360

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

[PAPER

vCanal: Paravirtual Socket Library towards Fast Networking in

Virtualized Environment

Dongwoo LEE’, Changwoo MIN', Nonmembers, and Young Ik EOM™, Member

SUMMARY Virtualization is no longer an emerging research area since
the virtual processor and memory operate as efficiently as the physical ones.
However, 1/O performance is still restricted by the virtualization overhead
caused by the costly and complex /O virtualization mechanism, in par-
ticular by massive exits occurring on the guest-host switch and redundant
processing of the I/O stacks at both guest and host. A para-virtual de-
vice driver may reduce the number of exits to the hypervisor, whereas the
network stacks in the guest OS are still duplicated. Previous work pro-
posed a socket-outsourcing technique that bypasses the redundant guest
network stack by delivering the network request directly to the host. How-
ever, even by bypassing the redundant network paths in the guest OS, the
obtained performance was still below 60% of the native device, since noti-
fications of completion still depended on the hypervisor. In this paper, we
propose vCanal, a novel network virtualization framework, to improve the
performance of network access in the virtual machine toward that of the
native machine. Implementation of vCanal reached 96% of the native TCP
throughput, increasing the UDP latency by only 4% compared to the native
latency.

key words: device virtualization, multicore processor, para-virtual library,
concurrent queue, polling-based notification

1. Introduction

Recently, virtualization has become a mature technology
where virtual machines (VM) have achieved nearly bare-
metal performance through several improvements in soft-
ware and hardware technologies. Leveraging these improve-
ments, many data centers and enterprises, as well as individ-
uals, have widely applied virtualization to their workloads.
Nevertheless, the use of virtualized systems is limited for
workloads requiring high I/O performance, since they suf-
fer from unacceptable overhead mostly induced by the vir-
tualization layer; typically, the I/O path in a virtualization
layer is implemented in a much more costly and complex
way than the native I/O path, such as through a trap-and-
emulate mechanism. Para-virtualization [1]-[3] reduces the
emulation overhead by exploiting awareness of the virtu-
alization environment, but frequent context-switches still
remain, such as exit, [4], for passing the I/O request to
the hypervisor. Therefore, the virtualization layer limits
the I/O performance of VMs more significantly with high-
performance devices. For example, state-of-the-art network
interface cards (NICs) reach throughput over 40 Gbps, but
virtio performs below 1 Gbps.

Manuscript received June 10, 2015.
Manuscript revised October 11, 2015.
Manuscript publicized November 11, 2015.
"The authors are with the School of Information and Commu-
nication Engineering, Sungkyunkwan University, Suwon, Korea.
a) E-mail: yieom @ece.skku.ac.kr
DOI: 10.1587/transinf.2015EDP7224

Though modern devices supporting direct assignment
enable direct issuing of I/O requests from guests to the cor-
responding devices and thus curtail most of the virtualiza-
tion overhead, there are a few limitations. Since they re-
quire additional hardware extensions [5], [6], the hardware
cost would be higher and the legacy hardware cannot benefit
from it. Moreover, since VMs directly access the physical
NICs without support of the hypervisor, it becomes diffi-
cult to manage the network configuration of each VM by
QoS policy and to migrate the VM for load balancing. In
many virtualization applications, the ease of management
is also important, thus enhancement to the performance of
software-based 1/O virtualization is still required.

Many previous studies [5], [7]-[11] found that the
overhead of software-based I/O virtualization is mainly
caused by exits for communication between the guest and
the host. To make matters worse, the I/O stack, e.g., TCP/IP
layers in the kernel, is duplicated at both the guest and the
host; the I/O stack in the guest is obviously unnecessary be-
cause the guest has virtual devices only. Though ELVIS [11]
achieved an exitless virtual I/O with the para-virtual device
driver, the duplicated network stack harms the performance
of the virtual network. This redundancy is caused by the
absence of awareness on the virtualized environment in the
guest application.

In this paper, we determine exits and the redundant
network stack as major sources of virtual network over-
head and introduce a novel network virtualization system,
vCanal, which improves network performance by providing
a virtualization-aware socket library. vCanal can bypass the
redundant network stack in the guest, and enable the guest-
host communication without exits by exploiting multicore
architecture. It is a software-only approach that requires no
hardware support. This paper makes the following specific
contributions:

e We introduce a para-virtual socket library which im-
proves the performance of virtual networks by reducing
virtualization latency. Many previous studies tried to
reduce the overhead of a para-virtualized device driver
in several ways: by enhancing the back-end driver [12],
by applying lock-free mechanisms [13], or by deliver-
ing data with zero-copy processes [14]. In contrast, we
reduced the network virtualization overhead by revisit-
ing the communication mechanism between the guest
and host network services.

e vCanal does not require modification of the guest ap-
plication or kernel. Since the socket library is aware

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers

LEE et al.: VCANAL: PARAVIRTUAL SOCKET LIBRARY TOWARDS FAST NETWORKING IN VIRTUALIZED ENVIRONMENT

of the virtualization environment, vCanal can easily
be applied to the existing system by simply replacing
the existing socket library. In addition, vCanal is an
orthogonal mechanism to the para-virtualized device,
thus it can be selectively applied for network intensive
workloads; if the workload requires computing power
rather than the network throughput, the typical event-
driven network process can be used.

e With vCanal, the overhead of network access in the
VM can mostly be removed by eliminating exits and
bypassing the network stack in the guest. To make the
design practical, we developed two techniques: com-
munication channel and hybrid address space. The
communication channel is a concurrent queue struc-
ture which enables the network requests of the guest
to be forwarded to the host with very low overhead,
while hybrid address space enables the host network
service to directly access buffers or data structures in
the guest without the costly address translations and
needless copies.

e In order to validate performance improvements
achieved by the vCanal system, we ran popular net-
work benchmarks and compared the results with those
of traditional para-virtualized I/O framework. We got
nearly bare-metal throughput and latency; the vCanal
improved TCP throughput up to 169%, and decreased
UDP latency up to 38% compared with virtio on the
10Gbps NIC.

