IEICE TRANS. INFE. & SYST., VOL.E99-D, NO.3 MARCH 2016

695

[PAPER

A Packet-In Message Filtering Mechanism for Protection of Control

Plane in OpenFlow Switches*

Daisuke KOTANI'®, Nonmember and Yasuo OKABE', Fellow

SUMMARY  Protecting control planes in networking hardware from
high rate packets is a critical issue for networks under operation. One com-
mon approach for conventional networking hardware is to offload expen-
sive functions onto hard-wired offload engines as ASICs. This approach is
inadequate for OpenFlow networks because it restricts a certain amount of
flexibility for network control that OpenFlow tries to provide. Therefore,
we need a control plane protection mechanism in OpenFlow switches as a
last resort, while preserving flexibility for network control. In this paper,
we propose a mechanism to filter out Packet-In messages, which include
packets handled by the control plane in OpenFlow networks, without drop-
ping important ones for network control. Switches record values of packet
header fields before sending Packet-In messages, and filter out packets that
have the same values as the recorded ones. The controllers set the header
fields in advance whose values must be recorded, and the header fields
are selected based on controller design. We have implemented and evalu-
ated the proposed mechanism on a prototype software switch, concluding
that it dramatically reduces CPU loads on switches while passes important
Packet-In messages for network control.

key words: network security, software-defined networking, OpenFlow

1. Introduction

Such networking hardware as Ethernet switches commonly
forwards most packets in high performance by ASICs, and
its control software runs on low performance CPUs. The
software and the CPUs consist of a control plane, which
controls a network like calculating and installing routing ta-
bles. Elements that are used for processing packets accord-
ing to rules installed by a control plane are called a data-
path like ASICs. Some functions in networking hardware,
which are designed under an assumption that they are rarely
used, are implemented and executed in software; however,
in many cases these functions are executed frequently. Hosts
sometimes send an unexpected amount of traffic, and some
of such traffic may use these functions. Some networks
need to use these functions to meet network requirements,
and many hosts use them at the same time. In these cases,
the control plane in the networking hardware becomes over-
loaded, operation becomes unwieldy, and networking hard-
ware and operators often suffer from the high loads caused
by such traffic. To overcome this problem, networking hard-
ware offloads execution of these functions onto hard-wired

Manuscript received June 30, 2015.
Manuscript revised November 7, 2015.
Manuscript publicized December 9, 2015.
"The authors are with Kyoto University, Kyoto-shi, 606-8501
Japan.
*An earlier version of this paper was presented at ACM/IEEE
ANCS 2014 [1].
a) E-mail: kotani @net.ist.i.kyoto-u.ac.jp
DOI: 10.1587/transinf.2015SEDP7256

offload engines like ASICs, Network Processors and FP-
GAs|[2], [3].

Recent advances in Software-Defined Networking
(SDN) [4] based on OpenFlow [5] allow users other than
networking hardware vendors to program how networking
hardware with an OpenFlow support feature (switches here-
after) forwards packets by software on external computers.
The software is called a controller, which centrally manages
all the switches. The control plane in OpenFlow networks
includes software that handles OpenFlow messages in the
switches, and the control networks between the switches and
the controller, in addition to the controllers.

In OpenFlow, packet-forwarding rules are defined per
flow and the rules are called flow entries. We can set flow
entries for a group of flows using wildcard fields. Packets
that match flow entries are processed at high speed on the
datapath, which is implemented by hard-wired offload en-
gines like ASICs. Packets that mismatch any flow entry are
processed in a pre-configured way, such as sending them to
controllers through the control plane as Packet-In messages,
or discarding them. When a controller receives Packet-In
messages, it installs new flow entries into switches, and out-
puts packets in the Packet-In messages to destinations. Al-
though it is recommended that most of flow entries are in-
stalled before receiving packets, controllers need to handle
some Packet-In messages to learn values of header fields
from packets, such as for MAC address learning, for multi-
cast source detection, for ARP and broadcast handling.

