
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.10 OCTOBER 2015
1727

PAPER

An Improved Platform for Multi-Agent Based Stock Market
Simulation in Distributed Environment

Ce YU†a), Nonmember, Xiang CHEN†, Member, Chunyu WANG†, Hutong WU†, Jizhou SUN†,
Yuelei LI††, and Xiaotao ZHANG††, Nonmembers

SUMMARY Multi-agent based simulation has been widely used in
behavior finance, and several single-processed simulation platforms with
Agent-Based Modeling (ABM) have been proposed. However, traditional
simulations of stock markets on single processed computers are limited by
the computing capability since financial researchers need larger and larger
number of agents and more and more rounds to evolve agents’ intelligence
and get more efficient data. This paper introduces a distributed multi-agent
simulation platform, named PSSPAM, for stock market simulation focus-
ing on large scale of parallel agents, communication system and simulation
scheduling. A logical architecture for distributed artificial stock market
simulation is proposed, containing four loosely coupled modules: agent
module, market module, communication system and user interface. With
the customizable trading strategies inside, agents are deployed to multiple
computing nodes. Agents exchange messages with each other and with
the market based on a customizable network topology through a uniform
communication system. With a large number of agent threads, the round
scheduling strategy is used during the simulation, and a worker pool is ap-
plied in the market module. Financial researchers can design their own
financial models and run the simulation through the user interface, with-
out caring about the complexity of parallelization and related problems.
Two groups of experiments are conducted, one with internal communica-
tion between agents and the other without communication between agents,
to verify PSSPAM to be compatible with the data from Euronext-NYSE.
And the platform shows fair scalability and performance under different
parallelism configurations.
key words: distributed stock market simulation, agent-based modeling,
round scheduling, distributed

1. Introduction

The multi-agent based simulation has become an important
method in behavioral finance to study the micro structures
and aggregate macro features of stock markets. Stock mar-
kets can be regarded as complex adaptive systems described
by a large number of variables, which are in turn influ-
enced by an even larger number of factors or investors [1].
And multi-agent simulation is an efficient method to simu-
late complex adaptive systems. In a multi-agent simulation
system, agent is used to denote a hardware or (more usu-
ally) software-based computer system that enjoys the prop-
erties of autonomy, social ability, reactivity, pro-activeness
and so on [2]. The potential system-level consequences

Manuscript received February 12, 2015.
Manuscript revised May 22, 2015.
Manuscript publicized June 25, 2015.
†The authors are with School of Computer Science and Tech-

nology, Tianjin University, Tianjin, China.
††The authors are with College of Economics and Management,

Tianjin University, Tianjin, China.
a) E-mail: yuce@tju.edu.cn

DOI: 10.1587/transinf.2015EDP7050

of financial markets are reflected through the behaviors of
sets of agents [3]. Agents in a Multi-Agent System (MAS)
are not independent, they are social-able in that they inter-
act with other agents via some kinds of agent communica-
tion languages, also they perceive and react to their envi-
ronments [4]. The communication between agents is usu-
ally based on a social network, and there are already some
artificial stock markets using social networks as the com-
munication topology between agents, such as SimStockEx-
change [5]. Agent-Based Modeling (ABM) has been ap-
plied in some simulations of stock markets [6], [7], but
the scheduling of agents in these simulations is sequential,
which is not corresponding with the situation in the real
financial markets where the agents (investors participating
in stock market) think and behave concurrently. Besides,
with the development of behavioral finance, it is needed to
expand the number of agents in a stock market to achieve
breakthrough research results. But when the number of
agents is getting larger, these sequential simulation systems
will cost much time for the experiments and the time grows
in exponential speed with the number of agents. So we
adapt traditional ABM method to parallel multi-agent sim-
ulation, which has been applied in some complex adaptive
systems [8]. This paper represents an improved multi-agent
simulation platform based on PSSPAM [9] (Platform for
Stock market Simulation with Parallel Agent-based Mod-
eling) to support the stock market simulation with large
number of parallel agents. The platform is designed for
distributed environments with multiple computing nodes,
which can provide much greater computing capability than
a single computer. With the increasing number of agents,
the improved PSSPAM shows a good extensibility. Addi-
tionally, the improved PSSPAM maintains a social network
which defines the topology of agent relationship, and it pro-
vides a communication system for agents to communicate
with each other asynchronously based on the social network.
Besides, a distributed scheduling strategy based on round
is represented. Also the improved PSSPAM supports easy
customization for new financial models provided by users,
preventing them from being trapped in complex computer
related stuff and parallel programming.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 introduces the
architecture of the improved PSSPAM. Section 4 presents
the experiments evaluating this platform. And in Sect. 5, we
summarize the current work and suggest questions for the

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



1728
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.10 OCTOBER 2015

future.

