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LRU-LC: Fast Estimating Cardinality of Flows over Sliding
Windows∗∗
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SUMMARY Estimating the cardinality of flows over sliding windows
on high-speed links is still a challenging work under time and space con-
strains. To solve this problem, we present a novel data structure maintain-
ing a summary of data and propose a constant-time update algorithm for
fast evicting expired information. Moreover, a further memory-reducing
schema is given at a cost of very little loss of accuracy.
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1. Introduction

A flow in computer networks is defined as a stream of pack-
ets which share the same properties (e.g, source/destination
addresses). Estimating the cardinality of flows, the number
of distinct flows, is a fundamental problem in many network
applications, such as network measurement, intrusion detec-
tion, and clickstream analysis. For example, sudden changes
in the cardinality of flows in links may indicate DDoS at-
tacks, worm outbreaks or port-scan activities [1], [2].

In most real-world applications, data are time-
sensitive, i.e., very “old” items are considered less useful
and relevant than the recent. A commonly used approach for
covering the W most recent items is sliding window model.
The paper aims to address the following problem: estimat-
ing the cardinality of flows over sliding windows on high-
speed links (e.g., OC-48 (2.5Gbps), OC-192 (10Gbps)).

Packets on backbone links are generated continuously
at a high rate and in a form of data streams. The line-rate
stream is of unbounded length; its quantity is too huge to fit
in main memory. Besides, data items are dynamic in sliding
window model, where stale items are discarded over time.
Given memory and time constraints, algorithms for counting
the cardinality of flows has to (1) maintain a sketch of the
data involved, instead of the actual data, (2) consume as little
update time as possible for evicting stale information, and
(3) process data in only one pass.

In this paper, combining a bitmap sketch with the least-
recently used (LRU) replacement policy [3], we propose a
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novel sketch working with sliding window model, and in-
troduce a simple but efficient update mechanism, which only
needs very small constant time in one time slot.

Because the linear counting (LC) sketch is a building
block of our approach, we review it briefly.

1.1 LC Sketch

LC sketch [4] only retains a bit vector of size m, a concise
sketch of the actual data, consuming substantively smaller
memory. The technique is based on hashing. For each ele-
ment e, a uniformly distributed hash function h(x) is used to
map e to a bit position j. The corresponding bit at position j
is set to 1. After N iterations, each bit of the vector has one
of the two states: empty (or zero) or non-empty (or one). By
bins and balls theory, the cardinality estimate n̂ of the data
set is:

n̂ = −m ln
z
m

(1)

where m is the sketch size, z is the number of empty
cells. The estimation accuracy increases with the size of
the bitmap. Further details can be found in [4].

The LC sketch only needs a single-pass over each data
element, running very fast. As has been demonstrated by
[5], for LC sketch to attain comparable accuracy, it needs
less memory space than other counting sketches.

1.2 Difficulties of Applying LC in Sliding Window Model

In most real-world applications, newly arrived data items
are more important and relevant than old ones. This results
in sliding window model [6]: each data item expires after
exactly W time units. In this model, items are arriving con-
tinuously; meanwhile some are being forgotten due to their
expiry.

In order to adapt LC sketch to sliding window settings,
we have to (1) extend LC sketch to support the aging mech-
anism, and (2) design a state update approach for evicting
outdated information. To fit massive flows, the extension
of LC sketch is only allowed to consume little extra mem-
ory. Besides, to continuously track the cardinality in real
time, the algorithm for updating LC sketch should guaran-
tee a small constant time in each time step. Due to hashing,
the time correlation between cells is completely destroyed.
A key problem we should address is how to timely update
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the aging degree of each cell in such a temporally unordered
structure without scanning all entries. In this paper, we aim
to address problems mentioned above.

2. Our Solution: LRU-LC Sketch

In this paper, we propose an LRU-LC sketch which adapts
LC to sliding window scenarios. The idea of LRU-LC
comes partly from the well-known memory page replace-
ment algorithm, LRU. LRU always evicts the least-recently-
used page from an LRU queue which organizes the buffer
pages ordered by time of their last reference. The salient
merit of LRU is constant time complexity. Inspired by LRU,
LRU-LC also arranges entries in time order by LRU queue
so that evicting stale information only needs constant time.