This SDN trend based on OpenFlow introduces a new
problem: how to protect the control plane from too many
packets that bring high loads in the control plane, especially
in switches, while preserving flexibility for network control
provided by OpenFlow. Let us assume that a host suddenly
starts to send too many packets without advance notice, and
switches are configured to send packets that mismatch any
flow entry to controllers as Packet-In messages. There is a
small time lag in switches between sending a Packet-In mes-
sage and adding new flow entries that correspond to it, and
a switch tries to send all mismatched packets to controllers
as Packet-In messages until new flow entries are installed.
As a result, a switch may be overloaded by creating and
sending many Packet-In messages, delaying the handling of
OpenFlow messages from the controllers. If the datapath
limits the rate of packets that go to the CPU of the swtich
for reducing the CPU load, packets from a host may occupy
the low bandwidth between the datapath and the CPU, and
the datapath may discard packets from other hosts, which

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers



696

include important packets for controllers.

A conventional way mitigates this problem by offload-
ing more packet processing to hard-wired offload engines.
However, this choice is unsuitable to SDN based on Open-
Flow because programming these engines is very different
from developing software, and this difference restricts the
flexibility provided by OpenFlow. Many OpenFlow exten-
sion proposals try to extend uses cases of OpenFlow [6]-
[12], but it is unpractical that a switch supports all the ex-
tensions for all the potential cases. For this reason, we be-
lieve that the switches need a generic control plane protec-
tion mechanism as a last resort.

In this paper, we propose a mechanism where the
switches pass important Packet-In messages for network
control and apply restrictions on less important Packet-In
messages. The restrictions are selected by network opera-
tors or controller developers, like filtering out the Packet-In
messages or greatly limiting a Packet-In message rate.

The most important work of controllers is to continue
to control networks. This work includes learning necessary
state for network control, inserting and deleting flow entries
quickly, etc. To continue this work, switches must not drop
important packets for network control from which the con-
trollers learn the necessary state, while the switches should
drop packets that bring overloads in the control plane, espe-
cially in the switches with low CPU performance.

Although switches send entire packets as Packet-In
messages, controllers use only a part of packet header val-
ues, and it depends on controller design that which header
fields are used. The controllers usually parse packets and
store the values of necessary header fields in the packets.
If two or more packets have the same values in the neces-
sary header fields, one packet is enough for the controllers
to learn values, and the others are not necessary.

A basic approach of the proposed mechanism is sim-
ple: switches record values of header fields when they send
Packet-In messages, and apply predefined restrictions on
subsequent packets that match recorded entries for a cer-
tain time. To avoid an explosion of the number of entries
the switches record, controllers set the switches the header
fields that the controllers use, before the switches start to
handle packets. The switches record only values of the
header fields that the controllers have specified, and other
fields are set to be wildcard.

The proposed mechanism consists of two parts: Pend-
ing Flow Rules and Pending Flow Tables. A pending flow
rule is an entry to specify the header fields to which con-
trollers refer, and each rule consists of a condition to match
and a list of header fields to record. The pending flow rules
are assumed to be set before switches start to handle pack-
ets. A pending flow table is a list of entries where switches
record values of header fields in packets included in Packet-
In messages, and we call its entries pending flow entries.
One pending flow table per pending flow rule is used. A
pending flow entry consists of a condition to match, and the
condition is set by copying the values of the specified header
fields from packets.

IEICE TRANS. INE. & SYST., VOL.E99-D, NO.3 MARCH 2016

We implemented the proposed mechanism on Open
vSwitch by extending OpenFlow’s standard mechanisms.
We discussed how the proposed mechanism can be used
in various cases and showed that it introduces little inflex-
ibility. We also experimentally showed that it dramatically
reduced the CPU utilization in switches while forwarding
important packets to controllers.

This paper is organized as follows. Section 2 intro-
duces related work. We explain the proposed mechanism in
Sect. 3, and its implementation to Open vSwitch in Sect. 4.
In Sect. 5, we show how it can be used in various cases, and
describe experiments to show that it reduced CPU utilization
in switches. Section 6 discusses our proposed mechanism,
and Sect. 7 concludes this paper.

2. Related Work

This section surveys OpenFlow and its related work for in-
creasing scalability, and DoS attacks where situation we as-
sume are categorized.

2.1 OpenFlow

OpenFlow [5], which was originally designed to give re-
searchers and engineers an opportunity to easily test their
new ideas in the networks that they usually use, defines an
API of the datapath in switches for external control pro-
grams called controllers. Currently OpenFlow is considered
an important protocol between the control plane and the dat-
apath in Software-Defined Networking (SDN) [4].