2. Related Work

In the early 1990s, the Santa Fe Institution Artificial Stock
Market (SFI-ASM), developed by LeBaron et al. [10], had
largely promoted the development of Agent-Based Model-
ing and multi-agent simulation. With SFI-ASM, most of
the artificial stock markets’ features are malleable and can
be changed to carry out different experiments. However,
SFI-ASM is not of extensible structures and the financial re-
searchers have to change a lot of the source code to achieve
their own market model, since SFI-ASM is developed for
general usage of all kinds of multi-agent systems. Addition-
ally, running on a single processor restricts the number of
agents in the artificial stock market. And all the agents in
SFI-ASM are of sequential manner, which cannot reflect the
concurrent behaviors of the investors in the real world. Up
to now, there are many researches or improvements on SFI-
ASM [11], [12], but these works are launched in financial
perspective, and cannot solve the problems above. Many
other MASs have been proposed after SFI-ASM, such as
SWARM [13], Repast, MASON, Ascape, starLogo, Aspen
and so on, all of which are single-processed, they share
the same problem of non-concurrency and small number of
agents.

With the development of distributed computing, sev-
eral distributed multi-agent systems have been proposed,
like RepastHPC [3], ATOM [14] and D-MASON [15].
RepastHPC (Repast for High Performance Computing) is
a toolkit for parallel agent-based modeling in distributed
environments, which is improved on the base of Repast
(Recursive Porous Agent Simulation Toolkit). RepastHPC
is a useful and usable framework, a complete ABM sim-
ulation platform developed explicitly for large scale dis-
tributed computing systems that leverages modern C++
techniques and the ReLogo language [3]. D-MASON is a
parallel version of MASON, a library for writing and run-
ning Agent-based simulations [15]. Besides RepastHPC and
D-MASON, there are several other works [16], [17] present-
ing the toolkits for general parallel agent-based modeling.
These platforms are not specialized in financial fields, and
building an artificial stock market with these toolkits seems
complex for financial experts who just want to focus on fi-
nancial items.

Social networks are needed in an artificial stock mar-
ket. N. Collier [3] have mentioned three kinds of relation-
ship between agents in multi-agent systems: grid relation-
ship, continuous space relationship and networks relation-
ship. For ASMs, social network relationship is often used,
since ASM is a particular simulation of sociology, and social
networks can reflect the relationship of real stock investors
better than generic networks or graphs. In recent social ap-
plications of multi-agent systems, agents have been orga-
nized into social networks [18]–[21], which is called multi-
agent systems in social networks (MAS-SN) [22]. It is a
necessity for agents to communicate with each other, and

a social network is needed in an artificial stock market to
define the communication topology of agents.

In distributed MASs, agents are concurrent and au-
tonomous, with large number of agents, a scheduling al-
gorithm is needed. In the real stock market, the natural
time is used. However, in the simulation systems, it’s hard
to map the machine time to natural time. Lamport [23]
proposed a strategy which uses a discrete event simula-
tion [24] to simulate the continuous time of a simulation sys-
tem. SWARM [13] is a single processed multi-agent sim-
ulation system, which uses the discrete event simulation
strategy and presented a concept called “round”. Round
can be treated like a time clock. The behaviors of agents
that take place in the same round can be regarded as that
these agents and their behaviors are running at the same
time clock. Other single processed simulation systems, like
Aspen, Repast and so on, also use the round strategy to
schedule the agents, which is called SWARM-like schedul-
ing. And this leads to the result that most of the agent based
financial models are based on round scheduling simulation
systems. Artificial Open Market (ATOM) is a highly flexi-
ble agent-based model of distributed financial markets in an
API form [14]. ATOM is also a round based distributed sim-
ulation system, but it stresses too much on the equity among
all the agents. In ATOM, each agent sends at most one order
during a “round table discussion” [14], which makes agents
behave in a synchronized way. While in the real world,
traders behave concurrently and independently, and the per-
formance of ATOM is seriously affected by the “round table
discussion” strategy.

In this paper, an improved PSSPAM based on [9] is
represented. We introduce parallel agents into PSSPAM
to mimic the concurrent features of real traders. PSSPAM
builds the basic skeleton of a distributed stock market simu-
lation. It can support large number of parallel agents, and
at the same time, provides the interface for financial re-
searchers to easily extend the simulation with their own fi-
nancial models or algorithms. Also, PSSPAM introduces a
communication system for agents to communicate with each
other and with the market. Furthermore, it maintains a net-
work topology for communication and schedules the agent
threads based on the round strategy.

3. PSSPAM Platform for Distributed Environments

3.1 Logical Architecture of PSSPAM

There are four loosely coupled modules in the PSSPAM
platform, as shown in Fig. 1, namely communication sys-
tem, agent module, market module, and the user interface
module. The communication system provides a stable chan-
nel for agents to communicate with each other and with
the market. It is a basic layer for the platform, with its
main functions of forwarding messages stably and asyn-
chronously. The agent module contains a collection of all
the agents. Agents reside on different nodes, and the num-
ber of agents on each node is determined by the control ar-



YU et al.: AN IMPROVED PLATFORM FOR MULTI-AGENT BASED STOCK MARKET SIMULATION IN DISTRIBUTED ENVIRONMENT
1729

Fig. 1 Logical architecture of PSSPAM.

