local features are able to cope with partial
occlusions and model shape articulations flexibly. Cabido et
al. [14] propose two different local search methods to op-
timize the final solution obtained by the particle filtering
(PF). The two search areas in this method are systemati-
cally generated and randomly generated respectively. To
improve the computing speed in those big search areas, they
take advantage of the Graphics Processing Unit (GPU) to
implement it. Unlike the proposed method, our algorithm
segments the target into multiple patches and searches the
candidate target in a small area to save the computational

Manuscript received November 16, 2015.
Manuscript revised January 24, 2016.
Manuscript publicized February 26, 2016.
†The authors are with SIMIT, Shanghai, 200050 China.
††The author is with Shaoxing University, Shaoxing, 312000

China.
a) E-mail: pijiatian@126.com
b) E-mail: ancimoon@gmail.com

DOI: 10.1587/transinf.2015EDL8235

load. Fuhr et al. [15] use multiple patches to represent the
tracking target as our method. However, the proposed al-
gorithm is limited to track the pedestrian and uses camera
parameters to track each patch. To extract the features effi-
ciently, Zhang et al. [3] propose a compressive tracker (CT)
based on the compressive sensing (CS) theory [4]. It adopts
a very sparse measurement matrix in the compressed do-
main for constructing the appearance model. In addition
to the real-time performance, such a scheme also helps the
tracker achieve relatively good results on some challenging
video sequences. However, compressive tracking often suf-
fers from the drifting problem. Thus, some inaccurate sam-
ples will be supplied for the naive Bayes classifier. As the
error accumulation goes on, the tracker may drift or even fail
in the end. In this letter, to overcome the defect of the com-
pressive tracking, the method of local patches searching is
incorporated into it. Compared to the traditional compres-
sive tracker, the improved algorithm is more robust while
only adding a very low computational cost. The key con-
tribution of this work can be summarized as follows. First,
we improve the performance of the traditional compressive
tracker in video sequence, and promote the application of
the compressive sensing (CS) theory. Second, we incorpo-
rate the local patches searching into the traditional compres-
sive tracking to achieve a more accurate tracking position,
which can handle the drifting problem to some extent.

The remainder of this letter is organized as follows.
The patches-collaborative compressive tracking (PCCT) al-
gorithm is presented in Sect. 2. Then experimental results
and discussions are shown in Sect. 3. The conclusion and
our future work are summarized in Sect. 4.

2. Patch-Collaborative Compressive Tracking

In this section, we give the details of our patches-
collaborative compressive tracking (PCCT) algorithm. The
tracking issue is formulated as a binary classification prob-
lem via a naive Bayes classifier which is online updated with
the samples in the compressed domain. We assume that the
bounding box in the first frame is an initial template. And
then, low-dimensional features are extracted from the ini-
tial template based on the compressive sensing. In addition,
the local patches are applied for representing the initial tem-
plate which remains the same in the following frames. The
method of local patches searching is applied for achieving a
more accurate tracking position, followed by the classifica-

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



LETTER
1721

Fig. 1 The illustration of the convolution between a sample z and rect-
angle filters.

tion for the first time. At last, some positive samples near the
more accurate tracking position, and negative samples away
from it are used to update the classifier. Thus, the object
location in the next frame will be predicted.

2.1 Low-Dimensional Feature

Assume that the tracking window is given by a single regu-
lar bounding box. The image representation of the template
is formed by convolving the template with a Gaussian filter
of different spatial variances. Zhang et al. [3] show that a
truncated Gaussian filter can be replaced by several rectan-
gle filters in practice. At each frame, positive samples near
the current object bounding box and negative samples away
from the object center are used to update the classifier. In
the following frame, some samples around the previous tar-
get location to find the current target position. As shown
in Fig. 1, for a sample z ∈ Rw×h, it is processed by con-
volving z with a set of rectangle filters [3] at multiple scales
{F1,1, . . . , Fw,h} which are defined as

Fw,h(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

1
wh 1 ≤ x ≤ w,1 ≤ y ≤ h,

0 otherwise.
(1)

where w and h are the width and height of a rectangle filter
respectively.