In OpenFlow, packet-forwarding rules are stored in
flow tables, where entries are called flow entries. The con-
trollers manage the flow tables by OpenFlow protocols. One
flow entry consists of three elements: a condition, actions,
and statistics. The condition is used to match packets and
consists of a priority value and the match fields, including
an input port number and such values of packet header fields
as source and destination Ethernet addresses. A wildcard
is allowed in each field. The actions list those applied to
matched packets, for example, outputting them to specified
ports, sending them to controllers as Packet-In messages,
and discarding them. The statistics include packet counters
for matched packets, duration until entry’s expiration, etc.

When a switch receives a packet, first it looks up its
flow tables to find flow entries that match it. If some entries
are found, the packet is processed based on the entries. If
no entry is found, the switch handles the packet by a pre-
configured table-miss entry, such as discarding it or sending
it to controllers as a Packet-In message.

Flow entries are installed in two methods: proactive
and reactive [13]. In the proactive method, a controller sets
as many flow entries as possible to switches before hosts
are connected so that the switches need not to send many
Packet-In messages. Most flow entries are created using in-
formation provided by external systems, like a cloud man-
agement system. In the reactive method, a controller re-
ceives Packet-In messages from switches, and then creates



KOTANI and OKABE: A PACKET-IN MESSAGE FILTERING MECHANISM FOR PROTECTION OF CONTROL PLANE IN OPENFLOW SWITCHES

and installs flow entries based on the Packet-In messages.
The controller sets no flow entry in advance. If a controller
needs to learn network state that the controller cannot learn
in advance, such as where hosts are connected, the controller
needs Packet-In messages to learn it regardless of the meth-
ods the controllers use.

OpenFlow Switch Specification 1.3 [14] and later have
a mechanism called a Meter that limits the rate of the pack-
ets in a group of flows. We can use a Meter as one of the
restrictions to limit the rate of Packet-In messages.

2.2 Increasing Scalability for OpenFlow Networks

OpenFlow networks are centrally managed by controllers,
who are a bottleneck in large OpenFlow networks because
the controllers generally process more OpenFlow messages
as a network becomes large. There are two research direc-
tions to use OpenFlow in large networks.

One approach increases message processing perfor-
mance in the controllers. To achieve this, distributed con-
troller platforms create logically centralized but physically
distributed controllers. ONIX[16], HyperFlow [17], and
ONOS [18] are examples of such platforms. These con-
trollers share network state by distributed databases or stor-
age, and each switch in the network communicates with
some of physical controllers. This approach works well if
each switch sends a few messages per second; it cannot al-
leviate the problem when the switches become overloaded,
which is what we address.

The other approach enhances switch functionality so
that switches can process more packets by themselves.
DIFANE [12] added topology discovery and flow entry dis-
tribution functions to switches to easily enforce network ac-
cess policies. DevoFlow [19] shows that the switches have
meager flow setup performance, and proposes a flow entry
clone flag in the flow entries mainly for elephant flow detec-
tion. The flow entry clone flag shows that, when a packet
matches the flow entry, the switch creates and installs a new
flow entry by copying the same actions as the matched flow
entry and the values of all the header fields in the packet
to the match fields. Other examples of extensions include
Information-Centric Networking support [6], [10], flexible
sampling actions [9], [11], and multiple output ports in one
action [7]. These extensions are often designed for such spe-
cific use cases as access policy enforcement and elephant
flow detection, but it is impractical to design, implement,
and deploy new switch functions every time a new use case
or extension emerges. Therefore, we need a generic control
plane protection mechanism from many Packet-In messages
as a last resort.

AVANT-GUARD (8], which is a work for control plane
protection, mainly protects the control plane from TCP SYN
flooding attacks by a SYN cookies approach [20]. In real
networks, hosts often send such packets other than TCP as
UDP and ARP, and such protocols can also be used for over-
loading the control plane.

Our previous work [21] filtered out Packet-In mes-

697

sages including packets that have the same values in all the
header fields as those in previously transmitted packets. A
switch creates an entry by cloning the values of all header
fields in the packet to the match fields of new entries like
DevoFlow [19]. The switch limits the rate of the Packet-In
messages that match the entries created by this mechanism.

A serious limitation both in our previous work [21] and
in DevoFlow [19] is that the number of entries generated
by these mechanisms is rapidly increased, as defined by a
pair of IP addresses and TCP/UDP/SCTP port numbers, and
space to store these entries in switches like TCAM or RAM
overflow easily, for example, by port scanning.