Fig. 2 Communication scheme.

guments from the user interface. The market module is a
model of the stock market in the real world, such as Shang-
hai Stock Exchange. The platform is fairly extensible by
supporting customization in each of the three modules. The
user interface is the top layer to handle the interaction with
users, such as configuration and execution of simulations.

3.2 Communication System

In distributed environments, it is difficult for agents to com-
municate with each other and with the market directly, since
they are distributed on different nodes. An efficient com-
munication system is introduced for communication without
the knowledge of deployment and physical information of
the message detination. On each node there is a local server
responsible for forwarding the messages of local agents,
and all the local servers communicate with each other in
a point-to-point mode. Also, the market module contains
a local server. The communication scheme is depicted in
Fig. 2. All local servers maintain a network and an A-N ta-
ble, where the network defines the communication topology
of the agents and the A-N table tells which node each agent
lies on. The network can be represented by an undirected
graph and the scale of a network increases with a speed of
n2 as the number of agent denoted by n increases. Only these
agents who have a link in the network model can communi-
cate with each other. Also, the network can be customized
by the financial researchers. All networks and A-N tables
on different nodes are synchronized to stay the same.

During the delivery process of a message, the local
server is responsible to parse the destination of the mes-
sages. As shown in Fig. 3, the destination of the message
has two types. The first type is <agentID>, which is used

Fig. 3 Communication system.

in the agent module. As for the market, it has a unique ID
to identify itself. When the messages come to the commu-
nication system, the local server will parse the destination
to the second type of <node, queue, AgentID> according to
the A-N table, where “node” is the name of the node that
the destination agent locates on, and “queue” refers to the
receive queue of the destination node. Also, a user can de-
fine customized types of messages. After the message ar-
rives at the destination node, a reverse parsing process will
be done to get the ID of the destination: an agent or the
market, and then the destination gets the message. With this
mechanism of delivery, the physical layer is transparent to
the agent module and market module, thus the two modules
are physical environment independent.

3.3 Agent Module

The agent module consists of a set of agents that reside on
distributed computing nodes. In PSSPAM, we define the
agents as investor agents (ItAgent), a simulation for real in-
vestors. A ItAgant contains its life kernel, decision algo-
rithm, financial model and its internal state. The kernel part
specifies the activity flow of an ItAgent during its lifetime.
Generally, in the lifetime of an ItAgent, it continuously re-
peat the course: making decisions and behaving according
to the result of the decisions to submit an order or get real
time data of the market. Decision algorithm is a strategy
that an agent takes to decide whether to trade or not, as well
as the trading price and trading volume. The Decision al-
gorithm can be a random decision algorithm, a genetic al-
gorithm, a reinforce learning algorithm or other algorithms.
Financial model is the micro models defined by financial
researchers. The internal state is formed of its history trad-
ing data, assets and so on, and it evolves during the life-
time of ItAgent, which is a concrete manifestation of self-
adaptation. Usually an agent achieves self-adaption through
continuous learning, and the learning process embodies in
the decision procedure.



1730
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.10 OCTOBER 2015

3.4 Market Module

The market module is a simple model of the real exchange
market. There are four separate areas in the market mod-
ule, namely register area, agent response area, local server
and trading area. The register area maintains a global ID
table, and allocates a unique ID for each agent participated
in the market. Agent response area is responsible for all
the requests from agents. It calls the corresponding han-
dler to handle the requests. Local server stores the social
network and A-N table, also receives messages from agents
and forwards messages back. Trading area matches orders
submitted by agents. Trading area predefines two kinds of
order auction mechanism, namely Call Auction mechanism
and Continuous Auction mechanism, also the auction mech-
anism is under user customization. All these four areas are
customizable for users.

Agent Response Area. Messages sent to the market
are treated as requests, and the agent response area is to
handle all the resquests. Due to the large number of par-
allel agents, there will be large number of requests queuing
in the receive queue of the market. To deal with the large
number of requests efficiently, we introduce a worker pool
to agent response area, as is shown in Fig. 4. Each time a
request is fetched from the receive queue, the area will take
out a worker from the worker pool to deal with this request,
and the worker invokes corresponding handler to handle the
request. Predefined handlers in the system include regis-
ter handler and order handler. Users can define their cus-
tomized request handlers to coordinate with customized re-
quests from the agent module.

