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PAPER

Image Arbitrary-Ratio Down- and Up-Sampling Scheme Exploiting
DCT Low Frequency Components and Sparsity in High Frequency
Components

Meng ZHANG†, Tinghuan CHEN†a), Xuchao SHI††, Nonmembers, and Peng CAO†, Member

SUMMARY The development of image acquisition technology and
display technology provide the base for popularization of high-resolution
images. On the other hand, the available bandwidth is not always enough to
data stream such high-resolution images. Down- and up-sampling, which
decreases the data volume of images and increases back to high-resolution
images, is a solution for the transmission of high-resolution images. In
this paper, motivated by the observation that the high-frequency DCT com-
ponents are sparse in the spatial domain, we propose a scheme combined
with Discrete Cosine Transform (DCT) and Compressed Sensing (CS) to
achieve arbitrary-ratio down-sampling. Our proposed scheme makes use
of two properties: First, the energy of a image concentrates on the low-
frequency DCT components. Second, the high-frequency DCT compo-
nents are sparse in the spatial domain. The scheme is able to preserve
the most information and avoid absolutely blindly estimating the high-
frequency components. Experimental results show that the proposed down-
and up-sampling scheme produces better performance compared with some
state-of-the-art schemes in terms of peak signal to noise ratio (PSNR),
structural similarity index measurement (SSIM) and processing time.
key words: image, DCT, CS, down- and up-sampling, arbitrary ratio,
PSNR, SSIM

1. Introduction

With advances in image acquisition technology and display
technology, high resolution images become widely available
in many applications. However, the bandwidth resource is
not always enough to the data volume of high resolution im-
ages. In such circumstances, many down- and up-sampling
schemes were proposed to decrease data volume of high res-
olution images in transmitting terminal and increase back
to high resolution images in users end. This is also called
scalable code [1]. Most of the available down- and up-
sampling schemes are performed in the spatial domain [2]–
[12]. Those spatial-domain-based schemes can be classified
into two types: adaptivity [2]–[9] and non-adaptivity [10]–
[12]. The non-adaptive schemes have low computational
complexity, but the fixed estimators, such as filter, cause
unstable performance. Due to training or learning process,
adaptive schemes have stable performance. However, the
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time-consuming training or learning process cannot provide
real-time down- and up-sampling.

Recent researches show that down- and up-sampling
images in the transform domain, such as the wavelet do-
main [13], the contourlet domain [14] and the discrete co-
sine transform (DCT) domain [15]–[26], can provide the
better performance. In addition, compared with spatial-
domain-based adaptive schemes, the schemes based on the
transform domain have lower computational complexity.

Since DCT are often used in image/video coding,
such as H.264/AVC, JPEG standard, we pay attention to
the down- and up-sampling methods based on DCT. In
many DCT-based schemes, the high-frequency DCT co-
efficients of a image are directly truncated to perform
down-sampling [15]–[19], [21]–[28]. Because the energy
concerns on the low-frequency components, this down-
sampling scheme preserves most of information of the im-
age. Therefore, some works were done to up-sample back
the high resolution image from the low-frequency DCT co-
efficients.

Because of the limitation of computational ability in
the previous graphics processing unit, the up-sampling
schemes were largely confined to low complexity. The most
primitive method is padding zeros in the high-frequency
DCT coefficients [15]. However, the scheme causes low
peak signal to noise ratio (PSNR) and low structural simi-
larity index measurement (SSIM). Therefore, some works
were done to improve PSNR and SSIM. Rakesh et al
used the symmetry and orthogonality properties of DCT
and 8 × 8 sub-block to improve PSNR and computational
efficiency [16]. Mukherjee and Mitra modified Rakesh’s
scheme by using the low pass truncation to reduce artifacts
and improve PSNR [17]. However, this scheme increased
computational complexity. In addition, Park and Jeong de-
veloped Rakesh’s work and proposed a pair of hybrid down-
and up-sampling method, where the first row and column
coefficients of each 8 × 8 DCT sub-block were preserved
to down-sample a image [20]. However, the weight ma-
trix was singular, which caused the suboptimal results. In
[22], the multiplication convolution property of DCT and
a large DCT sub-block were used to get finer images and
improve computational efficiency. Yong and Park proposed
an arbitrary-ratio resizing image method [23]. This method
combined inverse and forward DCT to produce finer images
and improve PSNR. Tan et al extended the Yong’s work by
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using the spatial relationship between the DCT block and
the sub-block [25]. Liang et al adopted forward and inverse
DCT of the different size to improve PSNR and SSIM [24].
However, the essential methodology of the works [25] and
[24] still based on padding zeros. A computational flexible
method was proposed in [19] to realize different scale size
according to different reconstructed image qualities.