Another previous work of us[1] gave the proposed
mechanism and basic evaluation results, but it does not eval-
uate the number of pending flow entries. In practice, the
number of pending flow entries affects a load on switches,
and we give such evaluation in this paper.

2.3 DoS Attacks

There are lots of works to prevent, detect, and filter De-
nial of Service attacks on the Internet [22], [23], like band-
width consumption attacks. A problem of generating a lot
of Packet-In messages in OpenFlow switches is a similar
situation with bandwidth consumption attacks because the
problem consumes most of bandwidth from the data plane
to the CPU of a switch.

Although sophisticated algorithms against bandwidth
consumption attacks like ACC [24] need to count packets
that pass through links in some way before installing a rule
to filter out DoS related packets, we cannot prevent the
switches from overwhelming Packet-In messages by these
algorithms. When a lot of Packet-In messages are being
generated, both the CPU of a switch and the channel be-
tween the data plane and the CPU of a switch are over-
loaded, and a switch has almost no room to execute actions
for counting and filtering out packets. Therefore, we need a
way to set a rule to filter out floody Packet-In messages to
the datapath without counting any of them.

3. Proposed Mechanism

In this section, we discuss which packets can be filtered out,
then propose a mechanism to filter out packets that can be
filtered out with an example.

3.1 Important Packet-In Messages for Network Control

To versatilely reduce loads on switches that are caused by
too many Packet-In messages, we discuss which Packet-
In messages are candidates for being filtered out by the
switches. This classification must be done without asking
controllers per packet.

The most important role of the controllers is to con-
trol networks, such as insertion and deletion of flow entries,
and switches should not drop packets that contain important
data for control, including data used for flow entries. From



698

this point of view, if the controllers extract and store the
same data from several packets, the controllers only need
one such packet, and the switches can drop the others. The
switches can also drop other packets that include only un-
necessary header fields. When designing a mechanism on
the switches to process Packet-In messages in this way, we
need to consider the following points that current OpenFlow
specifications’ do not handle.

The first is that the switches must forward a packet
that arrives first rather than ones that arrive second or later,
which have the same values in their header fields, to the
controllers so that the controllers can get necessary data as
soon as possible. OpenFlow expects that the controllers set
flow entries quickly when a packet matches no flow entry so
that subsequent packets can be processed at the datapath. If
modification of flow entries is delayed, subsequent packets
are also sent as Packet-In messages, and hosts cannot start
communicating quickly. This is undesired behavior.

The second one is that each controller must refer to
different set of header fields in packets, which depends on
controller design. This means that many controllers refer
to some, not all, the header fields. For example, if a con-
troller correlates an Ethernet address with a switch and a
port, it needs to learn only a source Ethernet address in from
a packet. Source and destination IP addresses are adequate
for a load balancing function using IP addresses.

In the following section, we explain our proposed
mechanism that filters out Packet-In messages including
packets that have the same values in header fields, speci-
fied by controllers, with previous Packet-In messages, while
considering the header fields to which the controllers refer.

3.2 Overview of Proposed Mechanism

Figure 1 shows a conceptual diagram of an overview of our
proposed mechanism. Our extensions are shown below the
dotted line. We added two components to switches: Pending
Flow Table and Pending Flow Rule. First, a switch looks
up entries that match a packet in the flow table, then in the
pending flow rule, and finally in the matched rule’s pending
flow table. The switch discards packets that do not match
both the flow table and the pending flow rule. Packet-In
messages are created when packets that do not match the
flow table, match the pending flow rule, and do not match
the matched rule’s pending flow table.

A switch records header field values in packets into
pending flow tables when the switch sends the packets to
controllers as Packet-In messages. The switch regards pack-
ets that match pending flow entries as less important for net-
work control, and apply the predefined actions to them to
avoid sending them to the controllers.

The pending flow rules specify the header fields whose
values are recorded in the pending flow tables. One pending
flow rule includes a list of the header fields whose values
are recorded and a pending flow table with entries generated

"The latest version is 1.5.1 [15] at the time of writing.

IEICE TRANS. INE. & SYST., VOL.E99-D, NO.3 MARCH 2016

Packets

1
Switch * Match
| Flow Table

| Pending Flow Rule H' Pending Flow Table lj Match

Miss
ﬁ-Drop Miss
A 4
| Generate an Entry in Pending Flow Table Packet-In Messages
W
Controllers

Fig.1  Conceptual diagram for the proposed mechanism.