We use the following notation in the rest of the paper.
Each item e ∈ S , consisting of the five-tuple (dest/src ip,
dest/src port, protocol) extracted from a packet, is mapped
to an entry by a uniform hash function h(e). Items in S
emerge in a streaming manner: {et1 , et2 , . . . etn . . .}, where the
subscript ti denotes the arrival time. The time axis is parti-
tioned into small-equal-length time slots which are assumed
to be so small that no two items arrive in one slot. Let Δt
denote the inter-arrival time between two adjacent items.
The sliding window size W is defined as the number of time
slots. The problem of estimating the cardinality of flows
over a window is to count the cardinality of S over the W.

2.1 Structure of LRU-LC Sketch

As shown in Fig. 1, the data structure for LRU-LC sketch is
an array of length m, where each entry consists of three com-
ponents: backward pointer (bp), time difference between
two adjacent items (Δt) (will be further discussed later) and
forward pointer (fp); each entry has two states: active state
and inactive state. Their definitions are given as follows:

Definition 1 (Active State): Suppose the entry i is hit at
time ti, after that the entry i remains active state within a
window of time. During this time, if no items are mapped to
the entry, it will become inactive.

Two pointers, pre and suc, are introduced to facilitate the
arrangement of active entries in LRU queue. Note that the
index of each entry keeps invariant, unconditionally; LRU
queue is built only by pointers. All entries are grouped into
two clusters by their states: active or inactive. Entries of
LRU queue are sorted in order of the last time they are hit.

In order to represent the aging degree, we first intro-
duce the concept of time difference. The primary purpose
of using time difference is to represent the aging degree of
each active entry. A schematic illustration of time difference
is shown in Fig. 2; its formal definition is as follows:

Definition 2 (Time Difference): Given two adjacent en-
tries V[i] and its direct predecessor V[i].pre in the LRU
queue, and ti (ti−1) is the last hit time of V[i] (V[i].suc), the
time difference Δt of V[i] is defined as ti − ti−1.

Fig. 1 Structure of LRU-LC

Fig. 2 Illustration of time difference schema

Given an entry V[i] in LRU queue, its aging degree, nega-
tively proportional to its distance from the start of window,
is equal to the substraction of the sum of all its predecessors’
Δts from W, formally denoted as:

Daging = W −
∑

V[ j]∈S i
p

Δt j (2)

where S i
p denotes the set of all predecessors of V[i]. As

illustrated in Fig. 2, each active entry records its time dif-
ference Δt; obviously, the left-most entry, the oldest entry,
is the prodecessor of all entries of LRU queque. In order
to evict inactive entries, aging degree of each entry must
decay gradually over time (or as window moves forward)
after being hit. By Formula (2), Δt1 minus 1 means Dagings
of all entries in LRU queue plus 1, and indicates that the
window moves one step forward (demonstrated by the red
dotted line). By means of time difference schema, only few
operations are needed to be perfomed on the left-most entry
for discarding inactive entries from LRU queue.

2.2 Algorithm for Maintaining LRU-LC Sketch

The algorithm for maintaining LRU-LC sketch is presented
in Algorithm 1. It has two objectives: building LRU queue
and evicting expired entries from the queue.

Building process. Similar to LC, LRU-LC is also
based on hashing. In each time slot i, if the item ei arrives,
it is mapped to the index pos = h(ei). If the entry V[pos]
is inactive, it is appended to the tail of the queue (line 5-8);
otherwise it is moved to the tail of the queue for keeping the
queue chronologically ordered (line 10-15). Note that once
entry pos i is shifted to tail, its direct successor’s Δti+1 is
assigned to Δti+1 + Δti for keeping aging degree unchanged.
In the end, all active entries are organized into LRU queue
and are sorted in order of the last time they are hit.

