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Path Feasibility Analysis of BPEL Processes under Dead Path
Elimination Semantics
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SUMMARY Web Service Business Process Execution Language
(BPEL) has become the de facto standard for developing instant service-
oriented workflow applications in open environment. The correctness and
reliability of BPEL processes have gained increasing concerns. However,
the unique features (e.g., dead path elimination (DPE) semantics, paral-
lelism, etc.) of BPEL language have raised enormous problems to it, es-
pecially in path feasibility analysis of BPEL processes. Path feasibility
analysis of BPEL processes is the basis of BPEL testing, for it relates to
the test case generation. Since BPEL processes support both parallelism
and DPE semantics, existing techniques can’t be directly applied to its path
feasibility analysis. To address this problem, we present a novel technique
to analyze the path feasibility for BPEL processes. First, to tackle unique
features mentioned above, we transform a BPEL process into an interme-
diary model — BPEL control flow graph, which is proposed to abstract the
execution flow of BPEL processes. Second, based on this abstraction, we
symbolically encode every path of BPEL processes as some Satisfiability
formulas. Finally, we solve these formulas with the help of Satisfiability
Modulo Theory (SMT) solvers and the feasible paths of BPEL processes
are obtained. We illustrate the applicability and feasibility of our technique
through a case study.
key words: BPEL processes, path feasibility analysis, dead path elimina-
tion, BPEL control flow graph, SMT solver

1. Introduction

Web Service Business Process Execution Language (WS-
BPEL or BPEL for short) is one of the most popular stan-
dards for developing service-oriented workflow applica-
tions [1]. BPEL processes can provide value-added services
by compositing Web Services or other BPEL applications.
In the path-oriented test case generation of BPEL processes,
one commonly assumption is that every BPEL process path
is feasible. Such conservative assumption often yields im-
precise results, since the existence of infeasible paths for
which there is no input data for them to be executed [2]. If a
majority of infeasible paths could be detected during static
analysis, the performance of software maintenance will be
greatly improved, especially the structural testing. There-
fore, the analysis of path feasibility is a basis and key issue.
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Identification of infeasible path in a program is an un-
decidable problem [2]. To the best of our knowledge, no
technique has successfully identified a large number of in-
feasible program paths. Existing work on detecting infeasi-
ble path can be classified into two categories: static analy-
sis and dynamic technique. The former is mainly based on
symbolic execution [3]. The techniques based on symbolic
execution to identify infeasible paths have been proposed in
[4]–[6]. In these techniques, a path is firstly represented by
a set of constraints or formulas. The formula is solvable
if and only if there are input values which drive the execu-
tion of the program down to the path. A theorem prover or
a constraint solver is invoked to test the feasibility of the
path. However, due to the limitation of symbolic evaluation
in handling pointers, arrays and function calls, some of the
infeasible paths cannot be detected; a common strategy in
dynamic techniques is to limit the number and the depth of
search. If the datum that traverses a target path has not been
found in the period of the search, the path will be considered
infeasible. Generally speaking, dynamic techniques cannot
distinguish the feasibility of path precisely. Therefore, dy-
namic techniques are not suitable for the detection of path
feasibility of BPEL processes because of the following rea-
sons [7]: The cost of using a service (for services with ac-
cess quotas or per-use basis); Service disruptions that might
be caused by massive testing; Effects of testing in some sys-
tems, such as stock-exchange systems, where each usage of
the service means a business transaction.