Actions Specified by Flow Entries

Predefined Actions for Less Important Packets
(Rate Limit, Flooding, etc)

by the rule. The header fields in the list include those to
which controllers refer, and the controllers set pending flow
rules before a switch starts to process packets. If a pend-
ing flow rule matches a packet but the switch cannot find
any matched pending flow entry in the associated table, the
switch creates an pending flow entry from the matched rule
and the packet, and installs it into the table.

The predefined actions, which are applied to less im-
portant packets, must be executed at the datapath to reduce
the amount of packets handled by software in switches. Net-
work operators or controller developers select the actions
based on their policies. If they want to minimize packet
loss, for example, they select a packet flooding action or an
action to severely limit a Packet-In message rate. If they
are not concerned with a small amount of packet loss, they
select a discard action.

3.3 Pending Flow Rules

With pending flow rules, controllers inform switches which
header fields are important for network control. Using this
information, the switches avoid explosively increasing the
pending flow entries by recording values in less important
header fields. Each rule consists of the following elements.

Priority Priority value of the rule.

Timeout for Rule Timeout value of the rule.

Timeout for Table Timeout value set to pending flow en-
tries created by the rule.

Actions List of actions to apply to packets matched with
the Pending Flow Table of the rule.

Match Fields List of header fields and its values for a
match condition to packets.

Clone Fields List of header fields whose values are
recorded in the Pending Flow Table.

Pending Flow Table List of entries where values of the
header fields are recorded by the rule.

Statistics Packet counters, duration until expire, etc.

The match fields and the priority values closely resem-
ble flow entries in OpenFlow. The match fields include val-
ues of header fields that matched packets have, and a wild-
card is allowed in each field. If a packet matches multiple
rules, the highest priority rule is applied.

The clone fields are header fields whose values must be
recorded in switches. The clone fields include all the header



KOTANI and OKABE: A PACKET-IN MESSAGE FILTERING MECHANISM FOR PROTECTION OF CONTROL PLANE IN OPENFLOW SWITCHES

fields that are not wildcards in the match fields of the rule,
in addition to some header fields that are wildcards in the
match fields. When a switch creates a new pending flow
entry into the table associated with the matched rule, values
of header fields listed in the clone fields are copied from the
matched packet to the match fields of the new entry, and the
other fields are set to be wildcards.

There are two timeout values. Timeout for Rule should
be long or infinite because the main attributes of the rule,
the match fields and the clone fields, are determined only
by controller design, and they should be static. Timeout for
Table should be small as explained in Sect. 3.4.

The statistics also resemble flow entries. The statistics
provide information for controllers to determine whether to
execute some entry management functions, such as evicting
the rules from switches when space for storing the rules in
switches become full.

3.4 Pending Flow Table

A pending flow table is a list of pending flow entries to store
values in header fields of packets that a switch has already
sent to controllers as Packet-In messages. Since we regard
the packets that match the pending flow entries as less im-
portant ones for network control, we expect that network
operators pre-configure actions for these packets, called Pre-
defined Actions in Fig. 1, so that the switch sends fewer of
them to the controllers so much. The following are examples
of predefined actions: limiting the rate of Packet-In mes-
sages including these packets, flooding these packets to net-
works, and discarding them. We assume that these actions
are executed at the datapath to prevent switches from being
overloaded.

A pending flow entry resembles the flow entries, and
consists of the following elements.

Match Fields List of header fields, its values, and an input
port number that matched packets have. A wildcard is
allowed in each field.

Timeout Timeout value until entry’s removal after an entry
is inserted.

Statistics Packet counters, duration until expire, etc.

The contents of the match fields are generated accord-
ing to the parent pending flow rule. Values of header fields
included in the clone fields of the parent rule are copied to
the match fields in the entry from the matched packet. The
header fields are set to wildcard if the clone fields in the
parent rule do not include them.

Table 1

699

A Timeout value should be small. Packet-In messages
including important packets may be lost due to several rea-
sons that we are not trying to solve, such as queue overflow,
even when the datapath filters out less important packets by
the proposed mechanism. In general, hosts resend lost pack-
ets at intervals of one or more seconds if necessary. To avoid
situations where controllers do not receive important pack-
ets for a long time, we need to assure that the controllers can
receive important packets without being filtered out by the
pending flow tables, which are retransmitted by the hosts.
In addition, once the controllers successfully install the new
flow entries generated by the Packet-In messages, pending
flow entries corresponding to the new flow entries are not
used any more. Therefore, the pending flow entries must be
deleted shortly so that retransmitted packets do not match
any entry, and unused entries are not left for a long time.