3.5 Scheduling

When simulating, a scheduling algorithm is needed to ar-
range these agent threads and run the agents’ behaviors con-
currently. Most of the single processed simulation systems,
like SWARM, Aspen, Repast and so on, use the round strat-
egy to schedule the agents, which lead to the result that
most of the agent based financial models are based on round
scheduling. In order to support these previous ABM finan-
cial models, in PSSPAM, we as well use the round strat-
egy to simulate the time clock of the real stock market. A
round can be treated like a time clock. Agents’ behaviors

Fig. 4 Agent response area.

and decisions all run in rounds, and these behaviors that run
in the same round can be treated as they are running at the
same time clock. Orders submitted in the same round can
be regarded as they are created and submitted at the same
time clock. The time clock of PSSPAM is simulated as the
round goes. According to the financial model, a round can
be treated as a discrete timestamp in the real stock market,
for example, several rounds can form a trading day. In fact,
round can be regarded as a discrete simulation startegy to
simulate the continuous time of multi-agent systems. Then,
how to achieve a global round in the distributed environ-
ment? Every local server on each computing node maintains
a local round, and the market maintains the center round. All
these rounds should be synchronized at the same value, and
the center round is responsible for the synchronization. As
Fig. 5 shows, here we’ve got three computing nodes, one for
the market module, two for the agents. On each computing
node a round is maintained. The market maintains the cen-
ter round, and other local servers maintain the local round,
all these rounds are synchronized at the same value. When
starting a round, the center round sends the round value to
the local rounds, and each local server on agent comput-
ing nodes starts the agent threads concurrently and in a ran-
dom order. The behaviors of agents that are scheduled at
this round start to run. For the behaviors, agents can com-
municate with other agents, decide weather to buy or sell
stocks, submit orders to the market through the communi-
cation module, or take other customized actions just accord-
ing to the financial model. And there is no certain orders for
agents’ behaviors, since all these behaviors are customiz-
able for users. During each round, the market module waits
for submitted orders, matches them and sends the match-
ing results back to agents through the communication sys-
tem. Additionally, market-clearing can happen at the end
of each round, or after the arrival of each order, or at other
time clock, which just can be customized by users accord-
ing to the financial models. When all agents end their be-
haviors, the local server send back the round message to tell
the center local server this computing node has finished this
round. When all local servers have finished this round, the
next round starts. In this scheduling step, the simulation ad-
vances with the round goes.

Fig. 5 Round scheduling.



YU et al.: AN IMPROVED PLATFORM FOR MULTI-AGENT BASED STOCK MARKET SIMULATION IN DISTRIBUTED ENVIRONMENT
1731

4. Experiments

Two groups of experiments are conducted with PSSPAM,
one without internal communication between agents, and
the other with internal communication between agents.
The experiments without communication mainly have been
shown in [9], but we have improved the original PSSPAM
and conducted the experiments with internal communica-
tion between agents. In these experiments, the market is
customized with Continuous Auction mechanism [25] and
agents using a random decision-making strategy [25].

4.1 Experiments without Communication

The sample simulation of stock market with PSSPAM and
without communication is executed on a Cluster with 5 com-
puting nodes. Each node is a multicore server which has 4
800MHz AMD processors with 4 cores (Quad-Core AMD
Opteron Processor 8374 HE), that is each computing nodes
contains 16 cores. The operating system is CentOS release
5.8. The market is deployed on a single node, and the
agents are deployed on other nodes, which is indicated by
the graphic user interface. In this group of experiments, no
communication between agents is assumed.

Validity Verification. First of all, we need to conduct
experiments to verify the validity of the simulation platform,
that is whether PSSPAM can generate the major stylized
facts that are usually found in the real-world stock markets.
These stylized facts are reposted in [25], and for the sake
of simplicity we only present a form of the classical depar-
ture from Normality of asset returns. The distribution of
asset returns does not follow the normal distribution, but ap-
pears the sharp peaked and heavy tailed property [25]. Sharp
peaked indicates that the peak value (frequency near mean
returns) is higher than the theoretical value estimated with
normal distribution, while heavy tailed means that the fre-
quency at the end is also higher than the theoretical value
estimated with normal distribution, indicating that low prob-
ability events are more likely to happen in the real world.
Figure 6 (b) is the distribution of asset returns of a specific
stock on Euronext-NYSE. The curve is the fitted result of
asset returns using normal distribution and the histogram
is the exact frequency distribution of asset returns, which
shows a typical feature of sharp peaked and heavy tailed.
Figure 6 (a) depicts the departure from normality of asset re-
turns when using random strategy in PSSPAM. It also shows
the sharp peaked and heavy tailed property, suggesting that
PSSPAM produces stylized facts in line with those observed
for a specific stock on Euronext-NYSE. This experiment re-
sults prove that PSSPAM is a valid mimic of stock markets.
To make the verification more credible, some basic statistics
are computed. Here, P(t) is used to denote the time-series
data of the trading price. Then the logarithm returns can
be computed as R(t) = ln(P(t)/P(t − 1)). Eviews is used to
compute some basic statistics of the time-series data of R(t),
shown in Fig. 7. The kurtosis of R(t) is 4.855, larger than the

Fig. 6 PSSPAM produces stylized facts in line with those observed on
Euronext-NYSE.

