
1686
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

LETTER

DynamicAdjust: Dynamic Resource Adjustment for Mitigating
Skew in MapReduce

Zhihong LIU†,††a), Aimal KHAN††, Nonmembers, Peixin CHEN†, Student Member, Yaping LIU†,
and Zhenghu GONG†, Nonmembers

SUMMARY MapReduce still suffers from a problem known as skew,
where load is unevenly distributed among tasks. Existing solutions follow
a similar pattern that estimates the load of each task and then rebalances the
load among tasks. However, these solutions often incur heavy overhead due
to the load estimation and rebalancing. In this paper, we present Dynam-
icAdjust, a dynamic resource adjustment technique for mitigating skew in
MapReduce. Instead of rebalancing the load among tasks, DynamicAdjust
adjusts resources dynamically for the tasks that need more computation,
thereby accelerating these tasks. Through experiments using real MapRe-
duce workloads on a 21-node Hadoop cluster, we show that DynamicAdjust
can effectively mitigate the skew and speed up the job completion time by
up to 37.27% compared to the native Hadoop YARN.
key words: MapReduce, resource-aware scheduling, skew mitigation

1. Introduction

MapReduce has proven itself as a popular and powerful
tool for large-scale data processing. By breaking down a
data-intensive job into a number of small tasks and execut-
ing them in parallel across multiple machines, MapReduce
can significantly decrease the job running time. However,
MapReduce still suffers from a problem known as skew,
where load is unevenly distributed among tasks. It can make
a number of tasks take dramatically longer to complete than
others, thereby slowing down the entire job.

Many solutions have been proposed recently to miti-
gate skew in MapReduce. Most of them [1]–[5] follow a
similar pattern that profiles the distribution of the interme-
diate key-value pairs and then reassigns the key-value pairs
among reduce tasks to achieve a better balance. However, in
order to gather the information of the key-value pairs, these
solutions either have to wait for the completion of all map
tasks [1]–[3] or execute an additional sampling phase before
the actual job starts [4], [5]. Some other solutions [6], [7]
speculatively execute replica tasks for slow running tasks,
hoping the replica tasks can finish faster than the original
tasks. However, the replica tasks have the same load as the
original tasks. Executing them elsewhere may not improve
the job completion time when skew exists.

More recently, a run-time skew mitigation technique

Manuscript received December 15, 2015.
Manuscript revised February 1, 2016.
Manuscript publicized March 7, 2016.
†The authors are with the College of Computer, National Uni-

versity of Defense Technology, Changsha, Hunan, China.
††The authors are with the David R. Cheriton School of Com-

puter Science, University of Waterloo, Waterloo, ON, Canada.
a) E-mail: zeroun.liu@uwaterloo.ca

DOI: 10.1587/transinf.2015EDL8255

Skewtune [8] has been proposed. Skewtune repartitions the
remaining load of a slow running task and launches an addi-
tional MapReduce job to process the remaining load. How-
ever, it will impose a heavy overhead (as reported in [8],
30s is imposed for mitigating the skew). The solutions in
[9], [10] dynamically allocate resources for reduce tasks ac-
cording to their estimated load. However, these solutions
focus on the skew in the reduce stage, but cannot mitigate
the skew in the map stage, which limits their applicability.

In this paper, we present DynamicAdjust, a dy-
namic resource adjustment technique for mitigating skew in
MapReduce. Different from existing work, DynamicAdjust
monitors the progress of each task at run-time and detects
skewed tasks based on a phase-aware task remaining time
prediction technique. After that, DynamicAdjust adjusts re-
sources for the skewed tasks using idle resources. Dynam-
icAdjust makes no assumption regarding the cause of the
skew. As a result, it can mitigate any kind of skew, both
in map and reduce stages. Through experiments using real
workloads on a 21-node Hadoop cluster, we show that Dy-
namicAdjust can shorten the job completion time by up to
37.27% compared to the native Hadoop YARN 2.4.0.

2. Background and Motivation

2.1 Resource Allocation Scheme in Hadoop YARN

Hadoop YARN [11] is a widely-used MapReduce imple-
mentation. In YARN, the container is used to manage the
resources. It provides specific resource accountings (e.g. <2
GB RAM, 1 CPU>) and enforces the resource limits on the
task. Nevertheless, YARN fails to consider that the run-time
resource requirement varies from task to task, and does not
support dynamic resource adjustment for an allocated con-
tainer. As a result, the tasks that require more resources
(e.g. skewed tasks) may run slower because their resources
are limited by the allocated containers, thereby prolonging
the job completion time.