The statistics are the same as the flow entries and used
for the same purposes as the pending flow rules.

Entries are added when a packet matches a pending
flow rule but does not match any entry in the matched rule’s
pending flow table, and entries are removed when timed out.

3.5 An Example of Pending Flow Rule and Table

Table 1 shows an example of pending flow rules and a pend-
ing flow entry generated by a packets and the rules. The
rules are designed for a controller that manages hosts by IP
addresses, and a switch forwards IPv4 packets by IPv4 ad-
dresses and other packets by Ethernet addresses.

Rule 1 is for controllers to learn hosts’ IP addresses,
Ethernet addresses, and port numbers. A switch records an
input port number, a Frame Type (0x0800, IPv4), and source
and destination Ethernet and IP addresses in the Rule 1’s
pending flow table. A controller sets flow entries using these
parameters to forward packets by IP addresses. Rule 2 is
for other packets and does not record values of IPv4 related
header fields (Frame Type and IP addresses). These rules
do not automatically expire, and the pending flow entries
expire one second after insertion (Timeout of Rule-Clone in
Table 1). The switch limits the rate of Packet-In messages
including packets that match the pending flow entry.

When Packet in Table 1 arrives at a switch and no
flow entry matches it, the switch looks up the pending flow
rules, and both Rules 1 and 2 match the Packet. The switch
chooses Rule 1 because of a higher priority value than Rule
2. Then, the switch creates a pending flow entry for Rule 1
by copying values of header fields marked “YES” in “Rule
1 - Clone” from the Packet and the Timeout for Table from

An example of a packet, pending flow rules, pending flow tables (in part). Rules 1 and 2

match packet, and rule 1 is selected because of a higher priority value.

[ [[ Priority [ InPort [ Frame Type [ Src MAC Addr | Dest MAC Addr [ SrcIP Addr | Dest IP Addr ][ Actions [ Timeout |
[ Packet - [ 1 [ 0x0800 [ 00:00:5¢:00:53:01 ] 00:00:5¢:00:53:02 | 192.0.2.1 ] 203.0.113.1 T - [- |
Rule | Match || 2 * 0x0800 * * * * - oo
1 Clone - Yes Yes Yes Yes Yes Yes Packet-In with Rate Limit | 1sec
Table - 1 0x0800 00:00:5e:00:53:01 | 00:00:5e:00:53:02 | 192.0.2.1 203.0.113.1 Packet-In with Rate Limit | 1sec
Rule | Match 1 * * * * * * - oo
2 Clone - Yes No Yes Yes No No Packet-In with Rate Limit | 1sec
Table - - - - - - - -




700

Rule 1, and sends the Packet as a Packet-In message with-
out any restriction. When the switch receives subsequent
packets that have the same Ethernet and IP addresses as
the Packet within one second after insertion of the Rule 1’s
pending flow entry, the switch limits the rate of creating and
sending Packet-In messages (including such packets), and
does not add any new pending flow entry.

When packets other than IPv4 ones miss any flow en-
try, the switch records their source and destination Ethernet
addresses in the Rule 2’s pending flow table. The rate of
generating Packet-In messages by subsequent packets that
have the same source and destination Ethernet addresses is
restricted for one second by the Rule 2’s pending flow table.

4. Prototype Switch Implementation

We implemented our proposed mechanism in Open vSwitch
(commit 4ca808d). Figure 2 shows an overview of an Open
vSwitch architecture and our modifications (marked in red).
Open vSwitch consists of two parts: a datapath module and
a userspace process. The datapath module handles pack-
ets in the kernel using the flow table cache. Packets that
miss the flow table cache are passed to and handled by the
userspace process. The userspace process also manages the
flow table cache in the datapath module, and handles Open-
Flow channels to controllers (OpenFlow Agent). Packets
that miss the flow table cache in the datapath module and the
flow table in the userspace process are translated to Packet-
In messages in the OpenFlow Agent.