Fig. 7 The statistics of the data with no communication.

Fig. 8 Simulation time without thread pools, varying agent counts
grouped by computing cores.

kurtosis of normal distribution 3, which can also prove the
fat-tail feature of PSSPAM with no internal communication
between agents.

Scalability and Performance. A series of experiments
are run to evaluate the performance and scalability of PSS-
PAM. In agent module, there are two methods to schedule
the running of all the agent threads. The first one doesn’t use
thread pools, and the second one with thread pools. Without
thread pools, each thread takes care of one agent and execut-
ing the kernel and behaviors of that agent. Then the threads
are as many as the number of agents. When simulating in a
round, all threads start to run at the same time. And when
all agent threads finish, this round ends. To test the scalabil-
ity of the simulation platform, we present the execution time
for varying numbers of agents grouped by computing cores,
depicted in Fig. 8. The abscissa is the total number of agents
running in the simulation, representing the scale of the simu-



1732
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.10 OCTOBER 2015

lation. For the same number of agents, the platform achieves
a good time reduction with increasing computing nodes, and
this trend keeps well as the number of agents increases. It
also shows that PSSPAM scales weakly at a smaller num-
ber of agents but scales well at larger numbers. As with the
increasing number of agents, the computing time instead of
the cost of creating and scheduling threads conducts the ex-
ecution time. This means that PSSPAM performs a good
scalability in distributed environments. But when the num-
ber of agents exceeds 1600, there will be too much agents
connecting the market at the same time, resulting in a bot-
tleneck at the market module, since in old PSSPAM of [9]
there is no worker pools in the market module. To over-
come this problem, another method of using thread pool is
proposed to coordinate all the agents.

Concerning the number of agents is large and the num-
ber of agent threads is also large in the first method, we can
throw all agent threads into a thread pool in a random or-
der. And this achieves the same results as the first method.
With thread pools, the maximum number of agent threads
is limited, which decreases the concurrency pressure of the
market module and the time cost of thread creation and de-
struction. Each agent node mantains a thread pool. At the
beginning of one round, all agent threads are thrown into
a thread pool, and when all agent threads executed by the
thread pools, this round ends. Figure 9 shows the compar-
ison of the execution time at various numbers of agents re-
spectively with the two methods. The size of the thread pool
is set to 16 on each agent computing nodes, the same value
as the number of cores on each node. When the number
of agents is less than 1200, the execution time with each
method is nearly the same and when the number is larger,
the method using thread pools is more efficient than the first
method. This results from that there is much less thread cre-
ation and scheduling consumption when using thread pools.
And when the number of agents is small, the total simula-
tion time is mainly donated by the computing cost and the
thread consumptions can be neglected. But when the num-
ber of agents is large, these thread consumptions in the first
method will be much greater than that in the method using

Fig. 9 Simulation time comparison of the two methods at various agent
counts.

thread pools. What’s more, too much concurrent threads
will bring heavy connection pressure to the market, which
is more likely to make the market a bottleneck.

4.2 Experiments with Improved PSSPAM

Based on the platform represented in [9], we improved the
platform for better performance. First of all, round schedul-
ing strategy is used to schedule the running of agent threads.
Secondly, in [9], each agent maintains an adjacency list to
store the agents that are linked with itself in the network
model, but this kind of memory storing strategy produces
much redundancy. However, in the new strategy, each lo-
cal server stores a copy of the network, and these copies
are synchronized to be the same. Additionally, in [9], on
each computing node, there exists an implementation of the
communication system for the sake of fault tolerance. And
the messages of these communication systems need to be
synchronized, which substantially affected the performance
of PSSPAM. Here, we use only one implementation of the
communication system, and all messages between differ-
ent nodes are forwarded by this implementation through the
high-speed network of the cluster. This strategy improves
the performance particularly well if there are a lot of mes-
sages to be forwarded. Lastly, when there are many threads
running at the same time, meaning many threads connect-
ing the market at the same time, the market will become a
bottleneck of the platform. To work out this problem, we
started a worker pool in the market module. For each re-
quest or submit from the agents, a worker thread is fetched
from the worker pool, and after the execution of the handler,
the worker thread is put back into the worker pool. Also, the
size of the worked pool is a changeable parameter. In this
group of experiments, the communication of agents is based
on a small word network. The small world network is cre-
ated using the NW model proposed in [26]. The parameter
of the initial fixed range K is set to 1, and the parameter of
connection property p is set to 0.8. Both values of the two
parameters are set just based on some results of experiments.
Also, these parameters are changeable for users, and users
can even customize the type of network. For the network,
a vertex represent an agent. A link between two vertexes
means the two agents share a connection, and only agents
with links between them can communicate. During each
round, each agent sends a communication message to all of
its linked agents, the message is a fixed string. The com-
munication rules and the content of messages can also be
customized by users according to the financial models. All
these comparison experiments are conducted on the same
cluster environment with the privious experiments.