The rest of this paper is organized as follows. Section 2
provides a description on the three conventional network vir-
tualization technologies along with their limitations. Sec-
tion 3 then elaborates on the design of the vCanal system.
Section 4 validates our design by presenting experimental
results, including throughput improvements, latency reduc-
tions, and the impact of each design issue. Limitations of
vCanal is discussed in Sect. 5 and some related work is intro-
duced in Sect. 6. Finally, we conclude our paper in Sect. 7.

2. Network Virtualization Backgrounds

Network virtualization is conventionally implemented by
one of the following three methods: emulation, para-
virtualization, and direct assignment. In this section, we
give an overview of them to help understand the design of
the vCanal system.

Emulation: Device emulation is the most traditional and
straightforward method by which the hypervisor emu-
lates common NICs, such as Realtek RTL8139 and Intel
PRO/1000 (e1000). An unmodified guest OS accesses the
network in the same way that native OS accesses real NICs.
The hypervisor catches this request and emulates the be-
haviors of the corresponding device. Although there is no
need to modify the guest OS or to install any special de-
vice drivers when using the emulation method, the cost is
significantly high since the hypervisor should process each
and every hardware command through software emulation.
Therefore, even though the host machine is equipped with

361

NICs of sufficiently high performance, the emulation pro-
cess becomes a bottleneck which decreases the performance
of network access in virtualized environment
Para-virtualization: Many hypervisors currently mitigate
the overhead from device emulation by providing awareness
of the virtualization environment to the device driver. In-
stead of emulating the popular devices, the para-virtualized
device driver [1]-[3] communicates with the back-end driver
in the emulation process (e.g., QEMU [15] in KVM) or the
separated service domain (e.g., Dom0 in Xen) in order to
deliver the network request to the host. The back-end driver
can process those requests with better performance than em-
ulation, since it reduces the number of interventions with the
hypervisor by coalescing network requests. Nevertheless,
network access in virtualized environment is still slower
than that in the native environment since exits are still gener-
ated during the notification and the completion. Many pre-
vious studies [5], [7]-[10] show the context switch to be a
major source of device virtualization overhead. In addition,
since the virtual machine only accesses para-virtualized de-
vice drivers to deliver the network request, I/O stacks such
as the TCP/IP layer in the guest OS are obviously unneces-
sary and only increase the virtualization overhead; network
packets are handled twice on both the guest and the host be-
cause the host should rebuild or modify the packets with the
configuration of the physical network, whereas the guest OS
build packets with the configuration of virtualized network.
Direct assignment: Recently, state-of-the-art NICs have
virtualization features such as PCI pass-through [16], [17] or
SR-IOV [5]. By support of the hardware, the guest OS can
directly access the physical device, significantly improving
network performance of the VM. But, despite their advan-
tages, they still encounter some problems: (1) the legacy
NICs should be replaced with new NICs which provide
those hardware features, thus the cost becomes relatively
high; (2) since the VM bypasses the hypervisor while it
accesses the physical hardware, the hypervisor cannot pro-
vide any abstraction for the underlying hardware, and so,
the device I/O from the guest OS may be out of the hypervi-
sor’s control. For example, it may be hard to apply the net-
work QoS to the VM; (3) absence of hardware abstraction
also makes VM migration difficult, since the destination ma-
chine should be equipped and configured identically to the
source machine. Although these NICs can provide high per-
formance networks for the VMs, migrating VM or applying
device QoS in cloud service might be more important for
service management.

3. vCanal Design

The design of vCanal aims to provide fast networking in
virtualized environment towards bare-metal performance
and scalability through a software-only approach exploiting
multicore architecture, instead of using special hardware or
modifying the guest OS. In this section, the rational behind
the design decisions and key techniques of vCanal system
will be described in detail.

362

3.1 System Overview

Our novel network virtualization framework, vCanal, illus-
trated in Fig. 1, mainly consists of three components: lib-
Canal, vCanal service, and communication channel. These
components are designed to reduce the virtualization over-
head induced by frequent context-switches and redundant
network processing. Instead of incurring costly context-
switches by traps to the hypervisor, guest applications di-
rectly issue network requests to the host using libCanal. Is-
suing a network request needs only to enqueue the request
message into the communication channel. The communi-
cation channel is the per-VM concurrent queue shared be-
tween the guest and the host. vCanal service schedules the
polling thread to decide which channel should be serviced
and how many requests should be processed. vCanal ser-
vice checks whether new requests are in the communica-
tion channel by the polling thread, and passes them to one
of the network threads for further processing. After the re-
quest is processed, notification is also delivered directly to
the guest. Therefore, the virtualization latency is signifi-
cantly decreased since there are no costly context-switches
to the hypervisor during network processing. Further details
of the design of each component are presented in the rest of
this section.

vCanal Service Virtual Machine

Polling Thread [PeleEss

vCanal back-end channel
scheduler

libCanal

request translator communication

channel

Hypervisor

socket hooker

request builder
network thread
pool

vCanal front-end

Physical NIC

Fig.1 The architecture and main components of the vCanal system.

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

3.2 Paravirtual Socket Library

In native systems, when an application wants to access the
network to transfer data, it ordinarily uses network socket
interfaces. Because the socket library is the wrapper of the
corresponding system calls, the actual network processing
is performed in the kernel. The TCP/IP layer in the ker-
nel builds packets and passes them to the NIC for physical
transmission. On the other hand, in virtualization environ-
ment, the guest application sends the network requests to
the paravirtualized network driver as does the native appli-
cation, as shown in the top of Fig.2. However, the paravir-
tualized network driver delegates the network processing to
a separated domain or emulation process, instead of deliv-
ering it directly to the physical NIC. This incurs the costly
context-switches since the paravirtualized driver triggers an
exit or uses hypercall in order to inform the host of the re-
quest. If the application heavily accesses the network, this
kind of context-switch occurs very frequently, causing sig-
nificant degradation of the network performance.