Recently, scholars proposed some spatial-DCT com-
bined schemes to improve the performance of down- and
up-sampling. Typically, Wu and Chen proposed a DCT-
Wiener-based scheme, where Wiener filter was adopted to
solve minimum mean squares error (MMSE) in the spatial
domain [26]. However, the fixed parameters of Wiener filter
causes unstable performance. Hung and Siu developed Wu’s
scheme by using the training images to improve perfor-
mance [27]. However, only one training image is allowed to
apply, which causes limited improvement of performance in
PSNR and SSIM. In addition, the features of the training im-
age were similar with that of the test images. They proposed
another spatial-DCT combined scheme, where K nearest
neighbor (K-NN) MMSE estimation was adopted [28]. Al-
though their scheme improved PSNR and SSIM, the up-
sampling process was time-consuming.

According to the literature reviewed above, some draw-
backs of the existing methods are listed as follows:

1) The loss of the high-frequency DCT components
causes the loss of information, including fast changing and
edge areas, which cannot be estimated accurately.

2) Although training-based or learning-based adaptive
methods have better performance, such as high PSNR, these
methods are time-consuming. And their performance de-
pends on relevancy between training images and test im-
ages.

3) The performance of the fixed-parameters-based non-
adaptive methods are unstable because these fixed parame-
ters are not suitable for all images.

If up-sampling images need be reconstructed accu-
rately, the high-frequency DCT components are not omitted
absolutely. The partial high-frequency coefficients are also
transmitted so that the low-frequency components and the
high frequency components can be reconstructed accurately.

Compressed Sensing (CS) is applied widely in many
fields, including image process and image code [29]–[31].
CS pushes through the limitation of Nyquist theory, which
raises our concern. However, the precondition of CS is the
sparsity of the sampling signal. Because images are not
able to satisfy sparsity in the spatial domain and the DCT
domain, CS theory cannot be directly applied to perform
down- and up-sampling of images. Fortunately, the high-
frequency DCT components meet the condition of sparsity
in the spatial domain, so we propose DCT and CS combined
method to achieve high performance of the down- and up-
sampling.

In this paper, a pair of novel down- and up-sampling
method is proposed to achieve better performance in PSNR,
SSIM and processing time. Our proposed method makes
use of two properties: First, the energy of a image concen-

trates on the low-frequency DCT components. Second, the
high-frequency DCT components are sparse in the spatial
domain. The scheme is able to preserve most of the in-
formation and avoid absolutely blindly estimating the high-
frequency components. Although this is not the first time to
combine CS with DCT in the field of image processing, the
methodology of our proposed method is essentially differ-
ent from that of those existing methods [32]–[34] based on
DCT and CS. We now summarize our novel contributions in
comparison with existing methods:

1) The work [32] employed a sparse basis matrix to
provide sparse representations for image, and then adopted
a measurement matrix to compressed sample the vector of
sparse representation. In [33], image was decomposed in
texture and piecewise smooth content. In order to decom-
pose image, the work [34] used dictionary training to find
the best overcomplete dictionary and the residual in the DCT
domain. While we preserve the low-frequency DCT compo-
nents and compressed sample the high-frequency DCT com-
ponents in the spatial domain by using CS.

2) The theme of our paper is essentially different from
that of [33], [34]. The aim of the paper [33], [34] was de-
composing and representing images. The data volume of
decomposition and representation is larger than that of the
original image. While our aim is decreasing the data vol-
ume in down-sampling process and up-sample back to the
original data volume of the image.

The organization of this paper is given as follows. In
Sect. 2, we analyze pad-zeros method based on DCT and
introduce the CS theory. Then, we prove the sparsity of
the high-frequency coefficients in the spatial domain and
demonstrate the reason that CS theory can be applied in
our proposed method. After that, a pair of down- and up-
sampling scheme is introduced. In Sect. 3, we simulate our
proposed method, then compare our proposed method with
some state-of-the-art and representative methods in PSNR,
SSIM and processing time. In Sect. 4, we make some con-
clusions and give some discussion about future develop-
ment.

2. DCT-Spatial Domain Scheme for Video Frame
Down-Sampling and Up-Sampling Based on CS

As Chen said, sole approach cannot achieve good perfor-
mance to down- and up-sample high resolution [26]. It mo-
tivates us to find a solution to achieve the up-sampled high
resolution image. According to DCT theory, most of the en-
ergy in the image concentrates upon the low-frequency DCT
coefficients. While only sharp regions or fast changing areas
in the spatial domain contribute to the high-frequency DCT
coefficients. In other words, the high-frequency components
are sparse. It promotes us to utilize CS theory to compressed
sample these components. Therefore, a pair of DCT-spatial-
domain-based scheme of down- and up-sampling naturally
is proposed to reach the goal of up-sampling high resolution
images after down-sampling.
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Fig. 1 The pad-zeros method of down-sampling and up-sampling based
DCT

2.1 Down-Sampling and Up-Sampling in DCT Domain

To save bandwidth resource, an original image needs to be
down-sampled. In universal down-sampling method based
on DCT, the low-frequency coefficients are preserved and
the high-frequency coefficients are truncated. In this pro-
cess, 2-D DCT is adopted to process the original image. The
mathematical relationship between the matrix of the original
image and that of its DCT can be described as:

IDCT = Dcmat(C2Dvec(Ioriginal))Dr (1)

where Ioriginal ∈ RM×N denotes the matrix of the original im-
age, whose size is M × N. C2D is 2-D DCT matrix. The
operator vec(·) denotes rearranging a matrix to be a vec-
tor. The operator mat(·) denotes rearranged to be a matrix,
which is backwards operation of vec(·). It is easy to prove
that C2D = C1D ⊗ C1D in the Appendix. C1D is 1-D DCT
matrix. The operator ⊗ denotes Kronecker product. Dc =

[E O] ∈ RMD×M is the down-sampling column truncation
matrix, correspondingly similarly, Dr = [E O]T ∈ RN×ND

is the down-sampling row truncation matrix. E is identity
matrix, MD and ND are defined as the column truncation
number and the row truncation number, respectively. They
indicate the column number and the row number of the low-
frequency components after down-sampling, respectively.
IDCT ∈ RMD×ND is the DCT coefficient matrix, whose size
is MD×ND. We define a concept of down-sampling rate RD,
which is the ratio of the data volume of a image after down-
sampling to that of the original image. So down-sampling
ratio is RD = (MD×ND)/(M×N) in the method of truncation
of the high-frequency coefficients.

In up-sampling process, in general, the scheme of
padding zeros is adopted. The mathematical relationship of
the up-sampling process can be described as follow:

Ire = mat(CT
2Dvec(D†c IDCT D†r )) (2)

where ·† denotes pseudo-inverse operation. ·T denotes trans-
position operation. The pad-zeros method is shown in Fig. 1.

Intuitively, the residual is sparse in the spatial domain
when the low-frequency DCT components are removed

from an original image. Because the high-frequency DCT
coefficients only contribute to fast changing areas and mar-
gin areas. The Fig. 2 certifies our conjecture. In Fig. 2, there
are only the Lena profile and the hair edge, corresponding
to the high-frequency DCT components. And the color of
other regions are close to black, which means gray value is
close to zero. The image grayscale statistical graph in Fig. 2
also certifies our conjecture. Most of grayscales are nearly
to zero, and there is a tiny fraction of grayscales far from
zero. Therefore, it prompts us to utilize CS theory to com-
pressed sample the high-frequency DCT components.

2.2 CS in Spatial Domain

To achieve the down- and up-sampling in the spatial do-
main, a sparse vector needs to be compressed sampled
by a random matrix satisfying Restricted Isometric Prop-
erty(RIP) [35]. When RIP is satisfied, all subsets of K
columns taken from measurement matrix are nearly orthog-
onal. K is sparseness of compressed sampled vector. There-
fore, RIP guarantees accurate reconstruction for the com-
pressed sampled vector with high probability [36]. The re-
construction process is solving minimum l0 norm problem.
The CS process and the minimum l0 norm of CS reconstruc-
tion are described as follows:

y = Φx = Φv̇ec(Ioriginal) (3)

x̂ = argmin‖x‖l0 s.t. y = Φx (4)

where x ∈ RMN×1 is an intermediate variable for convenient
representation. y ∈ RMC NC×1 is the compressed sampling
result. Φ ∈ RMC NC×MN is random matrix. MC NC is the com-
pressed sampling number.

It is worth mentioning that a large number of the image
data causes time-consuming sampling and reconstruction.
In order to avoid that, we adopt the sensing window and
the reconstructed window in down-sampling process and
up-sampling process, respectively. In the sensing window
and the reconstructed window, the image vector with fixed
length are compressed sampled and reconstructed, respec-
tively. Empirically, we set the length of the image vector
to 128 in order to achieve good performance in processing
time and precision.

However, in order to solve Eq. (4), the linear combi-
nations with CK

N kinds of probability need to be taken into
account. Therefore, the numerical computation of Eq. (4) is
unstable. So it is named NP-hard [37]. Chen et al indicated
the solution of minimum l1 norm is the equivalent of that of
minimum l0 norm in terms of Eq. (4) [38]. Besides, the ways
of solving minimum l1 norm are simpler than that of solv-
ing minimum l0 norm. Therefore, the equation minimum l0
norm (4) is transformed into the minimum l1 norm (5) as
follow:

x̂ = argmin‖x‖l1 s.t. y = Φx (5)

this is a convex optimization problem. In addition, there
are many reconstruction algorithms proposed to solve the
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Fig. 2 Image is divided into high frequency components and low frequency components

Fig. 3 Compressed Sampling process

problem (5), such as Matching Pursuit (MP) [39], Basis
Pursuit (BP) [38], Orthogonal Matching Pursuit (OMP) [40]
and Stepwise Subspace Pursuit (SSP) [41]. In this paper,
SSP is adopted to solve the problem (5). According to
the literature [42], compressed sampling number satisfies
MC NC ≥ CKlog(MN). Φ satisfies RIP, such as Gaus-
sian random matrix or Bernoulli random matrix. Because
Bernoulli random matrix, whose elements are 1 or −1, is
suitable for implement of hardware. We adopt Bernoulli
random matrix as measurement matrix in this paper. The
Fig. 3 shows the CS procedure.

