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Scaling Concolic Testing for the Environment-Intensive Program

Xue LEI†a), Member, Wei HUANG††, Wenqing FAN††, and Yixian YANG†, Nonmembers

SUMMARY Dynamic analysis is frail and insufficient to find hidden
paths in environment-intensive program. By analyzing a broad spectrum
of different concolic testing systems, we conclude that a number of them
cannot handle programs that interact with the environment or require a
complete working model. This paper addresses this problem by automat-
ically identifying and modifying outputs of the data input interface func-
tion(DIIF). The approach is based on fine-grained taint analysis for detect-
ing and updating the data that interacts with the environment to generate
a new set of inputs to execute hidden paths. Moreover, we developed a
prototype and conducted extensive experiments using a set of complex and
environmentally intensive programs. Finally, the result demonstrates that
our approach could identify the DIIF precisely and discover hidden path
obviously.
key words: concolic testing, symbolic execution, taint analysis,
environment-intensive

1. Introduction

Symbolic execution is one of the common and important
techniques in program static analysis. The key idea behind
symbolic execution [1]–[3] is to emulate running the pro-
gram with symbolic rather than concrete inputs and to rep-
resent the values of program variables as symbolic expres-
sions over the symbolic inputs. As a result, all the execution
paths of a program can be represented by these symbolic
expressions. If these symbolic expressions can be solved by
a constraint solver to generate inputs, these inputs will take
the same path as the symbolic execution and terminate in the
same way. In practice, there are two obvious problems with
such symbolic execution: first, some system functions and
encoding functions [4] cannot be represented as constraint
expressions, and second, loops and recursion may result in
an infinite number of paths if the termination condition for
the loop or recursion is symbolic. Therefore, researchers
proposed combining concrete and symbolic execution [5],
which is the key elements of dynamic symbolic execution.

Dynamic symbolic execution has addressed the above
problems with such a combination which is to generate in-
puts to explore all feasible execution paths. Consequently,
dynamic symbolic execution gathered a lot of attention in re-
cent years as an effective technique for generating high cov-
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erage test suites and finding deep errors in complex software
applications [6]. Concolic testing [7] is one of the most rep-
resentative instances of dynamic symbolic execution, where
concolic stands for cooperative concrete and symbolic ex-
ecution. The essence of concolic testing is to execute the
program with an initial random or a given input, gather sym-
bolic constraints on inputs at conditional statements along
the execution [8], [9], negate the last condition, and then use
a constraint solver to infer variants of the alternative path.
Finally, concolic testing could explore all the paths of a tar-
get program in theory except the following circumstance.
Assuming that the outputs of the function localtime,10 de-
cide the following branch condition, if we do not modify
the system time manually in the runtime, maybe the al-
ternative path will be omitted. In this paper, we use the
term “data input interface function (DIIF)” to refer to sys-
tem functions including at least one parameter property la-
beled “out”. Usually, applications interact with the environ-
ment (e.g. the operating system, the user) by the DIIF in
many ways: reading and writing files, checking file meta-
data such as file permissions and size, reading command-
line arguments or environment variables, sending and re-
ceiving packets over the network, and so on.

In this paper, we propose a systematic approach to ad-
dress this research problem. In particular, given a common
binary, we aim to detect DIIF and modify their outputs au-
tomatically for exploring hidden paths. Our approach works
by identifying all the outputs made by the DIIF as taint vari-
ables, keeping track of these taint variables flowing across
the whole system, and symbolically computing values for
program variables in form of symbolic logical formulas. Fi-
nally, with a constraint solver, the symbolic logic formula
can be solved to find an input that would reverse a branch
condition from true to false or vice-versa. To verify this
idea, we prototyped our approach and evaluated it on the
benchmark suite SGLIB [11]. In the experiment, our ap-
proach could execute those distinct paths and improve code
coverage by identifying the DIIF precisely and specifying
their output to corresponding values.

In summary, this paper makes the following contribu-
tions:

1. We propose a fine-grained analysis as a unified ap-
proach to detect and modify the outputs of the DIIF
based on the binary instrumentation in the user mode.