To address the issues on the overhead of the context-
switches, the socket library is the best place for eliminat-
ing redundant network processing in the guest kernel, since
it is the first layer where the network request of applica-
tion passes through. The 1ibCanal, which is the guest-side
socket library in our architecture, has awareness of virtu-
alization by defining the new socket family, AF_VSOCKET,
to the existing socket library. Therefore, by indicating the
socket family at initialization, vCanal can easily be applied
to the existing systems without modifying the guest applica-
tions. With this socket, the guest application directly deliv-
ers its network requests to the host as illustrated at the bot-
tom of Fig.2, by simply queueing the request to the com-
munication channel. After the I/O request is processed in
the host, the completion notification is given to the guest by
just storing the return value to the result field in the INR,
whereas the paravirtualized driver requires the virtual inter-
rupt which incurs exits. Moreover, since all physical net-

VCPU is stopped while processing exit
e N\

l l D
VM
(core X) ‘ ’ process ‘ ’ library L—ysTe?pb‘ TCP/IP H PV NIC }—Jb‘ VMM m The other guest codes ‘
call \
1/0O Service waken up the network thread\’{Network Threa4 ’ TCP/IP ‘ ’ PV NIC ‘
(core Y)

time

'
L

(@) Network processing with the paravirtual device driver

VCPU is never stopped
|)
VM ’ process ‘ ’ libCanal ‘ ’ The other guest codes ‘
(core X) \enqueue the INR to the communication channel
v
1/0O Service waken performance jmprovement
(core Y) ’ Polling Thread }—“D—b‘Network Thread‘ ’ TCP/IP ‘ ’ PV NIC ‘ r ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i

time

(b) Network processing with the vCanal

Fig.2 Comparison of the paravirtualized device driver (a) with the network process of vCanal (b).

LEE et al.: VCANAL: PARAVIRTUAL SOCKET LIBRARY TOWARDS FAST NETWORKING IN VIRTUALIZED ENVIRONMENT

work requests are issued in the vCanal service that is pinned
on a certain core, we can assign interrupt affinity to that core
in order to eliminate exits triggered by external interrupts.
So, there are no exits during the completion notification and
thus vCanal can completely eliminate the overheads induced
by exits.

Though libCanal enables the guest application to di-
rectly access the host network service, intervention of the
guest kernel is still required for system initialization and
guest-host interface. For these purposes, a special device
driver termed the helper driver was implemented. In the
case of initialization, the helper driver allocates a few mem-
ory pages that is needed to establish the communication
channel during VM boot up, and notifies it to the vCanal
service. This notification can be done by an exit, in the case
of KVM, and it can also be implemented by hypercall within
Xen. The main reason for using the guest memory space for
the communication channel is to protect the system against
an untrusted VM. It is important especially for the environ-
ment that VM isolation should be retained. If the commu-
nication channel is established in the host, it may become a
vulnerability, allowing the guest to access the host address
space outside of its boundary. After establishing the com-
munication channels the helper driver is used for interfacing
between libCanal and the hypervisor, in the two cases: guest
polling control and guest-host address translation. More de-
tails about the helper driver for these two operations will be
presented in Sect. 3.4 and Sect. 3.5, respectively.

3.3 Intermediate Network Request

In vCanal, the file descriptor of the socket established in the
host is delivered to the guest when the guest requests to cre-
ate the socket with vCanal socket since the network requests
issued by the guest application should be actually processed
in the host service thread. In order to provide the way for the
guest and host to communicate without any conflicts, we in-
troduce the concept of intermediate network request (INR).
The INR is a kind of message representing the network re-
quest in a socket-independent structure. The INR includes
information on the socket function type, function parame-
ters, return value (originally uninitialized and filled after I/O
completion), and flag for the request state. When the guest
application issues a function call for controlling a TCP con-
nection, libCanal intercepts it and builds the INR with the
arguments of the corresponding function call. For example,
if socket () is issued, the type of the INR is set to SOCKET
and the parameter fields are filled with the same values of
the parameters of the original function call. Afterward, lib-
Canal sets the flag of the INR to INR_REQUESTED in order
to mark that the request is not yet completed, and passes
the INR to the host. In the host, vCanal service checks the
type of the INR, and actually issues the socket() func-
tion with the parameters retrieved from the INR. After the
socket is established, the return value field of the INR is set
to the file descriptor of the established socket, and the flag
is changed into INR_COMPLETED. Even the request is pro-

363

cessed in the host and the guest can retrive the result from
the return value field in the INR, the guest cannot directly
use the file descriptor obtained from the host since the same
descriptor is already being used (or may be used later) for
opening files in the guest application. To address this prob-
lem, libCanal makes a dummy descriptor by opening helper
driver, and creates a mapping between the dummy descrip-
tor in the guest and the socket descriptor in the host. Af-
terward, the guest application issues function calls with the
dummy descriptor, but libCanal builds the INR with the host
descriptor mapped for the dummy descriptor.

In addition, since the network request should actually
be processed with network settings of the host whereas all
guests have their own network settings, the network request
cannot be directly processed in the host. Especially, when
all guests use the same TCP ports for special purpose such as
HTTP connection or FTP transfer, it may conflict with other
VM connections. In order to reconfigure network parame-
ters of the INR to those suitable for host network settings,
the vCanal service uses a hash structure which is indexed
by the IP address and TCP ports. It checks whether the
INR contains the IP address or TCP port parameters, and
then convert them as suitable to the host network through
the hash table. The number of TCP ports doesn’t exceed
64K, and the guest IP address is usually configured as same
subnet mask with the host, consequently we only care about
few bits of subnet ID. Therefore, we can maintain the hash
structure without wasting much memory. In case of TCP
connection, this translation is taken once at the initialization
of connection, because the file descriptor is used for the net-
work access after establishing the connection.