2.3 DCT-Spatial Domain Down-Sampling and Up-Sampl-
ing Method Based on CS

In traditional down-sampling process, the high-frequency
DCT coefficients are simply removed from an original im-
age. This method causes blur in fast changing areas and
edge areas. And in other methods, the high-frequency com-
ponents are estimated from the low-frequency components.
The performance of those methods depends on statistical
property of the original image. The high-frequency DCT co-
efficients cannot be estimated from the low-frequency DCT
coefficients in up-sampling process because of irrelevance
between the high-frequency DCT coefficients and the low-
frequency DCT coefficients. It is desired that a scheme is
proposed, where the high-frequency DCT components also
are down-sampled, transmitted and up-sampled. The reason
of adopting CS is that the high-frequency DCT components
satisfy the condition of sparsity in the spatial domain. As a
matter of convenience, the representation of separating co-
efficients in the DCT domain in [26] is adopted as follow:

mat(C2Dvec(Ioriginal)) =

[
fl f fh f

fh f fh f

]
(6)

In proposed method, the high-frequency DCT coeffi-
cients and the low-frequency DCT coefficients are down-
sampled, respectively. As a result, transmitted sequences
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Fig. 4 The proposed down-sampling process

include two parts. The down-sampling process is expressed
as:

Tl f = Dcmat(C2Dvec(Ioriginal))Dr

=
[
E O

] [ fl f fh f

fh f fh f

] [
E
O

]

=
[
fl f

]
(7)

Th f = Φvec(CT
2D(mat(C2Dvec(Ioriginal))

− DT
c Dcmat(D2Dvec(Ioriginal))DrDT

r ))

= Φvec(CT
2D

[
O fh f

fh f fh f

]
)

= Φλ

(8)

where Tl f ∈ RMD×ND and Th f ∈ RMC NC×1 are transmitted data
of the low-frequency components and the high-frequency
components, respectively. For the simplicity of discussion,
the variable λ ∈ RMN×1 is defined in (9):

λ = CT
2Dvec(

[
O fh f

fh f fh f

]
) (9)

It is worth mentioning that there are two concepts
we define, which are DCT truncation rate RT and com-
pressed sampling rate RC . They like the down-sampling
rate. RT is the ratio of the data volume of the down-
sampled image to that of the original image when the high-
frequency coefficients are truncated. RC is the ratio of the
data volume of the down-sampling image to that of the orig-
inal image when the high-frequency coefficients are com-
pressed sampled. In proposed method, DCT truncation rate
RT = (MDND)/(MN), CS rate RC = (MC NC)/(MN), dowm-
sampling rate RD = RC + RT = (MDND + MC NC)/(MN).

From (7) and (8), the low-frequency components are
down-sampled in the DCT domain. Besides, the high-
frequency components are down-sampled in the spatial do-
main. It is obvious that information integrity of the im-
age is achieved. The down-sampling process is shown in
Fig. 4. In our work, the random compressed sampling ma-
trix is fixed on ROM, whose size is depended on sparsity of

the high-frequency components of an image in the spatial
domain. When compressed sampling matrix satisfies RIP,
compressed sampled vector can be reconstructed with high
probability. Besides, the aim of down-sampling is decreas-
ing data volume. It increases the data volume if compressed
sampling matrix is randomly generated and transmitted at
sending end.

In users end, the up-sampling method matching down-
sampling method proposed above needs to be discussed.
Up-sampling process also is divided into two parts, the
low-frequency components and the high-frequency compo-
nents, corresponding to the down-sampling process. When
users end receives the low-frequency DCT components, up-
sampling is performed to gain the primary image by padding
zeros and inverse DCT operation. Similarly, when users
end receives the compressed sampled high-frequency com-
ponents, the CS reconstruction algorithm is carried to up-
sample the high-frequency components in the spatial do-
main. Finally, the high-frequency components are added to
the primary image in order to get the high resolution im-
age. Since the low-frequency components and the high-
frequency components are down- and up-sampled, respec-
tively. The up-sampled image is made of the low-frequency
components and the high-frequency components so that the
information integrity is achieved. Therefore, the up-sampled
image is exactly same with the original image. The up-
sampling method is represented as follows:

Irel f = mat(CT
2Dvec(UcTl f Ur))

= CT
2D

[
E
O

] [
fl f

] [
E O

]

= CT
2D

[
fl f O
O O

] (10)

λ̂ = argmin‖λ‖l1 s.t. Th f = Φλ (11)

Ireh f = mat(λ̂) (12)

where Uc = DT
c ∈ RM×MD is the column padding zeros ma-

trix. Ur = DT
r ∈ RND×N is the row padding zeros matrix.
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Fig. 5 The proposed up-sampling process

Irel f is the up-sampled low-frequency components. Ireh f is
the up-sampled high-frequency components.

From (10) to (12), we can perceive that the two parts,
which are the low-frequency components and the high-
frequency components, are up-sampled, respectively. The
synthesis of the two parts gains the up-sampling full pro-
cess. The up-sampling process is shown in Fig. 5.