After the convolution, the filtered image is reshaped as
a column vector x = (x1, . . . , xn)T ∈ Rn, n = (wh)2. The
dimension of this vector is typically very high. Then the
random Gaussian matrix R ∈ Rm×n is adopted to project x
into a low-dimensional space, denoted by v ∈ Rm, m � n.
As shown in Fig. 2, the nonzero entries in R and the posi-
tions of rectangle filters in an input image corresponding to
the nonzero entries in each row of R are needed to store.
Then, the integral image [5] is used to efficiently compute
the rectangular features corresponding to the nonzero entries
in each row of R.

2.2 Local Patches Searching

We use the vertical and horizontal patches to represent the

Fig. 2 Compressing a high-dimensional vector to a low-dimensional
vector. Dark, gray and white rectangles represent positive, negative and
zero entries respectively.

Fig. 3 The illustration of the vertical and horizontal patches. The bound-
ing box shown in solid line is the initial tracking target obtained by the
classifier. The bounding box shown in dashed line is the candidate target
within radius γp.

template as shown in Fig. 3. Each small rectangular patch
is regarded as the template patch. As noted in [2], this
choice of patches is good enough for the patches search-
ing. We extract histograms for each template patch with
the integral histogram described in [6], which is an exten-
sion of the integral image [5]. In order to revise and de-
termine the final tracking position, we will search in the
neighborhood of the initial tracking position, which is es-
timated by using compressed information. In the search do-
main with a radius γp, we compare the similarity between
patches. Assume PT = (dx, dy, dw, dh) is a rectangular patch
in the template, whose center is (dx, dy), and whose width
and height are dw and dh respectively. One of the candi-
date centers in the search domain is (x, y), the corresponding
rectangular patch with PT in this candidate can be defined
as PC = (x + dx, y + dy, dw, dh). We measure the similarity
between patches by computing the Earth Mover Distance
(EMD) [6] between their histograms. Then, the correspond-
ing score S PT (x, y) for the template patch PT is defined as

S PT (x, y) = EMDdistance(PC , PT ). (2)

Then, we sum the total corresponding score with all
template patches for this candidate center (x, y). Every can-
didate center in the search domain will have a total score.
At last, the candidate center with the minimal total score is



1722
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

Table 1 Main steps of our algorithm

Algorithm 1:PCCT
1: Input:a template represented as a bounding box.
2: Use random measurement matrix R to extract the low-dimensional

feature.
3: Use vertical and horizontal patches to represent the template.
4: for t = 2 to number of frames do
5: Sample a set of samples in Dγc = {z | ‖I(z) − It−1‖ < γc}, where

It−1 is the tracking position at the (t − 1)-th frame, and extract the
features with low dimensionality. γc is the searching radius for
finding the initial tracking position. z is the sample.

6: Use the classifier to find the initial tracking position It with the
maximal classifier response.

7: Use local patches searching and the initial template in the first
frame to revise and determine the final tracking position It with
the minimal total score.

8: Sample positive samples in Dα = {z | ‖I(z) − It‖ < α} and negative
samples in Dβ,λ = {z | β < ‖I(z) − It‖ < λ} with α < β < λ,
where α is the search radius for sampling positive samples, and β
and λ are the radiuses for sampling negative samples. Extract the
low-dimensional features with these two sets of samples.

9: Update the classifier.
10:end for
11:Output:Tracking position It .

chosen as the final tracking position.

2.3 Tracking Algorithm

Assume all elements in the vector v ∈ Rn are independently
distributed. A naive Bayes classifier is applied for mod-
eling these elements. We use Gaussian distribution which
is a good approximation of features in the projected space
to separate samples. Main steps of our algorithm are pre-
sented in Algorithm 1 (see Table 1). The main reasons that
our method outperforms the traditional compressive tracker
(CT) can be attributed to two factors. First, when there is a
tracking drift, the patches of the current tracking box could
be different with the initial template. After searching in the
neighborhood, a more accurate tracking box which has a
small difference with the initial template will be found. In
addition, the initial template is unchangeable and will gen-
erate more “correct” positive samples to maintain good per-
formance of the classifier. Second, the low-dimensional fea-
tures based on compressive sensing still have better discrim-
inative capability [3], which ensure the current tracking box
found by the classifier is not far away from the correct lo-
cation. Thus, only a small searching radius is needed for
the local patches, which contributes a lot for decreasing the
computation of patches matching.