However, it is believed that, in many production soft-
ware systems, a large percentage of expressions and pred-
icates are linear [8]. Moreover, our observation is that the
variable types related to predicate node of a BPEL process
branch are simple and path condition is easily to determine.
Therefore, the static analysis is more appropriate for the
analysis of path feasibility of BPEL process. Unfortunately,
most of the existing static analyses of path feasibility for
traditional program languages are also insufficient or inap-
plicable to BPEL processes, since BPEL processes support
both parallelism and dead path elimination (DPE). DPE se-
mantic is a technique of propagating the disablement of an
activity so that activities downstream do not wait forever for
its completion. The propagation is needed, because each
activity carries a join condition which is evaluated on the
status of the incoming 〈link〉. However, it brings difficulties
for the analysis of path feasibility. To address this problem,
we propose a technique to analyze the path feasibility for
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BPEL processes. First, to tackle unique features mentioned
above, we transform a BPEL process into an intermediary
model — BPEL control flow graph, which is proposed to ab-
stract the execution flow of BPEL processes. Second, based
on this abstraction, we symbolically encode every path of
BPEL processes as some Satisfiability (SAT) formulas. Our
SAT formulas are based on transforming BPEL control flow
graph into a Concurrent Static Single Assignment (CSSA)
form. Finally, we solve these formulas with the help of a
Satisfiability Modulo Theory (SMT) solver and the feasible
paths of BPEL processes are obtained. A SMT solver solves
SAT problems for Boolean formulas containing predicates
of underlying theories. Such theories can be, for example,
theories of arrays, lists and strings [10]. In addition, a SMT
solver can be extended with new theories as shown in [11].
To present our technique, we consider the theory of the lin-
ear arithmetic. We illustrate the applicability and feasibility
of our technique through a case study.

Our main contributions are two folds. First, consider-
ing the unique features of parallelism and DPE semantics, a
novel BPEL control flow graph that can abstract the execu-
tion flow of BPEL processes is proposed. Second, we apply
symbolic encoding to the feasible path analysis of BPEL
processes and followed by the subsequent analysis using a
SMT solver.

The rest of this paper is organized as follows. In Sect. 2,
we give some preliminaries to help readers comprehend our
technique. In Sect. 3, we present our technique. In Sect. 4,
our technique is evaluated. In Sect. 5, related works are re-
viewed. In Sect. 6, summary and future works are presented.

2. Preliminaries

Our technique analyzes the path feasibility with SMT solver
for BPEL processes under DPE semantics. To make this
paper self-contained, in this section, we briefly review the
basics of BPEL language [1] and Concurrent Single Static
Assignment (CSSA) [15].

2.1 BPEL Language

BPEL is a language that composes partner Web Services
into BPEL applications [1]. It defines the process logic
through activities that can be divided into two classes: basic
and structured. Basic activities describe the elemental steps
of the process behavior; these activities include 〈receive〉,
〈invoke〉, 〈reply〉, and 〈assign〉. Structured activities com-
prise the basic activities into structures that express control-
flow logic of a BPEL application; these activities include
〈sequence〉, 〈flow〉, 〈pick〉, 〈switch〉, 〈while〉, and 〈if〉. Struc-
tured activities can contain recursively other basic and/or
structured activities.

BPEL describes concurrency and synchronization
mechanism by structured activity 〈flow〉. A 〈flow〉 activity
is complete if and only if all activities included in it have
been completed. In addition, BPEL expresses synchroniza-
tion dependencies between activities by 〈link〉s. Each ac-

tivity included in the 〈flow〉 activity has optional incoming
and/or outgoing 〈link〉s. Each 〈link〉 associates with a transi-
tion condition, and each target activity associates with a join
condition. Join condition is a Boolean expression over the
status (true, false, unset) of the incoming 〈link〉s. Only when
all the incoming 〈link〉s obtain their status (true or false) can
the join condition be evaluated. This activity cannot be exe-
cuted if the value of the suppressJoinFailure attribute is set
to “yes” and if the 〈joincondition〉 of a target activity (basic
activity or structure activity) is false. Then, the status of the
target activity’s outgoing 〈link〉s is set to false. This situation
will propagate downstream until a true 〈joincondition〉 of an
activity is reached and the activity can be executed (although
the previous step had been skipped). It is an advanced BPEL
mechanism that is somehow “dead path elimination (DPE)”
or “awake from the dead”.

2.2 Concurrent Static Single Assignment (CSSA)

The Static Single Assignment (SSA) form is an intermediate
representation that is used to facilitate program analysis and
optimization [12], [13]. The SSA form has the property that
each variable is defined exactly once. A definition of vari-
able v is an event that modifies v, and a use is an event when
v appears in an expression (condition or right-hand-side of
an assignment).