3.4 Polling-Based Request and Notification

In vCanal, network requests are delivered through the com-
munication channel without any notification to the hyper-
visor. Instead, polling thread is pinned onto a certain core
for leveraging the multicore architecture, and polls the com-
munication channel. Since many VM servers are currently
equipped with over 16 cores, it is an affordable way to dedi-
cate one core for improvement of the network performance.
The pinned core continuously executes the polling thread
to check if new requests are in the communication channel,
and, if so, the vCanal back-end dequeues them and forwards
it to the request translator, so as to transform the request
into the proper socket type which can be handled by the
host. Then, the polling thread selects an available thread
in the network thread pool and makes the thread process
the requests with the underlying native NIC driver. With
multiple VMs, the polling thread should serve all channels.
However, just rounding all channels may be inefficient and
would harm the scalability of network access in virtualized
environment. Therefore, a proper way to select the chan-
nel is required. The channel scheduler schedules the vCanal
service for each channel. A similar scheduling policy to
the fine-grained 1/O scheduling of ELVIS [11] was adopted,
classifying the sockets by two characteristics: throughput-

364

intensive and latency-sensitive. We have no device layer
in vCanal, and so, we classify the socket functions into
three types: TX-related, RX-related, and CMD-related. TX-
related functions such as send() and sendto() access the
NIC immediately after being issued, but RX-related func-
tions such as recv() and recvfrom() should wait until
the NIC receives data; the network thread goes to sleep af-
ter RX-related functions are issued. Therefore, we gives
higher priority to the RX-related functions in order for them
to be served first, but its time slice is shorter than TX-
related functions so as to improve the throughput of the
workloads which send massive data through the network.
We gives highest priority to the CMD-related functions such
as socket(), bind(), listen() and shutdown() since
these functions do not access the physical NIC, and thus they
might be processed in relatively short time. After finishing
the CMD-related functions, the VM yields the vCanal ser-
vice for other VMs.

We also adopt the polling mechanism for the notifica-
tion to the guest. ELVIS pointed out that polling in the guest
is inefficient, and proposed exitless interrupt for a scheme of
the guest to host notification. However, since it leverages In-
tel’s x2APIC [18] for exitless interrupt, it is not a complete
software solution and cannot be applied on other architec-
tures. In order to mitigate the performance degradation in-
duced by continuous guest polling, we apply a hybrid ap-
proach that hypervisor can notify the guest either by polling
mode or interrupt mode. At first, libCanal polls return
value field of the request for a while. If polling exceeds
the pre-defined time, libCanal switches-off the polling mode
and requests the helper driver to change the notification
mode into the interrupt mode. Then, the helper driver regis-
ters a special interrupt handler, and informs the hypervisor
that the guest should be notified by an interrupt instead of
polling. After all, it places the process into an inactivated
state to wait an event on a sleep queue. It is difficult to wait
the precise period in the virtualized systems due to the jitter
of timer interrupt. For this reason, we apply an idea of futex
in Linux, which repeats polling a specific number of times
(default is 100 times) instead of waiting a specific period.

3.5 Communication between the Guest and Host

The communication channel is the per-VM queue struc-
ture shared between the libCanal (on the guest side) and
the vCanal service (on the host side). It is used to pass
network requests to the host without any context-switches.
Since access to the communication channel can occur si-
multaneously at different cores, the access should be syn-
chronized. Although the synchronization can be simply
done by the locking mechanism, lock-based synchroniza-
tion might incur massive contentions on the multicore pro-
cessor. To solve this problem, the concurrent queue mech-
anism [19] was adopted for the communication channel. In
the vCanal system, each thread in the guest could access the
network through the channel of its VM simultaneously, but
the polling thread in the vCanal service can serve one chan-

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

nel at a time. Thus, the communication channel can be opti-
mized better with the concurrent queue algorithm designed
for multiple enqueuer and single dequeuer.

After a request is delivered to the vCanal service
through the communication channel, it can be processed as
a native network access. However, there are two technical
challenges on processing the request of the guest in the host:
socket handover and pointer variable translation. At first,
to provide the socket identifier to each guest, vCanal ser-
vice manages the established sockets with an array in the
host and returns only an index of them to the guest applica-
tion. When an application accesses the network through the
socket, the libCanal re-translates the corresponding socket
identifier to the index of a host socket and builds the INR
with it. The most important part of socket handover is pro-
cessing select() system call. Since established sockets
in the host can be classified with the array index (actually,
it is used for socket identifier in the guest), select() sys-
tem call can also be processed by delivering the fd_set in
the guest to the host. Though the fd_set is the parameter
passed by pointer variables, vCanal service can efficiently
pass the pointer variable with hybrid address space. More
details about the hybrid address space are described in the
rest of this section.

The guest applications and vCanal service lie on dif-
ferent contexts, thus the host is unable to directly access the
parameters of the socket function which include the pointer
variables, such as data buffers. A simple solution is having
the host service make another copy for each pointer param-
eter. However, copying the data on every request causes a
lot of memory contention, thus network access in the VM
performance may be significantly decreased. Another solu-
tion is for the vCanal service to directly access the guest pa-
rameters to achieve zero-copy parameter passing. The guest
parameter cannot be accessed directly on the host side, thus
the address of the guest parameter should be translated to
the host address because the host has the virtual address of
the guest process memory space.

Translating the guest address to the host address is per-
formed in three steps: 1) translating the GVA (guest virtual
address) to the GPA (guest physical address) in the guest
kernel, 2) translating the GPA to the HPA (host physical ad-
dress) in the host kernel, and 3) translating the HPA to the
HVA (host virtual address) in the host service. The guest
physical address space is part of the host virtual address
space, thus translating the GPA to HVA can easily be done
by arithmetic calculation. In contrast, the only way to re-
trieve the mapping between the GVA and GPA is to refer
the page table in the guest kernel. However, it is inefficient
to translate the address with kernel intervention for every
request. To reduce this translation overhead, we propose a
hybrid address space for efficient address translation. It con-
tains the mapping information between the virtual address
and the physical address as shown in Fig. 3, and is managed
by a radix tree similar to the page table. The libCanal first
finds the mapping in the hybrid address space and uses it
for the INR. In the case that the mapping doesn’t exist, lib-

LEE et al.: VCANAL: PARAVIRTUAL SOCKET LIBRARY TOWARDS FAST NETWORKING IN VIRTUALIZED ENVIRONMENT

Guest Vit;;ﬁaf-Address Space

“Hybrid Address Space Mapping
Guest page table

-,/ Guest Physical Aadregg Spa

Host Vir.t"u,al Address S_pa{te

Extended page table

Host Physical Address Space

Fig.3 The relation among three address spaces in virtualized systems.
Translating GVA to HVA requires three times of address translation without
hybrid address space.