2.2 Skew in MapReduce

There are mainly two types of skew in MapReduce: 1) Com-
putational Skew, which occurs due to the fact that some ex-
pensive records take longer to process, and it happens both
in map and reduce stages; 2) Partitioning Skew, which oc-
curs due to the hash function used for distributing the in-

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



LETTER
1687

Fig. 1 Architecture of DynamicAdjust

termediate data among reduce tasks, and this type of skew
arises especially in the reduce stage.

3. Proposed Method

3.1 System Architecture

The architecture of DynamicAdjust is shown in Fig. 1.
There are five main components: the Skew Detector, the
Skew Mitigator, the Resource Requester, the Container Ad-
juster and the Resource Scheduler. The workflow of Dy-
namicAdjust consists of following steps:
(1) The Skew Detector collects the task reports from the run-
ning tasks, detects the skew according to the task progress
and notifies the Skew Mitigator when skew is detected.
(2) The Skew Mitigator determines how much resources are
needed for the skewed tasks and notifies the Resource Re-
quester to ask resources from the ResourceManager. Subse-
quently, the Resource Requester sends the resource adjust-
ment requests to the Resource Scheduler.
(3) After the Resource Scheduler receives the requests, it
allocates resources to the corresponding ApplicationMaster
when resources in the cluster become available.
(4) Once the ApplicationMaster receives the response that
the requested resources have been allocated, it notifies the
Container Adjuster to execute the resource adjustment in the
NodeManager.

3.2 Skew Detection

We consider that if the estimated duration of the task (de-
noted by estimatedDuration) is greater than the historical
average duration (denoted by averageDuration) by θslow,
then this task is a candidate of skewed tasks. Also, it is not
beneficial to mitigate the skewed task near completion, even
though its estimated duration is long. Therefore, the task
that has the greatest remaining time among the candidates is
selected as the task need to be mitigated each time.

The solution in LATE [6], assumes the progress rate
is stable in each phase. Using this assumption, LATE es-
timates the task remaining time by 1−progressS core

progressRate and then

Fig. 2 Progress rate of each phase

speculatively launches replica tasks based on the task re-
maining time estimation. However, the progress rate is not
necessarily stable during the task execution. Figure 2 com-
pares the progress rate of each phase in PageRank and In-
vertedIndex jobs. It is clear that different phases have dif-
ferent progress rates and the fluctuation is dramatic. LATE
uses an unchanged progress rate to predict the task remain-
ing time, which will increase the prediction error.

Hence, we propose a phase-aware task remaining time
prediction technique. It predicts the task remaining time by
summing up the remaining time in current and following
phases. For the remaining time in the current phase, we
use the progress rate measured in the current phase. For
the remaining time in following phases, we use the average
progress rates calculated from finished tasks. Since we will
not start the skew mitigation after 10% of tasks have com-
pleted, there will be sufficient historical statistics for calcu-
lating the per phase average progress rate.

With the task remaining time predicted, we can obtain
the estimatedDuration by summing up the task elapsed time
and remaining time. Note that DynamicAdjust leverages the
task status report mechanism inherent in Hadoop, determin-
ing the estimatedDuration and averageDuration will not in-
cur noticeable overhead over Hadoop.

3.3 Skew Mitigation

Since DynamicAdjust will adjust the resources for the
skewed tasks, we need to know the relationship between
the resource allocation and the task running time. To this
end, we compare the task running times by varying the CPU
allocation from 1 vCore to 8 vCores with the memory allo-
cation fixed to 1GB. Furthermore, we also compare the task
running times by varying the memory allocation (JVM heap
size)† from 200 MB to 4000 MB with the CPU allocation
fixed to 1vCore. Figure 3 shows the results for a random
task from InvertedIndex. We can see that with the resource
allocation increased, the task running time decreases until
the resources become sufficient for the task. Similar results
can also be observed in other workloads.

Therefore, in terms of CPU adjustment, we scale up
the allocation to estimatedDuration

averageDuration Alloccpu
old , where Alloccpu

old is
the previous CPU allocation; in terms of memory adjust-

†There are two settings in YARN for memory allocation: log-
ical memory limit and JVM heap size. The former one is used for
the ResouceManager to manage the cluster resources, and the latter
one is the actual memory limit that the container can use.