The SSA form can be characterized through two prop-
erties. First, each reference to a name corresponds to the
value produced at precisely one definition point giving the
single assignment property. The single assignment property
is achieved by giving a unique index to each occurrence
of the original variable on the left side of an assignment
(when it is reassigned). Second, it identifies the points in
the computation where values from different control flow
paths merge. To ensure the single-assignment property, at a
merge point of if-else statements to represent the confluence
of multiple definitions in thread-local branches, the con-
struction inserts a new definition at the merge point; its right
hand side is a pseudo-function called an ϕ-function that rep-
resents the merge of multiple SSA names. As parameters the
ϕ-function contains all variables written by possible writers.
Due to the uniqueness of variable names, there is no need to
distinguish between variables and activities. Thus, we use
the term “possible writers” also for the variables, which can
be uniquely mapped to the corresponding activity.

All concepts of SSA explained so far only hold for se-
quential programs. Therefore, an extension to the SSA form
has been introduced in [14] to handle parallelism in pro-
grams — known as Concurrent Static Single Assignment
(CSSA). The main idea of the CSSA form is that it sum-
marizes the interleaving information for conflicting vari-
ables in an explicitly parallel program through the use of
π-functions. The values of all conflicting variables are well
defined by the π-function at the point where the π-function
is placed and is represented via parameters of this function.
Like the SSA form, the CSSA form also has the property
that all uses of a variable are reached by exactly one assign-
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ment to the variable.

3. Path Feasibility Analysis of BPEL Processes

In this section, we elaborate the proposed static analysis
method of path feasibility with SMT solver for BPEL pro-
cesses under dead path elimination semantics.

3.1 BPEL Control Flow Graph (BCFG)

There are many works in path feasibility analysis method
for traditional languages. Mostly are based on Control Flow
Graph (CFG). These models are insufficient for path feasi-
bility analysis of BPEL processes, because BPEL processes
have 〈link〉 and DPE semantics as mentioned in the previous
section.

BPEL Control Flow Graph (BCFG) is proposed as an
intermediary model to facilitate the analysis of path feasi-
bility for BPEL processes. It is an extension of CFG, which
adds some concurrency related syntax and DPE related se-
mantics. It contains not only structural information, which
specifies all control flow information of a BPEL process and
data flow information for the analysis of path feasibility, but
also semantic information such as DPE semantics. BCFG
can be seen as a “partially executed” representation of BPEL
processes in the same way as CFG does in traditional se-
quential program testing. Compared with the BPEL pro-
cesses, BCFG has the following differences to facilitate path
feasibility analysis. First, it unravels the folded structures
of BPEL processes (e.g. while loop, dead path elimination)
into unfolded structures that are directly used in the path fea-
sibility analysis, especially the dead path elimination. Sec-
ond, it reduces the quantity of control structure types —
some control structures are represented uniformly according
to their similar semantics (e.g. 〈switch〉 and 〈pick〉 both ex-
press branching control flow, thus will share the same nota-
tion in BCFG). In the transformation from BPEL processes
to BCFG, each activity or 〈link〉 in BPEL process is trans-
formed into a corresponding node in BCFG or a sub-graph
composed by a set of control nodes and edges.

Formally, we define the BCFG as follows:
Definition 1. (BPEL control flow graph, BCFG)

A BPEL control flow graph is a directed graph 〈N, E〉, where
• N is a set of nodes. There is one entry node and one

end node in N while the other nodes denote the activities
and predicate expressions.

• E ⊆ N × N is a set of directed edges, and an edge
〈ni, n j〉 ∈ E directed from ni to n j denotes the relationship of
control flow between the two activities or predicate expres-
sions represented by ni and n j.

Then we map BPEL processes to BCFG structures,
which include basic activities (〈receive〉, 〈reply〉, 〈invoke〉,
〈assign〉, etc.) and structural activities (〈sequence〉, 〈flow〉,
〈while〉, etc.). The following mapping rules are referenced
in the transformation.

Rule 1. The basic activities of BPEL processes are
mapped to the BCFG nodes.

Rule 2. The structural activities of BPEL processes are
mapped to BCFG nodes and edges. Depending on activity
types, several sub-rules are needed, then:

Sub-rule 1: 〈while〉.
For loop control flow that may repeat many times, it is

common practice to assume a 0-1 criterion in the analysis
of path feasibility, where only two samples are used. One
is zero repetition, which corresponds to no-execution of the
contained activities; the other is one repetition, which corre-
sponds to one execution of the contained activity.