2. We give an algorithm for identifying the outputs of the
DIIF as taintdata automatically based on the DIIF array

Copyright c⃝ 2015 The Institute of Electronics, Information and Communication Engineers



1756
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.10 OCTOBER 2015

Fig. 1 A piece of pseudo code that calls a DIIF localtime is shown on the left (a). The right (b)
illustrates a diagram of the path tree produced by symbolically executing the program shown on the left
(a) from special inputs.

given only a stripped binary program.
3. We conducted our experiments with benchmark suite

SGLIB, and demonstrated that our system is well
suited for exploring code that must be accessed in a
particular situation.

The paper is structured as follows. The next section
gives an overview of our approach. Section 3 describes
details on the design and implementation of our approach.
Section 4 presents the experimental results. Section 5 pro-
vides some additional discussion of our approach. Section 6
surveys related work and Sect. 7 concludes the paper.

2. Problem Statement and Our Approach

In this section, we formalize the problem of detecting
and identifying taintdata automatically, and give a brief
overview of our approach.

2.1 Problem Statement

Using concolic execution to generalize over observed pro-
gram behavior is a powerful technique because it combines
the strengths of dynamic and static analysis. However, given
a program including the DIIF, if not handling such situations
can lead to unexpected and be hard to diagnose errors. Next,
we show this situation with a specific example.

Background: data input interface function. C stan-
dard library provides a number of functions for programs
to interact with the environment, including a set of file de-
scriptors, time functions, system information and so on. All
these functions have a common feature: there is at least one
argument which value is decided by environment rather than
computed with initial inputs by the program. That is the rea-
son why we refer these functions as the DIIF. In other words,
functions with the aforementioned feature result that some
codes in the target application are almost never executed by
the regression suite, which then leads to a big hurdle pre-
venting security researchers and practitioners from analyz-
ing the target program based on concolic testing.

The challenge of concolic testing with DIIFs. In or-
der to explain the impact of DIIFs, consider the example in
Fig. 1. Figure 1 (a) shows a piece of pseudo code that calls
a DIIF localtime of linux system. In this example, there are
three paths starting at line 0. When path A is symbolically
executed through the program, it covers the lines 0, 1, 2, 3,
4, 5, 6and 9; path B covers 0, 1, 2, 3, 4 and 9; and path
C covers 0, 7, 8 and 9. Figure 1 (b) shows a diagram of
the path tree produced by symbolically executing the pro-
gram from special inputs. Concolic execution will gener-
ate some random inputs, say {x = 12} and execute the pro-
gram both concretely and symbolically. Assuming that it is
July now, when the program calls the DIIF localtime in line
3, the structure variable stUTC stores outputs after local-
time is executed and the variable stUTC.tm mon is assigned
to six. The concrete execution will take the “else” branch
at line 4 and the symbolic execution will generate the path
constraint(x>11)∧(x−5+stUTC.tm mon+1 ≥ 12) along the
Path B. Concolic testing negates a conjunct in the path con-
straint and solves(x>11)∧¬(x−5+stUTC.tm mon+1 ≥ 12)
to get the test input{x = 12,stUTC.tm mon = 3}. Theo-
retically, this new inputs will force the program execution
along a different execution path A which is framed by the
dotted ellipse as illustrated in Fig. 1(b). Concolic testing
repeats both concrete and symbolic execution on this new
test inputs. However, it is noteworthy that during the ac-
tual execution, the output of the DIIF localtime is beyond
our control and the variable stUTC.tm mon is still six in a
long time leading to the “if” branch at line 4 will not be
taken. If we do not manually modify the value of the vari-
able stUTC.tm mon to three, codes in line 5 and line 6 will
not be explored and a classic strcpy buffer overflow vulner-
ability in the Path A (line 6) will be ignored. Due to a set
of DIIFs in linux system, it is a key challenge for concolic
testing to achieve higher branch coverage.

2.2 Our Approach

In this section, we give an overview of our approach that
identifying and modifying the output from the DIIF during
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the runtime to avoid the program path missing. We first dis-
cuss the intuition behind it, outline the overall flow of our
approach, and then explain how it applies to improve code
coverage.