Evicting process. The process of evicting only in-
volves the left-most entry because the aging degrees of en-
tries are organized in strictly decreasing order from the left
to right. The Δt of the left-most entry is decremented by 1
in each time step (i.e., the window makes one step forward).
If the Δt is equal to zero, the entry has become inactive, and
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Algorithm 1: Algorithm for building LRU-LC
Input: Streaming items S
Output: LRU-LC: V[m], Number of inactive entries: z

1 initialize V , z = m, Window Size W;
2 for each time slot i do
3 if item e emerges in the slot i then
4 pos = h(e);// map e to index pos
5 δt = ti − ti−1;// compute the time difference
6 if V[pos] is inactive then // not in LRU queue

7 V[pos].Δt = δt;
8 append V[pos] to LRU queue;
9 decrement z by 1;

10 else // V[pos] has existed in the LRU queue
11 if V[pos] is the last entry then
12 V[pos].Δt=V[pos].Δt + δt
13 else
14 alter the Δt of V[pos]’s successor;
15 shift V[pos] to the tail of LRU queue;
16 end
17 end
18 end
19 decrement Δt of the left-most entry by 1;
20 if the Δt==0 then
21 evict the inactive entry;
22 increment z by 1;
23 end
24 end

then is removed from the LRU queue.
As stated in Sect. 1.1, estimating cardinality only in-

volves two variables: z and m. The variable z is incremen-
tally maintained by Algorithm 1 and m is user-specified pa-
rameter, thus it is easy to get cardinality estimates by For-
mula (1).

2.3 Algorithm Analysis

Time complexity. Our algorithm supports constant update
time (O(1) time) in each time step. Reasons are as fol-
lows. The building procedure only needs one hash mapping
and few pointer operations. Besides, evicting procedure re-
moves at most one entry from the list. Lastly, the procedure
of estimating only needs to compute a simple formula (For-
mula (1)) in constant time.

Space complexity. LRU-LC needs an array of length
m, each of which includes three parts: two pointers and one
time difference Δt. Each pointer needs log2m bits; Δt uses
at most log2W bits because its maximum is W. Therefore,
LRU-LC uses at most m(2log2m + log2W) memory space.
Identically to the size of LC, the LRU-LC size m is deter-
mined by the preset accuracy we want to attain. The win-
dow size W is configured according to the needs of specific
applications, and often far greater than m.

2.4 Reducing Memory Space

As mentioned in the last section, the memory requirement
of LRU-LC is dominated by two quantities: sketch size m
and the maximum of time difference Δtmax. The former can

be considered as a fixed quantity. The latter is at most equal
to W, far greater than m in most cases. If we can decrease
the dominating quantity Δtmax, the memory requirement of
LRU-LC would be reduced, significantly. We will introduce
a simple but effective method to address the problem at a
cost of very little accuracy loss. The key idea is to set a
proper threshold Th (far less than W) for Δtmax, such that
the range [0,Th] covers the vast majority of Δts.

Our proposed method comes from a classic theory that
the inter-arrival time between two neighboring packets eti ,
eti+1 follows a exponential distribution. The time difference
Δt, is actually the inter-arrival time, has the same property.
Therefore, we obtain the following formula:

Pr{Δt > t} = exp(−λt) (3)

where λ is mean arrival rate per time unit, t = n ∗ T (n =
0, 1, 2 . . .; T = a slot of time). If we plot a histogram of
the Δt, it would be an exponentially decreasing function,
which means the vast majority of Δts are concentrated in
the range from 0 to a threshold Th (Th � W). Therefore we
can find an appropriate threshold Th for Δtmax, such that the
probability Pr{Δt ≥ Th}, failure rate, is very small.

Applying Markov’s Inequality to Formula (3), we ob-
tain the upper bound of failure rate that Δt > Th:

Pr{Δt ≥ Th} ≤ E(Δt)
Th

=
λ

Th
. (4)

It follows that Th = 1
λ
∗ Pr{Δt ≥ Th}. For a given failure

rate (e.g., 0.01) we can obtain a threshold Th far less than
W. In such a way, the memory consumption of field Δt will
decreases remarkably.

3. Experiments

The evaluation of LRU-LC is performed on two trace
data sets obtained from MAWI traffic repository of WIDE
project [7] (DS1 for short, which consists of nearly 4 × 107

IP packet traces) and MOAT project of NLANR [8] (DS2,
including over 1.7 × 107 IP packet traces), respectively. In
experiments, we aim to demonstrate our analysis of LRU-
LC in last section: LRU-LC uses O(1) time in each step;
setting a threshold Th for time difference Δt has very little
effect on accuracy. In order to obtain the average values,
10 trials of experiments are carried out for each case. All
experiments were performed on a PC with a 2.8 GHz Intel
Core2 Duo E7400 CPU and 4 GB RAM.