Sub-rule 2: 〈Switch〉 and 〈pick〉.
First, to facilitate our path feasibility analysis, we

should transform the multiple-choice pattern in BPEL pro-
cesses into exclusive-choice structure in BCFG. In other
words, the 〈switch〉 and 〈pick〉 activities are replaced by the
〈if〉 activity. Then, the target 〈link〉s of the 〈switch〉 activi-
ties are mapped to edges that are connected to the decision
node, and edges are also added to connect the decision node
and the nodes mapped from “case” branches of the switch
activity. Similar mapping can be applied to the 〈pick〉 activ-
ities.

Sub-rule 3: 〈flow〉.
The handling of 〈flow〉 is the most complex. The

〈flow〉-〈/flow〉 pair is mapped to a “bar” pair to denote that
the including activities of the process execute concurrently.
Besides this mapping, there are also similar mappings for
activities inside a 〈flow〉. In our BCFG, we regard 〈link〉 ac-
tivity as a basic activity and its join condition as decision
condition. Given the 〈link〉 and DPE semantics [1], there are
four cases needed.

Case 1: There is only one 〈link〉.
As is depicted in Fig. 1, activities A, B and C denote

three basic activities and these three activities are all in the
activity 〈flow〉. Dotted line denotes 〈link〉 and solid line de-
notes control flow between two activities. The transition
condition of B is tc1, and join condition of B is default re-
spectively. According to the 〈link〉 semantics, the case 1 can
be depicted in Fig. 1. In this case, we transform 〈link〉 into
normal control flow nodes and this activity denotes l1 = tc1,
which is followed by a decision activity. This decision ac-
tivity’s condition is l1.

Case 2: Two 〈link〉s connect sequentially.
If two 〈link〉s connect sequentially, according to the

DPE semantics in the preliminaries mentioned above, the
transforming rule can be depicted in Fig. 2.

Case 3: An activity has two incoming 〈link〉s.
If an activity has two incoming 〈link〉s, according to

the 〈link〉 semantics, the transforming rule can be depicted

Fig. 1 Illustration of case 1 of sub-rule 3.
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Fig. 2 Illustration of case 2 of sub-rule 3.

Fig. 3 Illustration of case 3 of sub-rule 3.

Fig. 4 Illustration of case 4 of sub-rule 3.

in Fig. 3. In this figure, Θ means that the arbitrary relation
between l1 and l2 (for example, >, ∪, �, etc.).

Case 4: A 〈link〉’s source activity is included in a
predicate structure (〈while〉, 〈if〉, 〈pick〉).

If a 〈link〉’s source activity is included in a predicate
structure, the transforming rule can be depicted as Fig. 4. In
this figure, whether activity F executes or not is decided by a
predicate activity (for example 〈if〉). Therefore, the activity
L1 denotes that l1 = if (if denotes the decision condition of
predicate activity 〈if〉).

The extension of CFG to BCFG is both on syntax (e.g.
parallel) and semantics (e.g. DPE) to express concurrency
and DPE, which is explained as follows. If the condition as-
sociated with a 〈link〉 activity is evaluated to be false, which
means a dead path, the false value should be propagated
downstream till a join node. The condition of the outgoing
edges of the join node will be evaluated when all the status
of incoming edges have been determined.

Given a BCFG, we symbolically encode every path of
BPEL processes as some Satisfiability (SAT) formulas and
then apply a SMT solver to determine the path feasibility
of BPEL processes. However, our symbolic encoding is
only applicable to no choice BPEL processes. Therefore,
we need to decompose BCFG into a set of sub-components
— No Choice BPEL control flow graph, NC-BCFG. NC-

BCFG is a graph which has no if-else branch and cycle. The
reference [16] has presented an algorithm for this step and
readers can refer to [16] for more detailed explanations.

3.2 BPEL Feasible Path Analysis

Given a NC-BCFG, we symbolically analyze its feasible
path for formula violations. We express this verification
problem as such a SAT formula ΦNC-BCFG that it is satisfi-
able if a feasible path satisfies the formula ΦNC-BCFG.

1) Constructing CSSA Form for NC-BCFG
Our symbolic analysis is based on transforming a loop-

free program (e.g. a NC-BCFG) into a concurrent static sin-
gle assignment (CSSA) form. Our CSSA form, inspired by
[25], has the property that each variable is defined exactly
once.