Intuition. The insight behind our approach is to ad-
dress the DIIF problem, by identifying and modifying the
output of DIIF during the program execution. For in-
stance in the Fig. 1(b), if we make path A to be explored
and if it is July which is the output of the DIIF local-
time in a long time, the inputs must satisfy the path con-
straint (x>11)∧ (0 ≤ stUTC.tm mon ≤ 11, stUTC.tm mon ∈
N) ∧ (x + stUTC.tm mon<16), that is to say in the runtime,
if the value of x is assigned to twelve, it needs us to dynam-
ically modify the value of stUTC.tm mon as three instead
of six which is the output of the DIIF localtime. Hence,
the DIIF is one of the key bottlenecks in concolic testing
for those environment-intensive applications. We hope our
work will spur discussions on the implications and applica-
tions of concolic testing. In outline, our approach proceeds
as follows.

DIIF detection and modification. Based on this intu-
ition, we propose fine-gained reverse analysis. Firstly, we
summarize all the DIIF from C standard library and extract
all the DIIF from the procedure linkage table(PLT) [12] for
each target application. We construct the DIIF array, a list
structure, to store the information for each DIIF. Secondly,
our approach proposes linear-sweep instructions from the
register EIP, which contains a 32-bit pointer to the next in-
struction to be executed [16], in order to detect a DIIF. If
the callee is a DIIF, we further decide if its outputs need
to be modified or not. As in Fig. 1(a), we first check the
EIP while line1 is executed finding that the next instruction
(as in line2) is a function call, and then we search the func-
tion name (Time) in the aforementioned DIIF array and get
the information about its output of which the data type is
“long”. We mark the variable timep as an input and decide
if we need to reassign the variable timep to the new value
recorded in the DIIF array. After line 2 is executed and we
process the DIIF locatime in line 3 in the same way. Finally,
we record into a trace the details about how the inputs are
propagated in the system, reverse the last branch condition
and get the new inputs by a constraint solver. Note that the
new inputs consist of the normal inputs and the DIIF inputs,
the former denotes the user-provided input values and the
latter represents the data used instead of the outputs from
the DIIF during the next execution. Once the new inputs are
computed we need to update the DIIF array with the corre-
sponding DIIF inputs.

3. System Design and Implementation

In this section, we describe key aspects of our approach: first
system overview and some infrastructure details (Sect. 3.1),
then techniques for categorizing C standard library into a
white-list for DIIFs and preprocessing the program PLT
to construct a DIIF array (Sect. 3.2), analyzing DIIFs dur-
ing the runtime according to the DIIF array (Sect. 3.3), and

Fig. 2 System overview.

updating the DIIF array according to the execution results
(Sect. 3.4).

3.1 System Overview

An overview of the system architecture is shown in Fig. 2.
Our system is based on the dynamic binary instrumenta-
tion tool Pin [13] which can facilitate instrumenting CPU
instructions in a fine-grained manner. Therefore, we are
able to instrument every CPU instruction and record a trace
to perform program analysis on user space applications in
Linux operating system with the x86 architecture. Besides,
we use BAP [14] which is the successor of the binary anal-
ysis techniques developed for Vine [15] to analyze the trace
file. In a nutshell, we implement our approach on top of Pin
and BAP, the former is to record a trace while the latter is to
process it.

Within the whole system, we build three components:
DIIF preprocessor, DIIF analyzer, and DIIF updater. The
DIIF preprocessor is premise and foundation to detect the
DIIF in the runtime. It aims to summarize all the DIIFs of C
standard library from their header files into a white-list. Be-
fore dynamic analysis of the target program, we extract DI-
IFs from PLT in the light of the white-list and create a DIIF
array to record information about DIIFs of the program. To
address the challenges posed by the presence of the DIIF, we
need to find the function call of a DIIF by reasoning about
the next instruction according to the states of CPU registers
at the operating-system level. More precisely, DIIF analyzer
firstly checks the instruction point EIP to identify a function
call, and then compares the callee with the DIIF array to
identify a DIIF and finally, marks the outputs of the DIIF
as input variables. Furthermore, to make the application to
explore the special path DIIF analyzer needs to replace the
output of the DIIF as a particular value recorded by the DIIF
array. Through analyzing the trace which is used to keeping
track of path conditions and representing it with an interme-
diate language, we negate the last branch and get a set of
new inputs by a constraint solver. Since a part of the new in-
puts are the DIIF inputs that are used instead of the outputs
of the DIIF during the next execution, DIIF updater is re-
sponsible for maintenance and renewal the DIIF array with
the corresponding DIIF inputs.
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Fig. 3 An example of the definition of a DIIF.