The error between the original image and the down-
and up-sampled image for the high-frequency components
is shown in (13)

eh f =
∑

I

(λ − λ̂) (13)

From (7) and (10), it is clear that the down- and up-
sampling process of the low-frequency components are lin-
ear. However, it is a non-linear process that the high-
frequency components are down-sampled and up-sampled.
So compared with the high-frequency components, the er-
ror of the low-frequency components can be omitted, that is
eproposed ≈ eh f .

3. Experiment Results

Some experimental works have been done to demonstrate
our proposed scheme for down- and up-sampling images in
this section. A Intel Core i3-2120 personal computer with
3.30 GHz and 2G RAM is used for all simulations in a MAT-
LAB platform. There are thirteen images, whose size is
256 × 256, to be chosen to perform a series of experiments.
The thirteen images include one gray Lena photograph and
other twelve images as shown in Fig. 6. Next, we demon-
strate the performance of the proposed scheme from: (A)
The down- and up-sampling results for the Lena image by
using our proposed method; (B) PSNR and SSIM by using
our proposed method under different down-sampling rates,
including different DCT truncation rates and compressed
sampling rates; (C) PSNR and SSIM by using our proposed
method and six fixed-ratio state-of-the-art and representative
methods for different images as shown in Fig. 6 when down-
sampling rate is 0.25; (D) Processing time by using our pro-
posed method and six fixed-ratio state-of-the-art and repre-
sentative methods for different images as shown in Fig. 6
when down-sampling rate is 0.25; (E) PSNR and SSIM by
using our proposed method and two arbitrary-ratio state-of-
the-art and representative methods for the gray Lena image

Fig. 6 The test images

under different down-sampling rates.

3.1 The Down- and Up-Sampling Results for the Lena Im-
age by Using Our Proposed Method

The gray Lena image is adopted to perform the down- and
up-sampling by the proposed method. In this example, we
set the down-sampling rate to 0.25, in which the compressed
sampling rate is 0.1 and the DCT truncation rate is 0.15.
Let’s analyze the up-sampled image after down-sampling as
shown in Fig. 7. The left in Fig. 7 (a) is the original gray
Lena image, the right is the up-sampled gray Lena image.
The figure shows that our proposed method provides the up-
sampled image be closest to the original image. A natural
way to analyze detail difference between the original image
and the up-sampled image is partitioning the images into
small sub-blocks and enlarging them as shown in Fig. 7 (b)-
(e). As we can see, each enlarged section of the up-sampled
image is closest to that of the original image. However, it is
an undeniable fact that there is a shock effect happening in
edge neighboring areas where a series of pseudo-edge paral-
lel to them and their amplitude would vanish gradually with
the increases of distance from the edge. The shock effects
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are pointed out by arrows in Fig. 7.
The result shows that the image can be up-sampled ac-

curately, especially the high-frequency components, includ-

Fig. 7 The original gray Lena image and the up-sampled gray Lena im-
age by using our proposed method

ing edge areas, fast changing areas. However, there is a
drawback of shock effect in edge areas.

3.2 PSNR and SSIM by Using the Proposed Method un-
der Different Down-Sampling Rates, Including Differ-
ent DCT Truncation Rates and Compressed Sampling
Rates

In this subsection, in order to objectively access the perfor-
mance of our proposed method, we show PSNR and SSIM
between the original Lena image and the down- and up-
sampled image under different down-sampling rates. The
high-frequency DCT components and the low-frequency
DCT components are down-sampled, respectively. Be-
sides, the DCT truncation rate and the compressed sam-
pling rate can be changed. Therefore, our proposed method
can achieve arbitrary-ratio down-sampling in terms of DCT
truncation rates and compressed sampling rates.

Full reference quality assessment schemes are able
to objectively assess the difference between two images.
PSNR and SSIM [43] are two common full reference quality
assessment schemes. They are adopted to assess the perfor-
mance of different methods. PSRN is defined as follow:

PS NR(dB) = 10log
2552

1
NM

∑N
i=1
∑M

j=1[Î(i, j) − I(i, j)]2

(14)

where I(i, j) is the original image pixel matrix, Î(i, j) is the up-
sampled image pixel matrix, M and N are the size of image.
The larger the value of PSNR is, the higher the similarity
between the original image and the up-sampling is. When
the value of PSNR would be next to infinite, the two images
are absolutely identical. SSIM is defined in (15), where Ī
and ¯̂I is mean value of the original image pixel and the up-
sampled image pixel, respectively. k1, k2 are constants, and
in general, 0.01 ≤ k1, k2 ≤ 0.03. S S IM ∈ [0, 1]. The more
nearer SSIM approximates to one, the more similar the two
images are in structure.