The transformation consists of two steps. Firstly, we
rename variables that have more than one definition. Sec-
ondly, adding π-functions before shared variable uses to
represent the confluence of multiple definitions in differ-
ent threads. Since each thread in a NC-BCFG has a sin-
gle thread-local path without branches, ϕ-functions are not
needed in a NC-BCFG.

We construct the CSSA form of a BPEL process as fol-
lows:

a) Create unique names for local variables in their def-
initions.

b) Create unique names for shared variables in their
definitions.

c) For each use of a local variable, replace the use with
the most recent (unique) definition.

d) For each use of a shared variable v, the most recent
definition may not be unique (depending on the interleav-
ing).

• Add a π-function immediately before the use, create
a unique name w, and add definition w← π(v1, . . . , vk);

• Replace the use with the newly defined w.
2) From CSSA to ΦNC-BCFG

The CSSA form is designed for compiler optimizations
where π functions are treated as nondeterministic choices.
In our SAT encoding, we interpret them precisely in the fol-
lowing paragraphs.

For activities t and t′, we use HB(t, t′) to express the
constraint that t is executed before t′; We define path condi-
tion g(t) such that t is executed if g(t) is true.

We construct ΦNC-BCFG as follows (ΦNC-BCFG = true
initially):

a) Program order: For each activity t ∈ NC-BCFG,
• If t is the first activity in the NC-BCFG, do nothing;
• Otherwise, for each predecessor t′ of t in the NC-

BCFG, let ΦNC-BCFG = ΦNC-BCFG ∧ HB(t′, t).
b) Actions: For each activity t ∈ NC-BCFG,
• If t is an activity in the NC-BCFG, let ΦNC-BCFG =

ΦNC-BCFG ∧ g(t).
c) π-function: For each w← π(v1, . . . , vk), defined in t,

let ti be the activity that defines vi, let
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ΦNC-BCFG := ΦNC-BCFG ∧ ∨k
i=1(w = i) ∧ g(ti)

∧ HB(ti, t) ∧ ∧k
j=1, j�i(HB(t j, ti) ∨ HB(ti, t j))

Intuitively, the π-function evaluates to vi if it chooses
the i-th definition in the π-set. Having chosen vi, all other
definitions j � i must occur either before ti, or after this use
of vi in t.

The symbolic encoding of formula ΦNC-BCFG directly
follows the semantics of NC-BCFG. Therefore, the theorem
holds by construction. It is important point that the encoding
allows interleavings between different threads to take place,
subject only to the HB-constraints added in rules 1 and 3.
Since NC-BCFG has a finite size, the formula ΦNC-BCFG can
be expressed in quantifier-free first-order logic. Note that
solutions (interleavings and input) to ΦNC-BCFG correspond
to feasible paths and test data of BCFG. After encoding all
the constraints, we then employ a SMT solver STP [17] to
solve them. The SMT solver returns the infeasible paths of
each NC-BCFG in the global order. If a solution is found by
the solver, it means that we find a feasible path. Since NC-
BCFG has a finite size, we can find all the feasible paths
through finite times.

4. Evaluation

In this section, let us take the BPEL process borrowed
from WS-BPEL 2.0 Primer [1] to demonstrate our approach.
The XML-based program segment of this BPEL process is
shown in Fig. 5. In this BPEL process, three activities are
executed in parallel, i.e. the corresponding Web services
would be invoked concurrently.

For intuitive expression, we use UML activity dia-
grams instituting of BPEL codes (in XML format) to depict
this application. In this activity diagram, each node denotes
a WS-BPEL activity, and each solid line denotes a transition
between two activities. Dashed line denotes synchroniza-
tion dependency (link with 〈transitioncondition〉) between
two activities. The UML activity diagram corresponds to
Fig. 5 is shown in Fig. 6. All four activities are started con-
currently when the 〈flow〉 activity starts. The 〈link〉 request-
to-approve has a transition condition that checks whether
the part value of variable creditVariable has a value that is
less than 5000. If that is the case, the 〈link〉 status of the
request-to-approve 〈link〉 will be set to true, otherwise to
false. Since the transition condition of the request-to-decline
〈link〉 is the exact opposite (greater than or equal to 5000),
this means that exactly one of the two successor activities
approveCredit or declineCredit will be executed. Transition
conditions offer a mechanism to split the control flow based
on certain conditions. Therefore, a mechanism to merge it
again must be offered, too. BPEL process does that with join
conditions. Join conditions are associated with activities,
usually if the activities have any incoming 〈link〉s. A join-
Condition specifies for an activity something like a “start
condition”, e.g. all incoming 〈link〉s must have the status of
true in order for the activity to execute, or at least one in-
coming 〈link〉 must have the status true. Let’s imagine that

Fig. 5 XML-based BPEL program segment.