3.2 DIIF Preprocessor

The DIIF preprocessor performs preparation for the subse-
quent dynamic analysis. Briefly speaking, the DIIF prepro-
cessor consists of the following two steps: (1) compile all
the DIIFs from C standard library into a white-list; (2) by
comparison with the white-list extracts all the DIIFs from
the PLT of the target program and record them into a list
structure: the DIIF array. As a core part of the DIIF pre-
processor, the DIIF array is a single list structure that stores
information about all the DIIFs called by a program. Before
dynamic analysis of an application, the first step is to extract
DIIFs in the PLT of the application by comparison with the
white-list.

The white-list for DIIFs. There is a common feature
in the definition of Windows APIs: all the parameters of
a function are labeled the input/output properties, as illus-
trated in Fig. 3. For instance there is only one parameter lp-
SystemTime of the function GetLocalTime and the property
of this parameter is “out” shown on the left of the param-
eter type LPSYSTEMTIME. We define a DIIF as the func-
tion with at least a parameter labeled “out”. In terms of the
characteristic of the DIIF and with the aid of regular expres-
sion [17], we are able to category the DIIF from Windows
APIs effectively. Unfortunately, there are no obvious char-
acteristics for us to category DIIFs from the C standard li-
brary, such as the definition of localtime in Fig. 3. Since the
C library function calls the windows APIs essentially, we
extract DIIFs from the C standard library in the reference of
DIIFs from the windows APIs manually in practice. How-
ever, this method is not perfect because some DIIFs form
C library function in the linux OS does not correspond to
the windows APIs. Therefore, this work needs more manual
and engineering effort.

The DIIF array. The PLT is part of the executable text
section, consisting of a set of entries. Each PLT entry is a
short chunk of executable code for each external function
that the shared library calls. Instead of calling the function
directly, the code calls an entry in the PLT, which then takes
care to call the actual function. When a function is called,
the dynamic loader resolves its address and updates it into
the global offset table (GOL). In a nutshell, the address for
each external function is recorded in the PLT during the run-
time. We are able to use the following command to get the
information of the PLT and exact the address for each DIIF:
objdump -d -j .plt test. As is shown in Fig. 4, it is a snip-

Fig. 4 PLT snippet of the previous example in the Fig.1 (b).

pet of the PLT and we can see the address of the function
localtime is 0x08048388.

By comparison with the white-list for DIIFs aforemen-
tioned, we are able to choose and store the address for each
DIIF in a single list for efficient lookup. Whenever a DIIF
is retrieved, the information about the DIIF is written into a
specially defined data structure as a new node of the DIIF ar-
ray. In details, the purpose of the DIIF array is two-fold: (1)
record the address, name, parameters labeled “out” for the
DIIF; (2) indicate the DIIF whether its outputs need to be re-
placed and the replacement values. Similarly, the objects of
the DIIF array are divided into two groups: one is the basic
information for the DIIF, and the other is for the parameters
labeled “out”. The former consists of the address and name
of the DIIF, while the latter consists of the number, the type
size, the flag indicating a change, and the replacement value
for each parameter labeled “out”. In conclusion, the DIIF
array serves as references for the DIIF analyzer mentioned
in the Sect. 3.3 to tell us whether a function call belongs to
the DIIF array. Then, for a DIIF located in that module, we
need to mark its output accordingly. Furthermore, we deter-
mine if the outputs need to be modified in the light of the
content recorded in the DIIF array.

3.3 DIIF Analyzer

The DIIF analyzer works by checking if the next instruc-
tion is a call instruction, identifying if the callee belongs to
the DIIF array, and if so, marking the outputs of the callee
as taintdata and modifying values of the outputs further if
necessary. More precisely, we can get the machine code
recorded in the instruction pointer register EIP(MEIP) and
decide whether it is a call instruction. If so, we compute the
address of the callee, according to which we identify a DIIF
and perform subsequent operation.

Identify the DIIF. The first step is to check each call
instruction and detect a DIIF in the runtime. Generally, the
DIIF is a system function from some dynamic link library
such as libc.so and libutil.so in the linux/unix operating sys-
tem. For the x86 platform, the machine code of the call
instruction can be divided into three main groups [16] that
are 1)E8:call near, relative, displacement relative to next in-
struction, 2)9A:call far, absolute, address given in operand,
3)FF: call near, absolute indirect, address given in r/m32.
That is to say, for each machine code recorded in the instruc-
tion pointer register EIP, we only need to decide whether the
opcode is one of the three and if so, we compute the address
of the callee in further performance as the following for-
mula:

IEIP + MEIP + len(EIP) = IDIIF − >add (1)
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Fig. 5 The assembly code corresponding to path A of the previous example in the Fig.1 (b). The
dotted arrow on the upper-left corner represents the beginning of the example.