Validity Verification. With the improvements and in-
ternal communication between agents, we should first of all
verify the validity of the new platform, also using the sharp
peaked and heavy tailed property. In this experiment, the
simulation runs 10 rounds, the agent module with thread
pools, the market module with worker pools. Both pool size
are set to 16. With the data averaged for 10 times running



YU et al.: AN IMPROVED PLATFORM FOR MULTI-AGENT BASED STOCK MARKET SIMULATION IN DISTRIBUTED ENVIRONMENT
1733

Fig. 10 Departure from normality on improved PSSPAM.

Fig. 11 The statistics of the data with communication.

of the simulation, we got Fig. 10, which indicates the valid-
ity of the new PSSPAM. Also, the kurtosis and other basic
statistics of the logarithm returns R(t) with communication
between agents are computed. As shown in Fig. 11. The
kurtosis of R(t) is 4.7, larger than the kurtosis of normal
distribution 3, which can also prove the fat-tail feature of
PSSPAM with internal communication between agents.

Scalability and Performance. This set of experiments
are conducted to explore the scalability and performance of
the improved PSSPAM. The market is deployed on a single
node, and agents are deployed on the other nodes. In agent
module, the thread pool is used to run the agent threads, and
in market module, worker pool is used as well. Both of these
two pool sizes are set to 16, the same value as the number
of cores on each computing nodes. PSSPAM is simulated
for 10 rounds with various number of computing nodes and
agents, and during each round, every agent sends a commu-
nication message to its linked agents. The simulation time
against various numbers of computing nodes and agents is
represented in Fig. 12. When the number of agents keeps un-
changed, with the growing number of computing nodes, the
simulation time decreases significantly, meaning improved
PSSPAM has a good scalability for the distributed comput-
ing environment. With the number of computing nodes kept
unchanged, when the number of agents grows, the size of the
small world network grows. And with the same parameter
of the initial fixed range K and the same parameter of con-
nection property p for NW model, the total links between
agents grows proportionally. And with the same communi-
cation rules for agents, the total messages communicated be-
tween agents increases linearly with the growing number of
agents. Then the total computing time of agents’ behaviors
is growing and the total number of messages sent by agents

Fig. 12 Simulation time with varying agent counts grouped by
computing cores.

is growing, so as to the total simulation time is growing.
The simulation time is growing almost linearly with same
computing nodes, as shown in Fig. 12, which denotes that
the communication system is stable for the growing number
of communication messages, the market with worker pool
is no longer a bottleneck for large number of agents and
PSSPAM has a stable and good scalability for the growing
number of agents. In a word, PSSPAM presented a good and
stable scalability for the distributed computing environment
and the growing number of agents. Additionally, with the
same number of agents, such as 1600, and run on the same
number of computing nodes, such as 5 nodes, the simula-
tion time of the improved PSSPAM is much less than the
original PSSPAM, mostly because of the implementation of
the communication system and the worker pool of the mar-
ket module. With the original PSSPAM, on each computing
node there exists an implementation of the communication
system for the sake of fault tolerance, and the messages of
all these communication systems need to be synchronized,
which substantially affects the performance of PSSPAM es-
pacially when the number of agents is large and the num-
ber of communictaion messages is large. However, only
one implementation of the communication system is used
in the improved PSSPAM, and all messages between differ-
ent nodes are received and forwarded by this implementa-
tion through the high-speed network of the cluster, which
highly improves the performance of PSSPAM. In the mar-
ket module, RT is used to denotes the total time of receiving
requests from agents, including the receiving time and the
queueing time since the number of agents is very large and
lots of requests arrive at the same time. HT is used to de-
note the total handling time of all requests, including the
order-matching time, the data storing time, the forwarding
time of result messages and so on. The total time cost of the
market module can be roughly calculated as RT+HT. When
many agents requesting from the market at the same time,
the market module will be a bottleneck for the simulation
system. With the worker pool, RT can not be reduced but
HT can be cut down a lot. Then, the total time cost of the
market module is reduced, and the performance of PSSPAM



1734
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.10 OCTOBER 2015

is improved accordingly.

5. Summary and Future Work

This paper introduced the detailed architecture design of the
improved PSSPAM (Platform of Stock market Simulation
with Parallel Agent-based Modeling), which is based on
agent-based modeling. The platform is designed for dis-
tributed environments which provide sufficient computing
capability for the large number of parallel agents. A com-
munication system is specially designed to support the in-
teraction of agents and the market, and it is compatible with
various communication network topologies that define the
social relationship of all the agents. To arrange the running
of the large number of agent threads, the round scheduling
strategy is used. To support fair extensibility, PSSPAM al-
lows users to customize the behaviors of agents, the network
topology for agents, the message types of the communica-
tion system, the request handlers in the market module and
so on. In addition, a series of experiments have been con-
ducted to verify the correctness of the simulation and evalu-
ate the performance and scalability of the platform.