Fig. 6 UML activity diagram of Fig. 5.

an error occurs in activity approveCredit, the outgoing 〈link〉
of this activity (which is 〈link〉 approve-to-notify) will be set
to false by the execution environment. This may lead to a sit-
uation where the join condition is evaluated to false as well.
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Fig. 7 BCFG with suppressJoinFailure is set to false.

By default, a joinFailure fault is thrown that may be caught
by an appropriate fault handler. Alternatively, when the at-
tribute suppressJoinFailure on the process or an enclosing
activity is set to yes, the activity associated with the false
join condition is skipped and the false 〈link〉 status is prop-
agated along 〈link〉s leaving that activity. In other words, a
false 〈link〉 status will be propagated transitively along en-
tire paths formed by successive 〈link〉s until a join condition
is reached that evaluates to true.

In our experiments, if the attribute suppressJoinFailure
on the process or an enclosing activity is set to false, we
suppose that its 〈link〉 status is not propagated along 〈link〉s
and the activity is skipped. Furthermore, its next activity
still can be executed. We separately analyze the attribute
by which suppressJoinFailure is set to false or true. If not
considering DPE (suppressJoinFailure is set to false), the
BPEL control flow graph can be depicted in Fig. 7.

If considering of DPE (suppressJoinFailure is set to
true), its corresponding BPEL control flow graph can be de-
picted in Fig. 8. We employed the traditional technique (Yan
et al. [15] and Liu et al. [24]) and our technique (Symbolic
encoding every test path of BPEL processes into some for-
mulas as proposed in the last section and then solve it with
a SMT solver) to analyze the two BPEL control flow graph.
Table 1 lists the statistic result of infeasible paths. In Ta-
ble 1, the second column means the number of feasible paths
of this program; feasible paths refer to the sequential activ-
ities contained in the feasible paths. These feasible paths
are represented in an implicit way. To facilitate understand-
ing, an informal representation is used. Here, we use A1A2

to denote that two activities A1 and A2 execute sequentially;
(A1 || A2) to denote that two activities A1 and A2 execute con-
currently.

Observing Table 1, we can find that the feasible paths

Fig. 8 BCFG with suppressJoinFailure is set to true.

Table 1 Result of compare analysis about a typical program.

of the two techniques detected contain different activities. In
fact, due to DPE propagate the disablement of an activity so
that activities downstream do not wait forever for its com-
pletion, some activities are “dead”. Therefore, our technique
outperforms than existing techniques to the path feasibility
analysis of BPEL processes because we have taken DPE
semantics into consideration. Furthermore, the result also
demonstrate that in the path feasibility of BPEL processes,
we take the DPE semantics into consideration is necessary.

4.1 Discussion

In our experiments, the external validity mainly originates
from the following aspects. First, this paper only chooses
some typical processes to test the feasibility of our approach.
The test results show that our approach is promising. Like
most other empirical studies, the result of our empirical
study may not be generalized to cover all cases. With this
consideration in mind, we plan to apply our approach to
large-scale, evolving BPEL processes in the future.

Another disadvantages of our approach is that it only
covers some basic structures and elements of WS-BPEL
2.0. Some advanced activities, e.g., 〈scope〉 with fault hand-
ing, which are designed to undo the partial and unsuccessful
work of a 〈scope〉 in which a fault has occurred, have not
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been fully considered so far. This is another future work for
us to be done.

5. Related Work

In this section, we review some related work on the analysis
of path feasibility, and make a comparison between those
studies and our work.