Formula 1.The computation for the address of the
DIIF. 1)IEIP: the address recorded in EIP, 2)MEIP: the
machine code (offset) recorded in EIP, 3)len(EIP):the
length of the instruction, 4)IDIIF − >add: the address of
the DIIF.

For instance, in Fig. 5, the address recorded in EIP IEIP

is 0x08048502, the machine code in the EIP is “e8 81 fe
ff ff ”, with off-the-shelf tools translating machine code to
assembly code, it is easy to know that the MEIP is “ff ff fe 81”
and the length of instruction len(EIP) is five byte. Accord
to the formula 1, the address of the DIIF IDIIF − >add is
0x8048388( 0x08048502 + 5 + 0xfffffe81) as is shown in
the Fig. 5.

Mark the output of the DIIF. Once a DIIF is identi-
fied, we are able to get the essential information about the
output parameter of the DIIF, and then the question is how to
mark the output of the DIIF. The reason why we focus on the
output parameter of the DIIF is due to the definition of the
constraint solver STP [18]: consists of a series of word-level
transformations and optimizations that eventually convert
the original problem to a conjunctive-normal form (CNF)
formula for input to a high-speed solver for the satisfiability
problem for propositional logic formulas (SAT) [19].In or-
der to explain the process of marking the output parameters,
consider the assembly code in Fig. 5 above, corresponding
to path A of the previous example in the Fig. 1(b).

During the execution, if we observe that the instruction
pointer (i.e., EIP in x86 CPUs) is loaded with a call instruc-
tion (the machine code is E8) implied in a black solid bor-
dered rectangle, and identify the callee is a DIIF localtime
in the DIIF array, then we get the information about the pa-
rameters labeled “out”. There is only one output parameter
and its number (IDIIF − >No) is one. Since pushing argu-
ments onto the stack is in right-to-left order for C language,
we are able to reversely deduce the push instruction for this
output parameter, as implied by the black dotted bordered
rectangle, and to obtain the address of the parameter (ANo)
on the stack further, as implied by the curved arrow. Then,
we set the memory region of which the address is ANo and

size is ANo + IDIIF − >size as taintdata. We perform this
backward search recursively until all the output parameters
are obtained and marked.

Modify the output of the DIIF. Finally, the question
is how to modify the outputs of the DIIF, if necessary. Fur-
thermore, after marking an output parameter and in order
to explore a new path, we decide whether its outputs need
to be modified in the light of the variable IDIIF − > f lag.
If so, when the instruction call is executed, we modify the
memory region of the output parameter with the replace-
ment value IDIIF − >replacement. Note that if the output
parameter is a structure type, we need to record informa-
tion about each field of the structure in the DIIF array and
if necessary, modify the value of each field one by one. A
pseudocode description of this algorithm showing how the
DIIF analyzer is performed to deal with the outputs of the
DIIF is in algorithm1.
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3.4 DIIF Updater

The DIIF updater is responsible for maintenance and re-
newal of the DIIF array at the end of each execution. During
the execution, for each instruction that creates or propagates
the marked data, we write a record into a trace with the dy-
namic binary instrumentation tool Pin. Meanwhile, BAP
provides users with a functionality to perform analysis on
the execution trace, lifts the assembly code in the execution
trace to BAP intermediate representation, and then generates
the weakest precondition from the intermediate representa-
tion. It is important that BAP interacts with STP, a SMT
solver, to solve the satisfiability of the weakest precondi-
tion formula. More precisely, in order to generate a new
input for a new path, we negate the last condition of the path
constraint in the BAP IR file which is then translated to the
weakest precondition formula. Finally, we use STP to solve
this formula and obtain the inputs that lead the target pro-
gram into a directed path, if any exists. The inputs could
generally be divided into two categories: the normal inputs
and the DIIF inputs, the former is used as the new input
data to the next execution and the latter is recorded in corre-
sponding node of the DIIF array. In summary, at the end of
each execution, we update the DIIF array containing the flag
(IDIIF −> f lag) and the replacement (IDIIF −>replacement)
of the concrete DIIF accessed in the last execution. When
the next execution is performed, the aforementioned two
variables are the decisive factors to lead the target program
to explore a new path.