PSNR and SSIM between the original Lena image and

Fig. 8 PSNR between the original image and the up-sampled image by
our proposed method under different down-sampling rate
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S S IM =
2Ī ¯̂I + (255k1)2

Ī2 + ¯̂I2 + (255k1)2
×

2
√

1
MN

∑
I (Ii, j − Ī)2

√
1

MN

∑
Î (Îi, j − ¯̂I)2 + (255k2)2

1
MN

∑
I (Ii, j − Ī)2 + 1

MN

∑
Î (Îi, j − ¯̂I)2 + (255k2)2

×
1

MN

∑
I (Ii, j − Ī)(Îi, j − ¯̂I) + (255k2)2

2√
1

MN

∑
I (Ii, j − Ī)2

√
1

MN

∑
Î (Îi, j − ¯̂I)2 +

(255k2)2

2

(15)

Fig. 9 SSIM between the original image and the up-sampled image by
our proposed method under different down-sampling rate

the down-sampled image are shown in Fig. 8 amd Fig. 9, re-
spectively. From Fig. 8 amd Fig. 9, it is observed that with
the increasing of DCT truncation rates and compressed sam-
pling rates, the values of PSNR and SSIM also increase. Be-
sides, the rising tendency of PSNR and SSIM by increasing
DCT truncation rates is similar with that by increasing com-
pressed sampling rates. Therefore, the high-frequency DCT
components and the low-frequency DCT components play
the same important role, in terms of PSNR and SSIM. This
also illustrates that the traditional methods based on trun-
cation and padding zeros in the high-frequency coefficients
have an obvious drawback.

3.3 PSNR and SSIM by Using Our Proposed Method
and Six Fixed-Ratio State-of-the-Art and Representa-
tive Methods for Different Images as Shown in Fig. 6
When Down-Sampling Rate Is 0.25

In this subsection, we compare the proposed scheme
with six fixed-ratio state-of-the-art and representative meth-
ods for different images shown in Fig. 6 in terms of
PSNR and SSIM. Those methods include an nonadaptive
spatial-domain-based method (bilateral filter [11]), an adap-
tive spatial-domain-based method (roft-decision interpola-
tion [3]), a DCT-based method (hybrid up-sampling [20])
and three spatial-DCT-based methods (DCT learnt Wiener
filter [27], K-NN MMSE estimation [28], DCT-Wiener in-
terpolation [26]). Because of the unchangeable down-
sampling rate (0.25) and up-sampling (4) rate in those
methods, we also fix down-sampling rate on 0.25 and up-
sampling rate on 4 to compare performance under the same

condition. The twelve images, whose size is 256 × 256 as
shown in Fig. 6, were used to simulate. Our simulation re-
sults are shown in Table 1.

From Table 1, the method of K-NN MMSE estimation
gains the highest average PSNR and SSIM value. Because
the K-NN MMSE estimation method extracts the features of
training images to up-sample tested images. Our proposed
method achieves the second highest PSNR and SSIM value
on average. Besides, the PSNR value and SSIM value of
our proposed method improve 0.23dB and 0.0213 than that
of the method of DCT learnt Wiener filter, which gains the
third highest PSNR and SSIM.

3.4 Processing Time by Using Our Proposed Method and
Six Fixed-Ratio State-of-the-Art and Representative
Methods for Different Images as Shown in Fig. 6
When Down-Sampling Rate Is 0.25

In this subsection, we extend experiments in Sect. 3.3 and
list the processing time of those methods mentioned in
Sect. 3.3 when down-sampling rate is 0.25. Our simula-
tion results are shown in Table 2. It is worth mentioning
that the down-sampling method of DCT-based and DCT-
spatial based methods (DCT-Wiener interpolation, DCT-
learnt wiener filter and K-NN MMSE estimation) is the trun-
cation of the high-frequency components. So we put to-
gether in second column in Table 2. Those down-sampling
methods (bilateral filter, soft-decision interpolation) are the
spatial decimation using Dirac delta function. Thus we
put together in third column in Table 2. From Table 2,
the down-sampling processing time of the spatial decima-
tion using Dirac delta function is shorter than other meth-
ods, because it performs down-sampling in the spatial do-
main and does not perform DCT. The method of the second
shorter down-sampling processing time is the truncation of
the high-frequency DCT components. There is once DCT in
this down-sampling method. The down-sampling process-
ing time of our proposed method is the double of that of the
truncation based method. Because there are once DCT and
once inverse DCT in our proposed method. However, the
down-sampling processing time is far shorter than that of
the method [20]. So the down-sampling processing time of
our proposed method is modest.

Let’s pay attention to the up-sampling processing time.
There is no doubt that the up-sampling time of the K-NN
MMSE estimation is longer than other methods because of
training process. Because its training process brings aver-
age up-sampling time to 225.6 so that this method cannot
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Table 1 PSNR of 12 images shown in Fig. 6 between original image and up-sampling image by using
A: DCT-wiener interpolation [26]; B: bilateral filter [11]; C: DCT learnt wiener filter [27]; D: Hybrid
upsampling [20]; E: K-NN MMSE estimation [28]; F: soft-decision interpolation [3]; G: our proposed
method, when down-sampling rate equals to 0.25