Canal translates the address through the helper driver and
stores it to the mapping table for the shared address space
for later use. In general, applications frequently reuse their
buffer and data structures, consequently allowing the hybrid
address space to maintain the mapping with low overhead.

4. Evaluation

To validate the vCanal design, we implemented the vCanal
system in the KVM hypervisor. Though our design was im-
plemented in KVM with the processor virtualization sup-
port, the only part that depends on the hypervisor was ar-
rangement of the shared memory between the guest and the
host; vCanal can also be implemented in Xen without any
conscious effort. In this section, we analyze the impact of
vCanal’s exitless network request and the elimination of re-
dundant network layer. How our optimizations contributed
to the performance improvements was also evaluated.

4.1 Experimental Setup

The experiments were performed on two systems which are
directly connected with fiber cable. They are used as a client
and server for the network benchmark test. Two systems
were equally equipped with dual-socket processor with In-
tel Xeon E5540 CPUs running at 2.53 GHz (4 cores/socket),
DDR3 16GB of main memory, and Intel X520-DA2 10Gbps
NIC. The client was configured with the virtualization envi-
ronment using Linux 3.5 for the host and guest, and it used
native kvm-tools v2 for the emulation process.

We compared vCanal against the following five I/O vir-
tualization configurations:
Baseline: This configuration is used to measure the perfor-
mance of the unmodified KVM with virtio. All physical
cores were assigned to the VM as a typical case where the
VM running performance-oriented application dedicates all
the cores to itself. The guest and host made no changes for
network configuration: setting the Maximum Transmission
Unit (MTU) as a default size of 1500bytes and disabling the
SR-IOV feature of the 10Gbps NIC.
Baseline + Affinity: The kvm-tools creates a thread per
device and the thread continues running on a CPU while

365

performing the I/O request. Since this implementation does
not consider the host scheduler, a negative influence on per-
formance may be observed if a virtual processor and 1/O
thread contend for a single core. To examine this problem,
the configuration was set similarly to the Baseline but the
cores were explicitly distributed to the VM and the network
thread; in our experimental setup, 7 cores were dedicated to
the VM and 1 core to the network thread. We also set IRQ
affinity to the core executing the network thread, and thus
the other cores were not disturbed by the interrupts.
ELVIS: This configuration measured the performance of
ELVIS, distributed by the open-source project. To acquire
fairness with Baseline + Affinity, 7 cores were also assigned
to the VM and 1 core to the I/O thread. The SR-IOV feature
was also disabled.

vCanal: This configuration was set for analyzing vCanal
performance including all optimizations: hybrid address
space and IRQ affinity. The core distribution was the same
as for ELVIS; 7 cores assigned to the VM and 1 core to the
vCanal service.

SR-IOV: The SR-IOV feature of the NIC was enabled and
the guest directly accesses it through the ixgbe driver.

4.2 Throughput

Improvements in throughput with vCanal were examined
with the following two benchmarks:

Netperf TCP-stream: This is a network benchmark that
opens a single TCP socket to the remote Netperf server,
and calls as many send() functions as possible in a given
time. We measured the throughput with the default settings
of Netperf except benchmark duration (in our experiments,
it is configured as 5 minutes), to avoid the influence on the
results by small changes of the system or network state.
ApacheBench: In this benchmark, the VM becomes an
HTTP server and has two concurrent threads. ApacheBench
in the remote system repeatedly sends requests to the VM
with 4KB pages and the VM receives and processes those
requests. With this benchmark, we measured the aggregated
requests in a given time.

As shown in Fig. 4, Baseline achieved 3.1 Gbps on the
Netperf TCP-stream; it only took throughput by 57% in
comparison with the native environment. On ApacheBench,
Baseline also performed 49% of the aggregated request rates
compared to the physical environment. Just assigning the
affinity to Baseline was not helpful to the TCP through-
put, as Baseline + Affinity was found to have 52% of the
throughput and 48% of the aggregated request rates on the
Netperf TCP-stream and ApacheBench, respectively. Al-
though the IRQ affinity reduced the number of exits induced
by external interrupts, it was observed that the affinity rather
harms the performance of network access in virtualized en-
vironment. The major source of performance degradation of
the affinity is the inter-processor-interrupt (IPI) that occurs
during I/O completion notification. The interrupts from the
physical NIC were concentrated on a certain core with the
affinity. However, in order to inform the guest OS that the

Throughput (bps)
)

16

r
o

[1 msr-lov

M Baseline

£ m Baseline + Affinity

ELVIS
m vCanal

Netperf TCP-stream

Normalized throughput
o o o o
[T -~

o

Netperf TCP-stream

I
~

v
1] o
& 25K 9 1
o o
n o0
9 20k 0 0os
o o0
] 94
= 15K $ 0.6
° v 9
3 L
> 10K R 0.4
o £
D s 5 02
2 z

0K 0

ApacheBench ApacheBench

Fig.4 Comparing throughput of vCanal to other I/O virtualization meth-

ods, configured as baseline, baseline + affinity, and etc. Graphs on the left
show the result of each benchmark. Graphs on the right show the same
result normalized by the native throughput.

requests were finished, the network thread should send the
IPI to the other cores which run VCPU. The IPI is a costly
operation and triggers an exit to the VM, so the actual per-
formance cannot benefit from the affinity.