3. Experiments

In this section, our patches-collaborative compressive track-
ing (PCCT) algorithm is evaluated with other 9 state-of-
the-art methods on 7 challenging sequences. These meth-
ods are CT [3], BSBT [7], Frag [2], LOT [8], MSV, PDV in
VIVID tested [9], SeminT [10], VTS [11] and VTD [12]. All
of these trackers run in the one-pass evaluation (OPE) [13].
These 7 sequences and their corresponding ground truth

Table 2 Success rate (%). Bold fonts indicate the best performance.

Seqs VTS VTD MSV LOT BSBT SemiT CT Frag PDV PCCT
boy 62.9 61.9 56.8 52.4 54.1 40.3 58.6 38.2 19.3 73.4
dudek 79.7 78.5 48.3 53.1 69.0 51.0 64.0 52.9 20.4 70.5
tiger2 31.2 31.2 17.8 13.4 16.3 23.6 44.8 11.8 11.8 47.4
jump 15.5 12.8 25.4 57.4 15.1 6.2 4.6 66.0 63.2 69.3
david2 67.2 67.8 6.4 59.6 51.8 53.5 29.4 23.8 40.1 73.3
david3 53.4 39.8 10.4 65.8 35.5 14.7 30.3 66.0 44.2 43.0
lem 45.4 43.0 63.5 59.0 30.9 14.0 54.5 30.2 57.4 53.3
overall 50.8 47.9 32.7 51.5 38.9 29.0 40.9 41.3 36.6 61.5
fps 5.7 5.7 32.4 0.7 7.0 11.2 64.4 6.3 32.6 13.3

files, the compared code library, and all of the tracking
results for compared trackers are available on the bench-
mark [13]. The total frame number for all sequences is 4550.
For each tracker, the default parameters with the source code
are used in all evaluations. The proposed PCCT algorithm
runs at 13.3 frame per second (FPS) with a C++ implemen-
tation on an Xeon(R) X5675 machine with 3.07 GHz CPU
and 6 GB RAM without any optimizing.

In our experiments, the search radius α for sampling
positive samples is set to 4, and the searching radius β and
λ for sampling negative samples are set to 8 and 22.5 re-
spectively. In addition, 50 negative samples are randomly
selected from the negative samples set Dβ,λ. The searching
radius γc for finding the initial tracking position is set to 25.
Parameters in the classifier is set as the same as CT. The
histograms of gray scale image used in patches contain 16
bins, and the searching radius to determine the final track-
ing position γp is set to 3. The template for local patches
searching is fixed at the first frame and kept the same all
through the sequence. The success rate based on the over-
lap metric is applied for analyzing the performance of each
algorithm [13].

For each tracker, the average success rate of each se-
quence is given in Table 2. According to the experimen-
tal results, the proposed algorithm achieves outstanding per-
formances in most sequences. The overall overlap scores
achieved by the proposed algorithm are 61.5%, while the
CT algorithm is 40.9%. Our method achieves much better
results than the CT algorithm, which shows the effectiveness
of using local patches searching.

The tracking results for the sequences david2, dudek,
tiger2 are shown in Fig. 4 (a)-(c). When the out-of-plane ro-
tation occur, such as frame #123 in david2 and frame #66 in
tiger2, most algorithms fail to track the target except ours.
The target object in the boy, jump, dudek, lem and tiger2
sequences undergo abrupt movements and motion blur, es-
pecially in boy and jump. However, the proposed algorithm
performs well as illustrated in frames #264, #386 and #403.
The object in jump sequence jumps fast for a long time, our
algorithm also tracks the target as well. The tracking re-
sults for the boy, jump sequences are shown in Fig. 5 (a), (b).
When the part occlusion occurs in lem sequence at frame
#303, #373, #453 and frame #81, #242 in david3 sequence,
our proposed tracker can find the target. The tracking results
for the david3 and lem sequences are shown in Fig. 5 (c), (d).
Although the object in frame #107 from tiger2 sequence un-



LETTER
1723

Fig. 4 The tracking results of the sequences (a) david2, (b) dudek, (c)
tiger2.

Fig. 5 The tracking results of the sequences (a) boy, (b) jump, (c) david3,
(d) lem.

dergoes both the problem of illumination variation and part
occlusion, the proposed algorithm can handle this well.