4. Evaluation

The following sections present our experimental results of
our approach, by evaluating it with a benchmark suits. We
first give a summary of the experimental results, describe
the environment in which we conducted our experiments.
Then, we present details of the experimental results on the
benchmark suit.

4.1 Environment Setup

Our approach is written in a mixture of C and Python and
consists of three major components: DIIF preprocessor,
DIIF analyzer, and DIIF updater. The DIIF preprocessor is
written in Python while the other two components are writ-
ten in C. We choose PIN as our dynamic binary instrumenta-
tion tool, and add about 5500 lines of code to implement our
algorithm. Moreover, we choose BAP as our static analysis
tool for handling the trace and used STP for constraint solv-
ing. We evaluate our algorithms on a 4GHz Intel(R) Core 5
Duo Linux workstation with 4GB of RAM running Ubuntu
12.04. We measure the effectiveness of our approach using
a set of ten samples included in the SGLIB, which is usually
used by researchers to evaluate their tools [20]–[22]. The
benchmarks are open-source and we use the source code to
verify our results, but the system does not use the source

code or source-level information such as debugging sym-
bols. Since samples in the SGLIB rarely involve DIIFs, we
add a couple of DIIF for each benchmark to verify the cor-
rectness of each DIIF and our DIIF preprocessor. In addi-
tion, a number of DIIFs in a single binary file can highlight
the problem of hidden paths and validate rationality and fea-
sibility of our algorithm.

We have analyzed about 700 header files (while there
are 1037 header files in total of C standard library in linux)
and founded 103 DIIFs. To test the performance, stabil-
ity, and reliability of our algorithm, we choose typical DI-
IFs with different data types of parameters labeled “out”,
including reading and writing files, checking file metadata
such as file permissions and size, reading command-line ar-
guments or environment variables, sending and receiving
packets over the network, and so on. We add DIIFs in each
benchmark of SGLIB by three forms below.

For example, when we add the form1 at the beginning
of the program, there is only one path increased. However,
when we only add the form2 at the beginning of the pro-
gram, the number of paths is double. If we add the two
forms by the order DIIF 1 and DIIF 2, the number of paths
is (2N+1), N is the path number of the original program. By
the reverse order, the number of paths is 2(N+1). In the real-
world applications, the DIIF may not control a branch and
we use form3 to verify the correctness of our DIIF analyzer.
Obviously, the number of new branches caused by DIIFs is
related to the form and insertion point in the context of the
benchmark. In the paper, we chose a number of DIIFs added
randomly in the context of each benchmark to be close to
the real-world programs. In Table 1, we summarize the ba-
sic information of these benchmarks before and after mod-
ification, including basic block and path number, which are

Table 1 The basic information of each benchmark before and after mod-
ification.

Beachmarks Before adding DIIFs After adding DIIFs
BBL path DIIF BBL path

dlllist 77 850 5 82 882
listsort 48 216 7 55 701

list insert sort 20 562 3 23 1125
list insert sort1 29 469 10 39 727
array bin search 26 471 6 32 535

array sort 41 569 11 62 1974
array sort1 34 793 18 52 1742

hash 48 521 9 57 651
rbtree 110 804 12 122 939
queue 34 609 20 54 2650
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easy to get with the off-the-shelf static analysis tools such as
IDApro. The fourth column lists the DIIF number added for
each benchmark.

4.2 Evaluation on a Benchmark Suite

Because of differences in input assumptions and search
heuristics, it can be difficult to fairly compare concolic exe-
cution tools on an end-to-end basis. Therefore, we ran mod-
ified benchmarks to illustrate the improvement of our algo-
rithm over the baseline concolic execution approach. More
specially, this section measures how our algorithm performs
compared to the baseline approach on three metrics: (1) how
much more instruction coverage it gets, (2) how much time
consumes it reaches the maximum instruction coverage, and
(3) how much more paths it explores. The results of the
evaluation are summarized in Table 2 and described in more
detail in the remainder of the section.