In contrast, vCanal achieved a TCP throughput of
5.3 Gbps on the Netperf TCP-stream. This result was
nearly close to the native performance and vCanal in-
creased the throughput by 69% in comparison with Base-
line. ApacheBench also showed that vCanal achieved 44%
increment of the aggregated request rates compared to Base-
line. The host notifies the guest of the completion not by
sending the IPI but by writing the result on the request mes-
sage. Therefore, the guest is not interrupted by IPI exits, and
performance improvement could be observed. ELVIS also
increased the throughput of both benchmarks, but their in-
crements are restricted by the redundant TCP/IP layer in the
guest.

SR-IOV was found to have lower throughput in the
Netperf TCP-stream than vCanal, even though it directly ac-
cesses the physical device, since the hypervisor spent a long
time for handling the external interrupts due to extreme re-
quests for the network resources. On the contrary, vCanal
showed less throughput on ApacheBench, where the reason
is that vCanal uses the scheme of switching between the
polling mode and the interrupt mode for the guest-to-host
notification. Moreover, ApacheBench required more com-
puting power than the Netperf TCP-stream, and thus the
overhead of the interrupt mode and the dedicated I/O core
incurs performance degradation.

4.3 Latency

We measured network latency reduction using Netperf
UDP-request-response (UDP-RR). This benchmark sends
a UDP packet to the server and measures the time until the
sever replies its response. The same benchmark duration

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

120 2
M Baseline
100 4 ®Baseline + Affinity 18
ELVIS
_ 80 = vCanal gl-s
X m SR-IOV 2.
g 60 3
s =
E g 1.2
40 =
21
» 0.8 -
0 06

Netperf UDP-RR(Client) Netperf UDP-RR(Client)

120

~

=
o0

100

g
o

80

g
IS

60

Latency(us)

=
)

40

Normalized latency

-

20

o
o

Netperf UDP-RR(Server) Netperf UDP-RR(Server)

Fig.5 The latency result of Netperf UDP-RR on both client and server.
Graph on the left shows the average latency. Graph on the right is the same
measurement normalized to the native UDP latency

‘ M Polling mode M Interrupt mode M Switching mode‘

Netperf UDP-RR(Server)

Fig.6 Comparison of the latency on executing Netperf UDP-RR (server)
when vCanal is configured to use three different notification modes

as for the Netperf TCP-stream was employed. As shown
in Fig.5, vCanal was observed to reduce latency by 38%
(client) and 41% (server) in comparison with the Baseline.
Baseline + Affinity also shows higher latency than Base-
line for both cases, because the IPI processing took time
in the host. Though vCanal outperforms ELVIS for both
the TCP throughput and UDP latency, the performance im-
provements for the TCP connection was found to be rela-
tively higher than for the UDP. This is because the TCP
connection has more complicated process than UDP. That
is, the guest gets more advantages for the TCP connection
by bypassing the entire network stack of the kernel.

Even the switching scheme is applied to the receiving
process of vCanal, the benchmark with the VM used as a
server showed similiar results to that with the VM used as
a client. With our analysis, this is because the UDP pack-
ets are repeatedly delievered in a very short time, and thus
its notification is mostly conducted by polling. To deter-
mine the influence of the switching scheme on the network
latency, we configured the vCanal to execute only with the
polling or interrupt mode, and compared them to the result
of the vCanal using the switching mode. As shown in Fig. 6,
though the interrupt mode incured 16% additional latency

LEE et al.: VCANAL: PARAVIRTUAL SOCKET LIBRARY TOWARDS FAST NETWORKING IN VIRTUALIZED ENVIRONMENT

8G . MmvCanal 80K
m vCanal w/o Polling
7G 1 mvCanal w/o Hybrid Address Space
vCanal w/o Affnity

| | ®EPT violation
4.7 H Pending interrupt

60K H External interrupt
| = NMI exception

W MSR write
m O instruction

e
(3]

w
9]

S
(3]

w
(2]

Throughput (bps)

»
o
The number of exits per usec

Netperf TCP-stream Baseline vCanal vCanal w/o
Affinity

Fig.7 Comparing the impact of vCanal components. Graph on the left
is measurements of TCP throughput for each configuration. Graph on the
right shows the number of exits

due to the overhead of processing the interrupt for notifying
the completion to the libCanal, it is considered meaningful
to apply vCanal to real-world workloads since the notifica-
tion mode is rarely switched to the interrupt mode when the
packet is received frequently.

4.4 TImpact of vCanal Optimizations

To verify the effectiveness of vCanal’s component, we mea-
sured the network throughput using Netperf TCP-stream
with four configurations: vCanal, vCanal without Polling,
vCanal without Hybrid Address Space Table, and vCanal
without Affinity. These configurations disabled design op-
tions of vCanal framework as follows relatively: instead
of polling, exit-based notification was applied to the case
of vCanal without Polling; instead of using hybrid address
space, the host translated the address every time in the case
of vCanal without Hybrid Address Space; the default set-
tings for thread scheduling and IRQ distribution was used in
the case of vCanal without Affinity.

Figure 7 shows the results for all configurations. The
results clearly show that the exitless polling-based notifica-
tion to be the major contributor of performance improve-
ments, increasing TCP throughput by 57%. The hybrid ad-
dress space and the affinity also improved TCP throughput
by 8% and 4%, respectively. The number of exits during net-
work processing was further measured to verify how the ex-
itless notification contributed to the performance improve-
ment. The results show that the Baseline suffered from mas-
sive exits mostly due to three exit reasons: I/O instructions,
MSR writes, and interrupts. These exits were induced by the
hardware request, EOI (end-of-interrupt), and completion
notification, respectively. Specifically, in order to validate
improvement of affinity, we compared the result of vCanal
to the result of vCanal without Affinity. vCanal reduced ap-
proximately 84% of exits, whereas the VM still suffer from
external interrupts in the case of vCanal without affinity.
Though a few exits are still remaining even in the case of ap-
plying the affinity optimization, it may be induced by other
reasons such as timer interrupt. Since those exits are typi-
cally generated during the VM is even in an idle state, the
performance of network access is not influenced.

367

H Baseline
6G m vCanal -

IS
[}

Total throughput (bps)
Now
o o

1G +

0G

3 4 5
Number of concurrent VMs

Fig.8 Total throughput of the Netperf TCP-stream benchmark, when
multiple VMs concurrently access the network device through the single
1/O core.