4. Conclusion

In this paper, we propose a robust tracking algorithm which
combines the method of local patches searching with the
compressive tracker. A very sparse measurement matrix
is adopted to efficiently compress features from the target
to find the initial object position in real time. Some local
patches computed by the integral histogram are used to re-
vise and determine the final object position. Experimental
results on several challenging sequences demonstrate that
the proposed algorithm performs well in terms of accuracy
and robustness. However, the tracker loses the target when
the object is totally occluded, as illustrated in frame #84 in
david3 sequence. Consequently, we will focus on improving
the algorithm under heavy occlusion in the future.

References

[1] B.D. Lucas and T. Kanade, “An Iterative Image Registration Tech-
nique with An Application to Stereo Vision,” Proc. 7th IJCAI, Van-
couver, British Columbia, vol.81, pp.674–679, Aug. 1981.

[2] A. Adam, E. Rivlin, and I. Shimshoni, “Robust Fragments-based
Tracking using the Integral Histogram,” Proc. CVPR, New York,
USA. vol.1, pp.798–805, June 2006.

[3] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time Compressive
Tracking,” Proc. ECCV, Firenze, Italy, vol.7574, pp.864–877, Oct.
2012.

[4] E.J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol.51, no.12 pp.4203–4215, Dec. 2005.

[5] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” Proc. CVPR, Kauai, USA, vol.1,
pp.I-511–I-518, Dec. 2001.

[6] Y. Rubner, C. Tomasi, and L. Guibas, “The earth mover’s distance
as a metric for image retrieval,” Int. J. Comput. Vis., vol.40, no.2,
pp.91–121, Nov. 2000.

[7] S. Stalder, H. Grabner, and L. Gool, “Beyond Semi-Supervised
Tracking: Tracking Should Be as Simple as Detection, but not
Simpler than Recognition,” Proc. IEEE ICCV, Kyoto, Japan,
pp.1409–1416, Sept. 2009.

[8] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan, “Locally Orderless
Tracking,” Proc. IEEE CVPR, Providence, Rhode, pp.1940–1947,
June 2012.

[9] R. Collins, X. Zhou, and S.K. Teh, “An Open Source Tracking
Testbed and Evaluation Web Site,” Proc. 12th IEEE Int. Workshop
on PETS, Miami, Florida, USA. pp.17–24, Jan. 2009.

[10] H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised On-
Line Boosting for Robust Tracking,” Proc. ECCV, Marseille, France,
pp.234–247, Oct. 2008.

[11] J. Kwon and K.M. Lee, “Tracking by Sampling Trackers,” Proc.
IEEE ICCV, Barcelona, Spain, pp.1195–1202, Nov. 2011.

[12] J. Kwon and K.M. Lee, “Visual Tracking Decomposition,” Proc.
IEEE CVPR, San Francisco, CA, USA, pp.1269–1276, June 2010.

[13] Y. Wu, J. Lim, and M.-H. Yang, “Online Object Tracking: A Bench-
mark,” Proc. IEEE CVPR, Portland, Oregon, USA, pp.2411–2418,
June 2013.

[14] R. Cabido, A.S. Montemayor, J.J. Pantrigo, and B.R. Payne, “Mul-
tiscale and local search methods for real time region tracking with
particle filters: local search driven by adaptive scale estimation on
GPUs,” J. Machine Vis. and Applications, vol.21, no.1, pp.43–58,
Nov. 2009.

[15] G. Fuhr and C.R. Jung, “Robust Patch-Based Pedestrian Tracking
using Monocular Calibrated Cameras,” Proc. 25th SIBGRAPI Conf.
Graphics, Patterns and Images, Ouro Preto, pp.166–173, Aug. 2012.

http://dx.doi.org/10.1109/cvpr.2006.256
http://dx.doi.org/10.1007/978-3-642-33712-3_62
http://dx.doi.org/10.1109/tit.2005.858979
http://dx.doi.org/10.1109/cvpr.2001.990517
http://dx.doi.org/10.1109/iccvw.2009.5457445
http://dx.doi.org/10.1109/cvpr.2012.6247895
http://dx.doi.org/10.1109/iccv.2011.6126369
http://dx.doi.org/10.1109/cvpr.2010.5539821
http://dx.doi.org/10.1109/cvpr.2013.312
http://dx.doi.org/10.1007/s00138-008-0140-4
http://dx.doi.org/10.1109/sibgrapi.2012.31