1688
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

Table 1 Skew Detection for InvertedIndex (235 map tasks and 60 reduce tasks in total)

Strategy
Map Stage Reduce Stage

True
Positive

True
Negative

False
Positive

False
Negative

True
Positive

True
Negative

False
Positive

False
Negative

Hadoop-LATE 5 205 25 0 0 55 0 5
DynamicAdjust 5 225 5 0 4 55 0 1

Fig. 3 Relationship between task duration and resource allocation in In-
vertedIndex

ment, we do not change the memory allocation at run-time
since YARN is using JVM based container, and it is not able
to change the JVM heap size dynamically. We set the JVM
heap size to 80% of the logical memory limit while launch-
ing a task. The intention is to try to maximum the usable
memory, but still subject to the resource bounding.

Overall, this strategy is simple yet works well in prac-
tice. It roughly estimates the resource requirement for accel-
erating the skewed tasks to catch up with the normal tasks,
and privileges these tasks by guaranteeing their resource al-
location. Even though we do not adjust the memory at run-
time, we found that 800MB† of the JVM heap size is actu-
ally enough for a task in our experiments.

4. Evaluation

In this section, we evaluate the performance of DynamicAd-
just using a real Hadoop cluster with 21 virtual machines
(VMs) in the SAVI Testbed [12]. Each VM has four 2 GHz
cores, 8 GB RAM and 80 GB disk. We deploy the Resource-
Manager and NameNode on same VM, and the remaining
20 VMs are used as workers. Each worker is configured
with 8 vCores and 7GB RAM (leaving 1GB for background
processes). The HDFS block size is set to 128 MB, and
the replication level is set to 3. We activate the CGroups
configuration and also enable the map output compression.
We evaluate DynamicAdjust using 1) InvertedIndex, with
a 30 GB Wikipedia dataset; 2) PageRank, with a 13 GB
ClueWeb09 dataset.

4.1 Accuracy of Skew Detection

In this set of experiments, we activate the skew detection,
but do not perform the skew mitigation. Thus, we let the
labeled tasks run as usual and verify whether they are truly
skewed in the end. Similar to [7], we consider the tasks

†The minimum logical memory limit is 1 GB by default, and
80% of that is 800 MB.

Fig. 4 Comparison of the skew detection between Hadoop-LATE and
DynamicAdjust

whose durations are 1.5 times longer than the average as
skewed tasks. Figure 4 compares the precision†† of the skew
detection between Hadoop-LATE (the Hadoop implementa-
tion of LATE) and DynamicAdjust. It is clear that Dynami-
cAdjust outperforms Hadoop-LATE significantly. In partic-
ular, DynamicAdjust can improve the precision by 47.61%
and 5.7% for InvertedIndex and PageRank, respectively.

In order to understand the rationale behind the gain, we
show the detailed skew detection results for InvertedIndex
in Table 1. We can see that in the map stage, both strategies
can detect all the skewed tasks. However, Hadoop-LATE
misjudges 25 normal tasks as skewed tasks. In comparison,
the number of False Positive for DynamicAdjust is 5. In
the reduce stage, Hadoop-LATE cannot detect any of the
skewed tasks, however, DynamicAdjust identifies 4 out of 5
skewed tasks. Besides, we can also observe that there is little
improvement for PageRank. That is because in PageRank
the skewed tasks are extremely slow, and the normal tasks
hover over at the average. Thus, both Hadoop-LATE and
DynamicAdjust can detect the skewed tasks accurately.

4.2 Performance of Skew Mitigation

In this section, we want to validate how well Dynami-
cAdjust can mitigate skew. We compare DynamicAdjust
against 1) native Hadoop YARN 2.4.0; 2) the speculation-
based straggler mitigation approach (Hadoop-LATE); 3)
the repartition-based skew mitigation approach (Skew-
Tune) and 4) the resource-aware skew mitigation approach
(DREAMS [9]). Note that SkewTune is implemented on
Hadoop version 1, which is slot-based and there is no re-
source isolation between slots. In order to fairly compare
the approaches mentioned above, we have implemented iso-
lation between slots in Hadoop version 1 (0.21.0) and in-
stalled SkewTune on top of it. We configure each worker
with 6 map slots and 2 reduce slots for SkewTune.

Figure 5 shows the job completion time for each job
while using different mitigation strategies. As we can see

††The precision is calculated by True Positive
True Positive+False Positive .



LETTER
1689

Fig. 5 Job Completion time comparison

Fig. 6 Job Execution timeline comparison

from the figure, DynamicAdjust outperforms other skew
mitigation approaches in all case. In particular, Dynami-
cAdjust improves the job completion time by 32.86% and
37.27% in InvertedIndex and PageRank, respectively. There
is no improvement observed for Hadoop-LATE and Skew-
Tune. These two strategies sometimes perform worse than
YARN in our experiments. DREAMS can improve the job
completion time for InvertedIndex. However, for PageRank
which has skew in the map stage, DREAMS cannot bring
any benefit.