Update time. We have argued, by analysis in Sect. 2.3,
that LRU-LC supports constant update time in each time
slot. Here we verify this result by experiments. Two quan-
tities m and W may affect the time complexity in one time
slot. We count the running time of the LRU-LC with differ-
ent sizes m and with different window sizes W on two data
sets respectively. Results, listed in Table 1, show that the
running time for different sizes m (from 104 to 106 keeping
W = 107) and for different window size W (from 2E + 6
to 128E + 6 keeping m = 104) keeps almost unchanged on
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Table 1 Running time for different LRU-LC sizes m, and for different
window sizes W on DS1, DS2

Time for different m (Unit: ms) Time for different W (Unit: ms)
m (entry) on DS1 on DS2 W (slot) on DS1 on DS2
10000 51707 178012 2E+6 51520 194140
50000 52118 179220 4E+6 50418 192818
100000 52443 183183 8E+6 50358 191614
200000 53146 186156 16E+6 50560 193472
400000 53895 189465 32E+6 49919 191510
800000 55405 191726 64E+6 48811 189584
1000000 55160 193449 128E+6 46717 185345

Fig. 3 Estimate errors for varying time difference threshold Th

each data set. This means that the running time of LRU-
LC is independent of the two parameters. Therefore, these
results confirm that our proposed algorithm uses constant
time in each time step. Besides, by the data set used and
running time consumed, we can approximately figure out
the throughout of LRU-LC, about 20Gbps. It can work in
backbone lines with bandwidth up to OC-192, even higher.

Accuracy analysis. The approximation errors of LRU-
LC have two sources. One is the estimate error of LC algo-
rithm; another is the threshold Th for Δt. Details of the anal-
ysis of the former can be found in [4]. This section focuses
only on the latter. Two commonly used metrics, average
error and standard error, are exploited to measure the devi-
ation caused by the time difference threshold Th. Keeping
W = 107 and m = 104, we vary the threshold Th from 50
to 105. Figure 3 plots the average error and standard error
for different Th (50, 100, 200, 500, 1000, 5000, 10000) on
two data sets. It can be seen that LRU-LC has an average er-
ror of 0.48% (5%) with standard error 0.013 (0.029) on DS1
(DS2) for Th = 50. The two types of errors decrease expo-
nentially with the increase of Th. When Th = 100 LRU-LC
only yields the maximum average error of less than 10−3. In
the cases of Th > 200, the inaccuracy caused by Th is very
small. In terms of memory space, the field Δt needs only
8-bit memory for Th = 200. Without such approximation of
Δt, LRU-LC has to provide 28-bit memory for Δt.

Comparison. There exit two methods adapting LC to
sliding window model: timestamp vector (TSV) [9] and cut-
down vector (CDV) [10]. TSV replaces the bitmap of LC
with a 64-bit-timestamp vector. For a query, all entries of
TSV must be probed and checked whether their timestamps
have exceed the window boundary, a time-comsuming pro-
cess, although it has no loss of accuracy compaired with
LC. CDV uses a vector of small counters where the max

Table 2 Performence comparison for three mehods

Method Update time Space
LRU-LC O(1) m(2log2m + log2Th)
TSV O(m) 64 ∗ m
CDV O(k) O(m ∗ log2C)

value is C, and updates k entries sequentially in each time
step. However, the parameter k is determined only by ex-
perience. For a small k, it will incur much loss of accu-
racy. For a big k, it will cost more update time and more
memory space. Comparison of LRU-LC with the two afore-
mentioned methods in terms of time and space are shown in
Table 2. Shomura et al. [11] design a counting method for
detecting anomalies. Shomura’s study and LRU-LC differ
in two aspects. Firstly, unlike Shomura’s approach working
in the whole data set, LRU-LC is a sliding-window-based
technique counting in dynamic settings. Secondly, LRU-LC
is based on a probabilistic data structure (bitmap sketch), but
Shomura’s method operates on a hash table.

4. Conclusions

In this paper, we propose an LRU-LC sketch for fast estimat-
ing cardinality of flows over sliding windows on high-speed
links. A fast algorithm is given for maintaining the sketch,
which needs only constant time in each time slot, indepen-
dent of its size and window size. Additionally, a time differ-
ence schema is provided to reduce the memory requirement
of LRU-LC. The schema proposed in the paper can also be
applied to other bitmap sketches [1].
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