Though with the correctness and efficiency, PSSPAM is
still under improvement and more supplements are needed
in the future. For instance, the agents are deployed on dif-
ferent computing nodes sequentially, load balancing has not
been taken into consideration. And if the number of mes-
sages sent by agents are large enough, the performance of
PSSPAM may be poor since there exists lots of inter-nodes
communication messages. Fault tolerance hasn’t been han-
dled yet. The market module and the single implementation
of the communication system may be the bottleneck for the
fault tolerance. There is still much work to be done to en-
hance the system’s robustness and performance. It is also
hoped that more graphical tools can be provided to simplify
users’ customization.

Acknowledgments

The work is sponsored by the National Natural Science
Foundation of China (71131007, 61303021).

References

[1] R. Lye, J.P.L. Tan, and S.A. Cheong, “Understanding agent-based
models of financial markets: A bottom-up approach based on order
parameters and phase diagrams,” Physica A: Statistical Mechanics
and Its Applications, vol.391, no.22, pp.5521–5531, Nov. 2012.

[2] M. Wooldridge and N.R. Jennings, “Intelligent agents: Theory
and practice,” The Knowledge Engineering Review, vol.10, no.2,
pp.115–152, Jan. 1995.

[3] N. Collier and M. North, “Parallel agent-based simulation with
repast for high performance computing,” Simulation, vol.89, no.10,
pp.1215–1235, Oct. 2013.

[4] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent sys-
tems in a distributed smart grid: Design and implementation,” Proc.
Power Systems Conference and Exposition (PSCE ’09), IEEE/PES.
pp.1–8, IEEE, March 2009.

[5] A.O.I. Hoffmann, W. Jager, and J.H. Von Eije, “Social simulation

of stock markets: Taking it to the next level,” Journal of Artificial
Societies and Social Simulation, vol.10, no.2, March 2007.

[6] P.E. Johnson, “Agent-based modeling: What I learned from the arti-
ficial stock market,” Social Science Computer Review, vol.20, no.2,
pp.174–186, 2002.

[7] S.-H. Chen and C.-H. Yeh, “Evolving traders and the business school
with genetic programming: A new architecture of the agent-based
artificial stock market,” Journal of Economic Dynamics and Control,
vol.25, no.3, pp.363–393, March 2001.

[8] C. Deissenberg, S. Van Der Hoog, and H. Dawid, “EURACE: A
massively parallel agent-based model of the European economy,”
Applied Mathematics and Computation, vol.204, no.2, pp.541–552,
Oct. 2008.

[9] C. Wang, C. Yu, H. Wu, X. Chen Y. Li, and X. Zhang, “A platform
for stock market simulation with distributed agent-based modeling,”
Algorithms and Architectures for Parallel Processing, Lecture Notes
in Computer Science, vol.8631, pp.164–177, Springer International
Publishing, 2014.

[10] B. LeBaron, “Building the Santa Fe artificial stock market,” Physica
A, June 2002.

[11] B. LeBaron, “Evolution and time horizons in an agent based stock
market,” Macroeconomic Dynamics, vol.5, no.2, pp.225–254, April
2001.

[12] N. Ehrentreich, “The Santa Fe artificial stock market re-
examined — Suggested corrections,” Martin-Luther-University
Halle-Wittenberg, Wirtschaftswiss. Fak., 2002.

[13] N. Minar and R. Burkhart, ed., “The Swarm simulation system:
A toolkit for building multi-agent simulations,” Santa Fe Institute,
Santa Fe, June 1996.

[14] P. Mathieu and O. Brandouy, “A generic architecture for realistic
simulations of complex financial dynamics,” Advances in Practical
Applications of Agents and Multiagent Systems, Advances in In-
telligent and Soft Computing, vol.70, pp.185–197, Springer, Berlin,
Heidelberg, 2010.

[15] G. Cordasco, R. De Chiara, A. Mancuso, D. Mazzeo, V. Scarano,
and C. Spagnuolo, “A framework for distributing agent-based sim-
ulations,” Euro-Par 2011: Parallel Processing Workshops, Lecture
Notes in Computer Science, vol.7155, pp.460–470, Springer, Berlin,
Heidelberg, 2012.

[16] M. Kiran and P. Richmond, ed., “FLAME: Simulating large popula-
tions of agents on parallel hardware architectures,” Proc. 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems,
vol.1, pp.1633–1636, May 2010.

[17] M. Scheutz, P. Schermerhorn, R. Connaughaton, and A. Dingler,
“SWAGES: An extendable distributed experimentation system for
large-scale agent-based ALife simulations,” Proc. Artificial Life X,
pp.412–419, 2006.

[18] J. Sabater and C. Sierra, “Reputation and social network analysis in
multi-agent systems,” Proc. First International Joint Conference on
Autonomous Agents and Multiagent Systems: part 1, pp.475–482,
ACM, 2002.