First, let’s look at some representative strategies of
path feasibility analysis techniques on programming-in-the-
small languages (e.g. C, C++, and Java) and classify them
into two categories, i.e., static method and dynamic method.
The static method [3], [18], [19] is regarded as the strate-
gies that mainly based on the symbolic execution and the
static branch correlations. The symbolic execution-based
technique to detecting path feasibility was proposed by [3].
A path is represented by a set of equations and the equations
are solvable if and only if there are some inputs that drive the
execution of the program down to the path. Path feasibility
is generally detected when these equations are inconsistent
with each other. However, the above technique is expensive;
furthermore, it cannot behave well for a BPEL program.
Since BPEL process has loops, synchronization. The pur-
pose of branch correlations is to determine the feasibility of
a target path by investigating the branch correlation of differ-
ent conditional statements [18], [19]. Although the branch
correlation of some conditional statements can be easily de-
termined, it is a difficult task and cannot be done timely and
exactly for many cases. It is reported that only about 13%
of the analyzable conditional statements show some corre-
lations during compilation. The dynamic method [2], [20]–
[22] is regarded as the strategies that if the datum that tra-
verses a target path has not been found in the final period of
the search, the path will be considered infeasible. Generally
speaking, dynamic techniques cannot distinguish the feasi-
bility of path precisely. Dynamic techniques are not suitable
for the detection of path feasibility of BPEL process because
of the cost of testing [7].

Second, we review some works on BPEL process test-
ing. There have been many works in path feasibility analysis
and they are mostly based on Control Flow Graph. Several
works focus on providing systematic methods to generate
BPEL process test cases. Yan et al. [23] propose an ex-
tended Control Flow Graph (XCFG) to represent a BPEL
specification. From the XCFG, all the sequential test paths
are generated and then combined to form concurrent test
paths. A symbolic execution method is used to extract a set
of constraints of the test paths. Finally, a constraint solver is
employed to solve the constraints and generate feasible test
cases. Yuan et al. [15] describe a graphical model, called
BPEL Flow Graph (BFG), to represent the control flow of
a BPEL process. By traversing the BFG, concurrent test
paths for the BPEL process can be derived. The test data
for each path are then generated using a constraint solving
method. Liu et al. [24] proposed a structural testing tech-
nique for Web service compositions implemented with WS-
BPEL process. The technique uses a BPMN-based BCFG

to represent the control flow of a WS-BPEL process. Test
paths of the process can be derived by traversing the BCFG.
Our work is similar to the works of Yan et al. [15] and Liu et
al. [24]. All of our techniques from the view of flow graph of
BPEL process. The major difference is that we model Dead
Path Elimination (DPE) semantics in the BPEL flow graph.
Moreover, our modeling method makes our flow graph more
intuitive for testers. Our model can facilitate the understand-
ing and analyze path feasibility of BPEL process.

In addition, many intensive studies referred to this
problem have been done using the Petri nets, process alge-
bra, or model checking tools. For detecting dead lock and
reachability, Dong et al. [26] proposed to use HPNs to de-
scribe WS-BPEL applications. They also implemented a
tool called Poses++, which was used for automated trans-
lation from BPEL to HPN and was also capable of gen-
erating test cases. Hummer et al. [27] considered data de-
pendencies between services as potential points of failure
and introduced the k-node data flow test coverage metric.
They insisted that their approach can help to significantly
reduce the number of test combinations. To verify the prop-
erties data-bound they defined, Huang et al. [28] proposed
the application of model checking to workflow applications.
Their model checking technique for workflow applications
was based on the process model of OWL-S (Web Ontology
Language for Web Services) and the model checker BLAST.
Dynamic techniques are used to limit the number and the
depth of search. If the datum that traverses a target path has
not been found in the period of the search, the path will be
considered infeasible. Generally speaking, these dynamic
techniques are not suitable for the detection of path feasibil-
ity of BPEL processes because of the cost of using a service
(for services with access quotas or per-use basis) or service
disruptions. Besides, DPE semantics is not considered by
these dynamic approaches.

6. Conclusion

Web Service Business Process Execution Language (BPEL)
has gradually become the de facto standard for developing
instant applications in open environment. BPEL workflow
applications are one of the most popular service-oriented
workflow applications, and their correctness and reliability
have gained increasing concerns. Path feasibility analysis is
the basis of BPEL testing, especially the test case generation
of BPEL processes. Considering the unique features of par-
allelism and DPE semantics, this paper presents a technique
to analyze the path feasibility of BPEL processes. The case
study illustrates that our technique is applicable and feasi-
ble.

Our current work only focuses on path feasibility anal-
ysis of BPEL processes. Based on this work, in the future,
we will broaden our work to address test data generation
problem for BPEL processes.
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