In Table 2, we show individual results from running
our algorithm and the baseline approach on the ten bench-
marks. Each column consists three sub-columns: the num-
ber of paths explored, the time (T) to reach the maximum
coverage and the maximum coverage (cov).

In our experiment, we randomly added a certain
amount of DIIFs for each benchmark and manually made
the outputs from the DIIF as the key issue for an alterna-
tive branch. As illustrated in Fig. 6, the execution paths with
our algorithm are shown with solid lines, whereas dashed
lines show the execution paths with the base line approach.
By contrast with the base line approach, there are more ex-
ecution paths varying from 12 to 81. The reason why the
execution path increases is that in the runtime, we modify
the outputs of the DIIF and change the executive flow to
explore the hidden paths. In the real-world applications, the
DIIF may not control a branch, that is to say, there may be no
branch following the DIIF. Hence, the number of the DIIF
is not absolutely relative with the increase of the execution
path.

As is shown in Fig. 7, the average coverage increase is
4.78% and it shows the coverage increases for each bench-
mark. The maximum increase is up to 11.4% while the num-
ber of DIIFs of the benchmark is not the most one. There are
three reasons why the coverage cannot achieve 100%. The
first one is from the limitation of the STP which will be dis-
cussed in Sect. 5. The second one is that we also neglected
the property of the return values of some functions, and al-
though the return value is the key factor deciding the follow-
ing branch such as the exception handler. At last, there are
some dead code. Nevertheless, our algorithm identified all
the DIIFs precisely and reached higher coverage.

In order to reach higher coverage, it is inevitable to sac-
rifice certain time. The time can be broken into two parts:
the runtime for instrumentation for each sample in the user-
mode, and the runtime for new inputs generation. The for-
mer is the key factor to decide the time difference between
our algorithm and the baseline approach. The time to reach
the maximum coverage of our approach varies from 69.3

Table 2 Individual results from running our algorithm and the baseline
approach on the ten samples.

Beachmarks The baseline approach Our algorithm
with DIIFs path T(sec) cov(%) path T(sec) cov(%)

dlllist 79 185 82 101 201 86.3
listsort 164 48.1 86.5 194 69.3 90.1

list insert sort 150 125.2 92 162 129.6 94.2
list insert sort1 166 105.6 72.1 247 126.2 83.5
array bin search 166 83.9 89.6 201 96.8 91.3

array sort 142 122.8 91.2 207 155 94.2
array sort1 109 165.3 85.3 168 206.5 92

hash 148 105 76.5 186 113 81.2
rbtree 94 169 82.7 149 194 88.5
queue 122 137 92.5 186 191.2 96.9

Fig. 6 The number of execution path comparison between the baseline
approach and our algorithm.

Fig. 7 Coverage comparison between the baselineapproach and our al-
gorithm.

seconds to 206.5 seconds, as is shown in in Fig. 8, depend-
ing on the number of BBL, the number of DIIFs calling and
other factors. Due to the binary instrumentation tool Pin
working in the user mode, the efficiency of our algorithm
is obviously improved comparasion with the whole system
emulator TEMU. We calculated time consumption as fol-
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Fig. 8 Time consumption comparison between the baseline approach
and our algorithm.

lows: Ran each program to reach the maximum coverage
and recorded the time and calculated the time consumption
as Tour/Tbase. As can be seen from the results, our algo-
rithm gives more time consumption on each sample, which
is due to the instruction match in the DIIF analyzer detailed
in Sect. 3.3.

In the experiment, we found that the hidden paths of a
program should not only contain the feasible paths, but also
include the infeasible paths by some unsound test executions
as is shown below.

Usually, the function localtime(&tm) ensures the value
of tm.mon will be between 0 and 11. Therefore, the path
A(covers 1, 2, 3, 4 ) will not be explored during the ac-
tual execution. In our approach, if we taint the variable
tm − >tm mon, the constraint solver will generate the test
input {tm − >tm mon = 12}. During the next execution, we
modify the variable tm − >tm mon as 12 and then path A
will be accessed. Hence, our approach is also aid to explore
infeasible paths and detect potential vulnerabilities.