~4—Baseline
—-vCanal

/
/

e

—

=
@
S

-
=
S

o
o

B
1)
S

@
S

Average Latency (ps)
©
3

IS
S

~
S

o

> 3 4 s s 7

Number of concurrent VMs
Fig.9 Average latency of the Netperf UDP-RR benchmark, when mul-
tiple VMs concurrently access the network device through the single I/O
core.

4.5 Scalability

To verify that vCanal can serve multiple VMs using a sin-
gle I/O thread running on a dedicated core, we performed
some experiments using 1 ~ 7 VMs. In all the configura-
tions, we used one core per VM and one additional core
to run the I/O thread. As shown in Fig.8, the single I/O
thread (used by both Baseline and vCanal) was saturated at
a throughput of around 5.5Gbps, leading to a plateau for 4
VMs and more, where both vCanal and Baseline could scale
no longer. This scalability problem would not be an issue for
less throughput-intensive workloads (as we demonstrate be-
low), and can also be mitigated by applying the NIC which
has higher performance. Moreover, we believe that with fur-
ther research, the I/O capacity of the single I/O core can be
significantly increased, thereby significantly increasing the
number of guests which could be served by a single I/O core.

We also measured vCanal’s latency improvement as
shown in Fig.9. We can see that vCanal reduced latency
by 35us compared to Baseline when only a single VM was
running. With multiple VMs, vCanal reduced the average
latency per VM by 39us. This improvement was possible
because vCanal’s single I/O thread combined with exitless
notifications, as opposed to multiple threads for serving each
VM, significantly reduced the time it takes to detect and han-
dle the I/O requests sent by the guests. We can see that,
compared to the TCP stream benchmark we previously ana-
lyzed, UDP Request-Response did not saturate the I/O core
and scaled very well.

368

5. Limitations

vCanal paravirtualizes socket library instead of the network
device driver, and thus it has the advantage of eliminating
the redundant network process of the guest kernel by di-
rectly delivering the request to the hypervisor from the user-
applications. However, vCanal has limitations on compat-
ibility in comparison to the paravirtualized network device
driver. First of all, vCanal socket cannot provide some func-
tionalites that the host cannot support. For example, vCanal
cannot be applied when the Linux-server hosts the Windows
VM executing the applications using Winsock APIs, since
Winsock APIs has many functions which is not provided
by Berkeley Socket. In contrast, the paravirtualized net-
work device driver can support all socket APIs since it is
not coupled with the type of socket API. Moreover, vCanal
also have problems on error handling; errors, which occur
during the network process in the host, cannot be resolved
by the VM directly due to the limited privileged level of
the guest OS. Nevertheless, vCanal is still useful since it is
an orthogonal solution to the existing solutions. In trusted
environment, vCanal is selectively applied by AF_VSOCKET
to the guest application which requires high-level network
performance, and it can provide the guest application with
native-level performance.

6. Related Work

An efficient virtual I/O framework has received a lot of in-
terests as a major area of research for virtualization. Here,
we present some studies that had the same motivation as our
work, to enhance the performance of virtualization by re-
ducing exits to the hypervisor.

VMware products use a software technique [20] which
inspects the guest code to detect back-to-back pairs of in-
structions which incurexits, and handles the pair of instruc-
tions at the time when the first one exits. However, this tech-
nique can only be applied to the hypervisor using binary
translation. For SplitX [8] method, a hardware extension
similar to the inter-processor-interrupt (IPI) was proposed
for VMs environment, where run on dedicated cores and
the hypervisor runs on a different cores, in parallel. It en-
abled exitless communication between cores which could be
used for notifications between the guest and the host, but is
not available on commodity processors. In contrast, vCanal
does not require any new hardware extensions. ELI[7]
achieved nearly bare-metal performance by handling inter-
rupts in the guest directly, without hypervisor intervention.
However, its application is very limited because ELI works
only for direct device assignment. Moreover, it only focuses
on the exits induced by interrupts. ELVIS [11] proposed an
I/O core similar to vCanal service, but the request is passed
to the para-virtualized device driver to successfully achieve
exitless I/O with a software-only approach. Though vCanal
outperformed ELVIS for network devices by eliminating the
redundant network stack in the guest, ELVIS can be adopted

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

more generally for block storage devices.

To eliminate redundant processing, socket-
outsourcing [21] and VMM-bypass network [22] is invested
the guest application which has the awareness [23] of the
virtualization. Nevertheless, they only succeeded in improv-
ing the performance up to about 60% of the native device,
since their notifications of completion were still engaged by
the hypervisor.

7. Conclusion

In this paper, massive switches and redundant 1/O stacks
were identified as the major contributors in slowing down
the network in virtualized systems. We proposed a novel
system, vCanal, which eliminates the duplicated network
layer with a para-virtual socket library, providing the guest
application with awareness of virtualization. vCanal also
significantly reduced the number of exits by directly passing
the requests to the host through an I/O-dedicated core with a
polling mechanism. We described our prototype implemen-
tation details, in this paper and the results of the evaluation
show that vCanal improves throughput up to 69% and re-
duced latency 38% on average.

Acknowledgments

This research was supported by Next-Generation Informa-
tion Computing Development Program through the National
Research Foundation of Korea (NRF) funded by the Min-
istry of Science, ICT & Future Planning (2010-0020730)

References

[1] R. Russell, “virtio: Towards a De-facto Standard for Virtual I/O
Devices,” ACM SIGOPS Operating Systems Review, vol.42, no.5,
pp-95-103, 2008.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtu-
alization,” ACM SIGOPS Operating Systems Review, vol.37, no.5,
pp-164-177, 2003.

[3] J. Sugerman, G. Venkitachalam, and B.H. Lim, “Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual machine moni-
tor,” USENIX Annual Technical Conference, pp.1-14, 2001.