Image
PSNR/dB SSIM

A B C D E F G A B C D E F G

barche 26.14 25.91 26.81 18.73 28.14 25.93 27.45 0.9672 0.9666 0.9754 0.7508 0.9831 0.9667 0.9767

cameraman 25.99 24.46 26.13 18.34 27.48 24.47 26.02 0.9782 0.9695 0.9816 0.7135 0.9869 0.9695 0.9787

einstein 28.35 26.52 28.81 19.76 30.17 26.48 28.44 0.9641 0.9459 0.9758 0.8077 0.9754 0.9453 0.9657

car 23.94 23.95 24.11 19.74 25.41 23.98 24.77 0.9115 0.9157 0.9241 0.8034 0.9451 0.9162 0.9312

house 26.18 26.04 26.47 17.15 28.39 26.10 27.27 0.9366 0.9380 0.9473 0.7110 0.9550 0.9388 0.9544

aerial 23.17 23.98 23.81 19.49 26.44 24.02 25.99 0.9103 0.9340 0.9284 0.7594 0.9653 0.9343 0.9591

map 18.55 18.62 20.51 15.93 20.35 18.61 19.49 0.7258 0.7513 0.7797 0.6850 0.8548 0.7492 0.7997

watertown 25.49 25.32 26.08 20.16 27.47 25.37 26.66 0.9407 0.9409 0.9517 0.8540 0.9557 0.9414 0.9571

soil 16.98 17.34 18.21 19.35 20.44 17.39 18.52 0.8601 0.8819 0.8842 0.7901 0.9378 0.8820 0.9111

igal 18.71 18.90 20.51 20.49 21.48 18.92 20.23 0.9078 0.9165 0.9152 0.8435 0.9534 0.9164 0.9390

rock 19.62 20.26 21.05 21.48 22.36 20.28 21.21 0.6823 0.7592 0.7258 0.7085 0.8545 0.7582 0.8151

stanwick 16.51 16.74 18.24 20.56 20.91 16.76 17.49 0.6724 0.7198 0.7144 0.7805 0.8559 0.7180 0.7722

average 22.47 22.34 23.40 19.27 24.92 22.36 23.63 0.8714 0.8866 0.8920 0.7673 0.9352 0.8863 0.9133

Table 2 Processing time by using A: DCT-Wiener interpolation [26]; B: bilateral filter [11]; C: DCT
learnt Wiener filter [27]; D: Hybrid upsampling [20]; E: K-NN MMSE estimation [28]; F: soft-decision
interpolation [3]; G: our proposed method, when down-sampling rate equals to 0.25

Image
down-sampling processing/s up-sampling processing/s

A, C, E B, F D G A B C D E F G

barche 0.0110 0.000307 0.2768 0.0233 0.0305 0.0325 0.0161 1.0080 223.0 2.808 0.4719

cameraman 0.0096 0.000346 0.2657 0.0236 0.0439 0.0316 0.0381 0.8715 227.6 2.184 0.4689

einstein 0.0109 0.000326 0.4229 0.0291 0.0383 0.0308 0.0137 1.0511 228.6 2.652 0.4270

car 0.0109 0.000297 0.3135 0.0238 0.0268 0.0327 0.0181 0.7937 221.7 3.089 0.5359

house 0.0099 0.000302 0.5751 0.0308 0.0293 0.0358 0.0149 0.7941 219.8 2.590 0.4583

aerial 0.0118 0.000302 0.2426 0.0275 0.0312 0.0310 0.0150 0.6059 225.0 3.822 0.4539

map 0.0109 0.000306 0.2514 0.0251 0.0361 0.0341 0.0139 0.7852 226.8 3.057 0.4066

watertown 0.0089 0.000304 0.3293 0.0264 0.0242 0.0319 0.0449 0.8700 226.5 2.746 0.5071

soil 0.0108 0.000310 0.4620 0.0243 0.0337 0.0346 0.0142 0.6738 229.3 3.791 0.4433

igal 0.0115 0.000302 0.2450 0.0223 0.0599 0.0340 0.0140 0.6276 227.2 3.962 0.4530

rock 0.0087 0.000305 0.2478 0.0236 0.0238 0.0374 0.0171 0.6737 225.2 4.197 0.4881

stanwick 0.0110 0.000413 0.2604 0.0233 0.0290 0.0307 0.0163 0.6105 226.1 4.212 0.4020

average 0.0105 0.000318 0.3244 0.0252 0.0339 0.0331 0.0197 0.7804 225.6 3.259 0.4597

achieve real-time process. The up-sampling time of our pro-
posed method is 0.4597 seconds on average, which is longer
than that of DCT-Wiener interpolation, bilateral filter and
DCT learnt Wiener filter. But compared with the hybrid up-
sampling, soft-decision interpolation and K-NN MMSE es-
timation, the up-sampling time of our proposed method is
acceptable.