[19] J.M. Pujol, R. Sangüesa, and J. Delgado, “Extracting reputation in
multi agent systems by means of social network topology,” Proc.
First International Joint Conference on Autonomous Agents and
Multiagent Systems: part 1, pp.467–474, ACM, 2002.

[20] M.M. de Weerdt, Y. Zhang, and T. Klos, “Multiagent task allocation
in social networks,” Autonomous Agents and Multi-Agent Systems,
vol.25, no.1, pp.46–86, Feb. 2012.

[21] Y. Jiang, J. Hu, and D. Lin, “Decision making of networked multi-
agent systems for interaction structures,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol.41, no.6, pp.1107–1121, March
2011.

[22] Y. Jiang, Y. Zhou, and W. Wang, “Task allocation for undependable
multiagent systems in social networks,” IEEE Trans. Parallel Distrib.
Syst., vol.24, no.8, pp.1671–1681, Aug. 2013.

[23] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Commun. ACM, vol.21, no.7, pp.558–565, July

http://dx.doi.org/10.1016/j.physa.2012.06.014
http://dx.doi.org/10.1017/s0269888900008122
http://dx.doi.org/10.1177/0037549712462620
http://dx.doi.org/10.1109/psce.2009.4840087
http://dx.doi.org/10.1177/089443930202000207
http://dx.doi.org/10.1016/s0165-1889(00)00030-0
http://dx.doi.org/10.1016/j.amc.2008.05.116
http://dx.doi.org/10.1007/978-3-319-11194-0_13
http://dx.doi.org/10.1017/s1365100501019058
http://dx.doi.org/10.1007/978-3-642-12384-9_23
http://dx.doi.org/10.1007/978-3-642-29737-3_51
http://dx.doi.org/10.1145/544741.544854
http://dx.doi.org/10.1145/544741.544853
http://dx.doi.org/10.1007/s10458-011-9168-3
http://dx.doi.org/10.1109/tsmca.2011.2114343
http://dx.doi.org/10.1109/tpds.2012.249
http://dx.doi.org/10.1145/359545.359563


YU et al.: AN IMPROVED PLATFORM FOR MULTI-AGENT BASED STOCK MARKET SIMULATION IN DISTRIBUTED ENVIRONMENT
1735

1978.
[24] J. Misra, “Distributed discrete-event simulation,” ACM Computing

Surveys, vol.18, no.1, pp.39–65, March 1986.
[25] R. Cont, “Empirical properties of asset returns: Stylized facts and

statistical issues,” Quantitative Finance, vol.1, no.2, pp.223–236,
March 2002.

[26] M.E.J. Newman and D.J. Watts, “Renormalization group analysis
of the small-world network model,” Phys. Lett. A, vol.263, no.4-6,
pp.341–346, Dec. 1999.

Ce Yu received B.S., M.S. and Ph.D.
degree in Computer Science and Technology
from Tianjin University, Tianjin, China, in 2002,
2005 and 2009, respectively. He worked as a
visiting scholar in Illinois Institute of Technol-
ogy, IL USA, from Sept. 2011 to Feb. 2012. He
is currently an associate professor in School of
Computer Science and Technology, Tianjin Uni-
versity. His research interests include high per-
formance computing, computational finance and
massive data processing.

Xiang Chen received B.S. in School
of Computer Software from Tianjin University,
Tianjin, China, in 2013, and he is now a master
student in School of Computer Software, Tian-
jin University. His research focus on multi-
agent simulation, artificial stock market simula-
tion and Behavioral Finance.

Chunyu Wang received B.S. and M.S. in
Computer Science and Technology from Tian-
jin University, Tianjin, China, in 2012 and 2015.
Her research focus on multi-agent simulation,
artificial stock market simulation and Behav-
ioral Finance.

Hutong Wu received the master degree
in computer science from Tianjin University,
China, in 2004. He works at the School of Com-
puter Science and Technology, Tianjin Univer-
sity, China. His research interests include high
performance computing, data visualization, and
visual analytics.

Jizhou Sun received the master degree
in computer science from Tianjin University,
China, in 1982, and the Ph.D. degree in elec-
trical engineering and computer science from
Sussex University, United Kingdom, in 1995.
Currently, he is working as a professor in com-
puter science and technology, Tianjin Univer-
sity. His main research interests include parallel
algorithms and architectures, high-performance
computing, computer graphics, scientific visual-
ization.

Yuelei Li is an assistant professor of fi-
nance in Tianjin University. His research focus
on Agent-based Computational Finance, Behav-
ioral Finance, and Asset Pricing.

Xiaotao Zhang is an associate professor
of finance in Tianjin University. His research
focus on Computational Finance and Behavioral
Finance.

http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/6462.6485
http://dx.doi.org/10.1080/713665670
http://dx.doi.org/10.1016/s0375-9601(99)00757-4