[4] K. Adams and O. Agesen, “A Comparison of Software and Hard-
ware Techniques for x86 Virtualization,” ACM SIGPLAN Notices,
vol.41, no.11, pp.2—13, 2006.

[5] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High Per-
formance Network Virtualization with SR-IOV,” Journal of Parallel
and Distributed Computing, vol.72, no.11, pp.1471-1480, 2012.

[6] R.Hiremane, “Intel Virtualization Technology for Directed I/O (In-
tel VI-d),” Technology @ Intel Magazine, vol.4, no.10, 2007.

[71 A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A.
Schuster, and D. Tsafrir, “ELI: Bare-Metal Performance for I/O Vir-
tualization,” ACM SIGARCH Computer Architecture News, vol.40,
no.l, pp.411-422, 2012.

[8] A. Landau, M. Ben-Yehuda, and A. Gordon, “SplitX: Split
Guest/Hypervisor Execution on Multi-Core,” USENIX Workshop
on I/O Virtualization, 2011.

[9] J. Liu and B. Abali, “Virtualization Polling Engine (VPE): Using
Dedicated CPU Cores to Accelerate I/O Virtualization,” ACM Inter-
national Conference on Supercomputing, pp.225-234, 2009.

http://dx.doi.org/10.1145/1400097.1400108
http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1145/1168918.1168860
http://dx.doi.org/10.1016/j.jpdc.2012.01.020
http://dx.doi.org/10.1145/2189750.2151020
http://dx.doi.org/10.1145/1542275.1542309

LEE et al.: VCANAL: PARAVIRTUAL SOCKET LIBRARY TOWARDS FAST NETWORKING IN VIRTUALIZED ENVIRONMENT

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

H. Raj and K. Schwan, “High Performance and Scalable I/O Vir-
tualization via Self-Virtualized Devices,” ACM International Sym-
posium on High Performance Distributed Computing, pp.179-188,
2007.

N. HarEl, A. Gordon, A. Landau, M. Ben-Yehuda, A. Traeger,
and R. Ladelsky, “Efficient and Scalable Paravirtual /O System,”
USENIX Annual Technical Conference, pp.231-242, 2013.

M. Tsirkin, “vhost-net and virtio-net: Need for Speed,” tech. rep.,
KVM Forum, 2010. http://www.linux-kvm.org/wiki/images/8/82/
Vhost_virtio_net_need_for_spe%ed_2.odp.

J.C. Mogul and K. Ramakrishnan, “Eliminating Receive Livelock in
an Interrupt-Driven Kernel,” ACM Transactions on Computer Sys-
tems, vol.15, no.3, pp.217-252, 1997.

A. Menon, A.L. Cox, and W. Zwaenepoel, “Optimizing Network
Virtualization in Xen,” USENIX Annual Technical Conference,
pp-15-28, 2006.

F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,”
USENIX Annual Technical Conference, pp.41-46, 2005.

E. Zhai, G.D. Cummings, and Y. Dong, “Live Migration with Pass-
through Device for Linux VM,” Ottawa Linux Symposium, pp.261—
268, 2008.

B.A. Yassour, M. Ben-Yehuda, and O. Wasserman, “Direct De-
vice Assignment for Untrusted Fully-Virtualized Virtual Machines,”
tech. rep., IBM Research Report H-0263, 2008.

Intel 64 Architecture x2APIC Specification, Intel Corporation, 2008.
J. Giacomoni, T. Moseley, and M. Vachharajani, ‘“FastForward for
Efficient Pipeline Parallelism: a Cache-Optimized Concurrent Lock-
Free Queue,” ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pp.43-52, 2008.

O. Agesen, J. Mattson, R. Rugina, and J. Sheldon, “Software Tech-
niques for Avoiding Hardware Virtualization Exits,” USENIX An-
nual Technical Conference, pp.35-35, 2011.

H. Eiraku, Y. Shinjo, C. Pu, Y. Koh, and K. Kato, “Fast Networking
with Socket-outsourcing in Hosted Virtual Machine Environments,”
ACM Symposium on Applied Computing, pp.310-317, 2009.

J. Liu, W. Huang, B. Abali, and D.K. Panda, “High performance
vmm-bypass i/o in virtual machines,” USENIX Annual Technical
Conference, pp.29-42, 2006.

A. Gordon, M. Ben-Yehuda, D. Filimonov, and M. Dahan,
“VAMOS: Virtualization Aware Middleware,” USENIX Workshop
on I/O Virtualization, 2011.

Dongwoo Lee received his B.S. degree
in the Department of Computer Engineering of
Sungkyunkwan University, Korea in 2010 and
M.S. degree in the Department of Mobile Sys-
tems Engineering from Sungkyunkwan Univer-
sity in 2012. He is currently a Ph.D. candi-
date in the Department of IT Convergence of
Sungkyunkwan University. His current research
interests include virtualization, cloud comput-
ing, and storage systems.

369

Changwoo Min received his B.S. and M.S.
degrees in Computer Science from Soongsil
University, Korea in 1996 and 1998, respec-
tively, and he received a Ph.D. degrees in the
Department of Mobile Systems Engineering of
Sungkyunkwan University, Korea in 2014. He
was a software engineer for Samsung Electron-
ics in Korea. His current research interests in-
clude virtualization, storage systems, and mo-
bile platforms.

Young Ik Eom received his B.S., M.S., and
Ph.D. degrees in the Department of Computer
Science and Statistics of Seoul National Uni-
versity, Korea in 1983, 1985, and 1991, respec-
tively. From 1986 to 1993, he was an Associate
Professor at Dankook University in Korea. He
was also a visiting scholar in the Department of
Information and Computer Science at the Uni-
versity of California, Irvine, from Sep. 2000 to
Aug. 2001. Since 1993, he has been a profes-
sor at Sungkyunkwan University in Korea. His

research interests include virtualization, operating systems, cloud systems,

and system securities.

http://dx.doi.org/10.1145/1272366.1272390
http://dx.doi.org/10.1145/263326.263335
http://dx.doi.org/10.1145/1345206.1345215
http://dx.doi.org/10.1145/1529282.1529350