3.5 PSNR and SSIM by Using Our Proposed Method and
Two Arbitrary-Ratio State-of-the-Art and Representa-
tive Methods for the Gray Lena Image under Different
Down-Sampling Rates

As mentioned above, our proposed method can achieve

arbitrary-ratio down- and up-sampling. In this subsection,
we compare our proposed method with two state-of-the-
art arbitrary-ratio methods under different down-sampling
rates. The joint arbitrary-ratio resizing method proposed by
Chung [24] and the fast arbitrary resizing method proposed
by Tan [25] are chosen to down- and up-sample gray Lena
image. Fig. 10 and Fig. 11 show PSNR and SSIM between
the original image and the down- and up-sampled image by
using the joint arbitrary-ratio resizing method, the fast ar-
bitrary resizing method and our proposed method. From
Fig. 10 and Fig. 11, the performance of our proposed method
is more excellent than that of the arbitrary-ratio resizing
method and the fast arbitrary resizing method under differ-
ent down-sampling rares.
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Fig. 10 PSNR between the original image and the up-sampled image by
using fast arbitrary resizing [25], arbitrary ratio resizing [24] and our pro-
posed method under different down-sampling rate

Fig. 11 PSNR between the original image and the up-sampled image by
using fast arbitrary resizing [25], arbitrary ratio resizing [24] and our pro-
posed method under different down-sampling rate

4. Conclusion

In this paper, we propose a pair of arbitrary-ratio DCT-CS-
combined down-sampling and up-sampling scheme based
on the DCT-Spatial domain, which allows us to accu-
rately reconstruct the low-frequency DCT components and
the high-frequency DCT components. The high-frequency
DCT components are down-sampled in the spatial domain to
avoid blindly estimating. In up-sampling process, padding
zeros and inverse DCT are adopted to reconstruct the low-
frequency coefficients as well as SSP is used to reconstruct
the compressed sampled high-frequency coefficients. Then,
the whole image is made up with the low-frequency com-
ponents and the high-frequency components. Experiments
demonstrate performance of the proposed scheme obviously
outperforms six fixed-ratio and two arbitrary-ratio state-of-
the-art and representative methods in terms of PSNR and
SSIM. In addition, the down- and up-sampling time in our

proposed method is acceptable.
In the future, we plan to improve our proposed method

to adaptively choose the down-sampling rate of the low-
frequency components and the high-frequency components
for each image to achieve high up-sampling image quality.
Besides, elimination of the edge shock effect also is our next
research goal.
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Appendix

One dimension DCT is expressed as follow:

X(k) =
N−1∑
i=0

x(i)cos(
π(2i + 1)k

2N
) (A· 1)

where N is the length of the signal. x(i) is the signal. X(k) is
the DCT efficient. The matrix of the 1-D DCT is expressed
as follow:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(0)
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...
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=
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cos( π(2×0)×0
2N ) · · · cos( π(2×(N−1))×0

2N )
cos( π(2×0)×1

2N ) · · · cos( π(2×(N−1))×1
2N )

...
. . .

...

cos( π(2×0)×(N−1)
2N ) · · · cos( π(2×(N−1))×(N−1)

2N )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×
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x(0)
x(1)
...

x(N − 1)
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= C1DN x

(A· 2)

Two dimension DCT is expressed as follow:

X(k, l) =
M−1∑
i=0

N−1∑
j=0

x(i, j)cos(
π(2i + 1)k

2M
)cos(

π(2 j + 1)l
2N

)

(A· 3)

where k, l are the coordinates of the DCT coefficients. i, j
are the coordinates of the two dimension signal. M and N
indicate the length and width of the signal.
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos( π(2×0)×0
2M )cos( π(2×0)×0

2N ) · · · · · · · · · cos( π(2×(M−1))×0
2M )cos( π(2×(N−1))×1

2N )
cos( π(2×0)×0

2M )cos( π(2×0)×1
2N ) · · · · · · · · · cos( π(2×(M−1))×0

2M )cos( π(2×(N−1))×1
2N )

.

.

.
. . .

. . .
. . .

.

.

.

cos( π(2×0)×0
2M )cos( π(2×0)×(N−1)

2N ) · · · · · · · · · cos( π(2×(M−1))×0
2M )cos( π(2×(N−1))×(N−1)

2N )
cos( π(2×0)×1

2M )cos( π(2×0)×0
2N ) · · · · · · · · · cos( π(2×(M−1))×1

2M )cos( π(2×(N−1))×0
2N )

cos( π(2×0)×1
2M )cos( π(2×0)×1

2N ) · · · · · · · · · cos( π(2×(M−1))×1
2M )cos( π(2×(N−1))×1

2N )
.
.
.

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.

cos( π(2×0)×(M−1)
2M )cos( π(2×0)×(N−1)

2N ) · · · · · · · · · cos( π(2×(M−1))×(M−1)
2M )cos( π(2×(N−1))×(N−1)

2N )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0, 0)
.
.
.

x(0,N − 1)
x(1, 0)
.
.
.
.
.
.

x(M − 1,N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1DN cos( π(2×0)×0
2M ) C1DN cos( π(2×1)×0

2M ) · · · C1DN cos( π(2×(M−1))×0
2M )

C1DN cos( π(2×0)×1
2M ) C1DN cos( π(2×1)×1

2M ) · · · C1DN cos( π(2×(M−1))×1
2M )

.

.

. · · · . . .
.
.
.

C1DN cos( π(2×0)×(M−1)
2M ) C1DN cos( π(2×1)×(M−1)

2M ) · · · C1DN cos( π(2×(M−1))×(M−1)
2M )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0, 0)
.
.
.

x(0,N − 1)
x(1, 0)
.
.
.
.
.
.

x(M − 1,N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= C1DM ⊗C1DN x

= C2DMN x

(A· 4)
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