5. Limitations and Future Work

Limitations. The first limitation is that the complete sup-
port of STP. It is well known that STP does not support
floating point and pointers. The limitation of STP leads that

sometimes it takes a long time without yielding a meaning-
ful result and we have to discard a set of constraints if STP
runs out of memory or exceeds a five-minute timeout or con-
straint solving. Therefore, it is indeed a bottleneck of our
approach, as well as all the concolic testing. The second
limitation is that the binary instrumentation tool Pin which
is only working in the user mode. Unlike the whole-system
symbolic executors such as S2E [23] or BitBlaze [24] that
can execute both user and kernel code while our approach
execute the user code. Therefore, our approach cannot pro-
cess the system calls that are common in larger and more
complicated programs. The main advantages of our ap-
proach are that less time spent and lower state restoration
cost by avoiding analyzing kernel code. The third limitation,
and the most obvious, is the summary of DIIFs. In this pa-
per, we only regarded the function with at least a parameter
property definitely “out” as the DIIF. Factually, a couple of
functions with uncertain property of the parameters (short
for DIIF U), maybe the property is “out opt”, “inout” and
“inout opt”. The uncertainty of the latter three property is
truly a headache for the DIIF analysis and the level of engi-
neering effort required is a major reason we decided not to
go on with the precisely analysis in this paper.

Future work. Our approach is a step forward in in-
creasing coverage of concolic testing, but obviously, much
more works remains to be done. A more interesting future
direction is to extend our approach to precisely detect the
DIIF U with data flow analysis. At a high level, it should be
possible to monitor and modify the return value of the func-
tion since a lot of potential vulnerabilities exist in exception
handling which is often ignored and not instantly accessible.
Therefore, we would like to extend our detection strategy to
cope with this potential bugs in our future work.

6. Related Work

In this section, we briefly describe some related work on
other approaches to cope with data from the environment.
Binary instrumentation is a technique to insert extra code
into a binary that monitors the instrumented program’s be-
havior. Pin is a dynamic binary instrumentation framework
for the IA-32 and x86-64 instruction-set architectures that
enables the creation of dynamic program analysis tools [13].
Many binary analysis platforms create their Pintools and
construct concolic testing to explore vulnerabilities, such
as BAP [14], MAYHEM [25], MergePoint [26] and so on.
With Pin during the runtime we can calculates register live-
ness information to trace the executed path.

KLEE [27] leveraged several years of lessons from pre-
vious tool EXE [18] and it is capable of automatically gen-
erating tests that achieve high coverage on a diverse set of
complex and environmentally-intensive programs. KLEE is
implemented as a virtual machine for the Low Level Vir-
tual Machine [28](LLVM) assembly language and it needs
special compiling for each target program. Therefore, it is
not suitable for binary file without source code. For those
functions interact with the environment, KLEE summarizes
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parts of the DIIF and rewrites them based on the standard
C library. In practice, this improvement does not give large
aggregate coverage increase, but is required to reach the last
(tricky) bit of code in many applications with already high
coverage.

Analogously, S2E which is a new symbolic execution
platform for analyzing the properties and behavior of soft-
ware systems and developed by École Polytechnique Fed-
erale de Lausanne (EPFL), implements consistency mod-
els on both kernel-mode and user-mode binaries to address
the problem. In nature, the core of S2E is QEMU [29]
which makes it scale even to large, proprietary, real-world
software stacks on Mac OS X, Microsoft Windows, and
Linux. The S2E proposes a complete working model SC-
SE(Strictly Consistent System-level Execution) to imple-
ment instrumentation for the environment while ours can
selectively implement instrumentation for DIIFs.

Our approach uses fine-grained taint analysis to lo-
cate data interacting with the environment, which differs
from the two approaches above in essence. The fine-grained
taint analysis is actually a dynamic taint analysis technique,
which is proposed to solve and analyze many other security
related problems. Many systems detect exploits by track-
ing the data from untrusted sources and other systems make
use of this technique to analyze how sensitive information
is processed by the system. For finding hidden paths of
environment-intensive programs in user mode, our approach
is more simple and efficient.

7. Conclusion

Since concolic testing is frail and insufficient to an
environment-intensive program, in this paper we present a
fine-grained analysis as a unified approach, identifying DI-
IFs automatically based on the DIIF array of an application,
to explore hidden paths in environment-intensive program.
Moreover, we developed a prototype to implement our algo-
rithms and evaluated it with the benchmark suite SGLIB.
The experimental results demonstrated that our system is
well suited for exploring code that must be accessed in a
particular situation.
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