To explain why DynamicAdjust outperforms other
skew mitigation strategies, we plot the execution timeline
while running PageRank with different strategies† in Fig. 6.
We can see in Fig. 6 (a) that several tasks take much longer
than other tasks in the map stage. As shown in Fig. 6 (b),
SkewTune repartitions one of skewed tasks and launches an
additional job to process this skewed task using free clus-
ter resources. However, SkewTune cannot mitigate another
skewed task while there is a mitigation job in progress (see
Sect. 3.2 in [8]). Therefore, it misses the best time to miti-
gate concurrent skewed tasks. DREAMS focuses on parti-
tioning skew, but cannot handle the skew that arises in the
map stage. Thus, we can see that there is no improvement in
Fig. 6 (c). In Comparison, DynamicAdjust adjusts resources

†Due to the space limit, we do not show the timeline for
Hadoop-LATE.

for skewed tasks both in map and reduce stages. As shown
in Fig. 6 (d), the durations of the skewed map tasks are de-
creased dramatically, thereby improving the job completion
time.

5. Conclusion

In this paper, we presented DynamicAdjust, a framework
that provides run-time skew mitigation. In contrast to exist-
ing solutions, we adjust resources dynamically for tasks that
need more computation, thereby accelerating these tasks. In
our performance evaluation using real workloads on a 21-
node Hadoop cluster, we demonstrated that DynamicAd-
just can improve the precision of skew detection by up to
47.64% compared to Hadoop-LATE. We also showed that
DynamicAdjust can improve the job completion time by up
to 37.27% in comparison to the native Hadoop YARN.

Acknowledgments

This work is supported in part by the National Natural Sci-
ence Foundation of China (No.61472438).

References

[1] J. Son, H. Choi, and Y.D. Chung, “Skew-tolerant key distribu-
tion for load balancing in MapReduce,” IEICE Trans. Inf. & Syst.,
vol.E95-D, no.2, pp.677–680, 2012.

[2] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, and S. Wu, “Han-
dling partitioning skew in MapReduce using LEEN,” Peer-to-Peer
Networking and Applications, vol.6, no.4, pp.409–424, 2013.

[3] N. Zacheilas and V. Kalogeraki, “Real-time scheduling of skewed
MapReduce jobs in heterogeneous environments,” ICAC, pp.189–
200, USENIX, 2014.

[4] S.R. Ramakrishnan, G. Swart, and A. Urmanov, “Balancing reducer
skew in MapReduce workloads using progressive sampling,” Proc.
Third ACM Symposium on Cloud Computing - SoCC ’12, pp.1–14,
2012.

[5] W. Yan, Y. Xue, and B. Malin, “Scalable and robust key group size
estimation for reducer load balancing in MapReduce,” 2013 IEEE
International Conference on Big Data, pp.156–162, 2013.

[6] M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environ-
ments,” OSDI, p.7, 2008.

[7] Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce performance
using smart speculative execution strategy,” IEEE Trans. Computers,
vol.63, no.4, pp.954–967, 2014.

[8] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “SkewTune: mit-
igating skew in Management applications,” SIGMOD, pp.25–36,
ACM, 2012.

[9] Z. Liu, Q. Zhang, M.F. Zhani, R. Boutaba, Y. Liu, and Z. Gong,
“Dreams: Dynamic resource allocation for mapreduce with data
skew,” IFIP/IEEE IM 2015, pp.18–26, Ottawa, Canada, May 2015.

[10] Z. Liu, Q. Zhang, R. Boutaba, Y. Liu, and B. Wang, “Optima: On-
line partitioning skew mitigation for MapReduce with resource ad-
justment,” Springer JNSM, 2016.

[11] “Apache hadoop yarn,” http://hadoop.apache.org/
[12] “Savi testbed,” http://www.savinetwork.ca

http://dx.doi.org/10.1587/transinf.e95.d.677
http://dx.doi.org/10.1007/s12083-013-0213-7
http://dx.doi.org/10.1145/2391229.2391245
http://dx.doi.org/10.1109/bigdata.2013.6691568
http://dx.doi.org/10.1109/tc.2013.15
http://dx.doi.org/10.1145/2213836.2213840
http://dx.doi.org/10.1109/inm.2015.7140272
http://dx.doi.org/10.1007/s10922-015-9362-8