We translated the two components we added in Fig. 1,
Pending Flow Rules and Pending Flow Tables, into one flow
table to avoid increasing the matching overhead introduced
by the these components. Each flow entry corresponds to an
entry in the pending flow rules or tables. The flow entries
for the pending flow tables have actions to limit the rate of
the packets and to send to controllers, which we have se-
lected as predefined actions for less important packets. The

OpenFlow Controller
OpenFlow Agent

Rate Control
for Controllers

4

_ Open vSwitch
Userspace Process

Flow Table

High | Flow Entries

rd

>
S| Rate
>

i | Pending Flow Table by Rule 1

!
| Pending Flow Rule 1 I ¢ Control
i | Pending Flow Table by Rule 2 |—

Priority

Creation of a New Entry
| for Pending Flow Tables

Low | Pending Flow Rule 2

Flow Table Cache

High |Cache: Flow Entries

A 4

ty

E |Cache: Pending Flow Table by Rule 1 :

|Cache: Pending Flow Rule 1

orr

Pri

|Cache: Pending Flow Table by Rule 2

Low |Cache: Pending Flow Rule 2 |'—'

Fig.2 A design of our prototype switch based on Open vSwitch.

IEICE TRANS. INE. & SYST., VOL.E99-D, NO.3 MARCH 2016

flow entries for the pending flow rules have a new action we
added to insert a new pending flow entry, and an action to
send a Packet-In message to the controllers.

To get the same results as switches that search for the
flow tables, the pending flow rules, and the pending flow ta-
bles in the order (indicated by arrows in Fig. 1), we assign
different priority values to each component. We set the high-
est priority to the flow entries by the standard OpenFlow,
and assign the lower priority to the pending flow table and
rule sets. The sets of a pending flow table and rule are ar-
ranged in the order of the priorities in the pending flow rules.
Within the set, a higher priority is assigned to the table, and
the rule has a lower priority.

In Fig.2, Pending Flow Rule 1 has a higher priority
than Rule 2. In the flow table, the flow entries for the pend-
ing flow table of Rule 1 have a higher priority than the flow
entry for Rule 1. In the same way, priorities are assigned to
the flow entries related to Rule 2.

A new action’s role we added is to insert a new entry
in the pending flow table associated to the rule that matches
a packet. The new action has the following parameters: the
clone fields explained in Sect. 3.3, timeout and priority val-
ues for the new flow entries, and a Meter ID for limiting the
rate of packets that match the new flow entries. When this
action is executed, a switch sets a new flow entry for the
pending flow table with the priority value and the timeout
value in the action, the match fields whose values are copied
from a packet based on the clone fields, and the predefined
actions, which is to send packets to controllers through a
Meter specified by the Meter ID in our case.

Controllers can set pending flow rules like flow entries.
A flow entry works as a pending flow rule if it has the new
action we added, a lower priority than the flow entries for
the pending flow table of the rule, and a higher priority than
the pending flow tables of the rules with lower priority.

The prototype switch uses a rate limiting mechanism
in two ways. One limits the total rate of the Packet-In mes-
sages, which is shown as Rate Control for Controllers in
Fig. 2. All Packet-In messages sent by a switch pass through
this mechanism. In original Open vSwitch, this mechanism
has a queue of Packet-In messages per port to avoid drop-
ping many packets from other ports due to many packets
from one port. We modified it to use only one queue because
the proposed mechanism provides a very similar function in
a more generic way. The other limits the rate of packets
that match pending flow entries; this is shown as the Rate
Control in Fig. 2. There are two Rate Controls for the pend-
ing flow tables: one in the datapath module and the other
in the userspace process. Packets that match the flow entry
cache of pending flow tables go through the Rate Control
in the datapath module. Other packets are processed at the
userspace process, and go through the Rate Control in the
userspace process if necessary.

We implemented our own simple rate limiting mecha-
nism for Rate Control because a Meter mechanism was not
implemented in Open vSwitch when we implemented the
prototype switch. Our simple rate limiting mechanism can



KOTANI and OKABE: A PACKET-IN MESSAGE FILTERING MECHANISM FOR PROTECTION OF CONTROL PLANE IN OPENFLOW SWITCHES

be replaced with Meter.
5. Evaluation

We have evaluated the applicability in typical uses cases,
how much the loads of switches are reduced, and the anal-
ysis of execution times of each component in our prototype
switch to see how our proposed mechanism changes the pro-
cessing of switches.

5.1 Use Cases and Pending Flow Rules

Controllers determine how OpenFlow networks forward
packets, but they often see Ethernet addresses to emulate
Ethernet switches, IP addresses to emulate routers, and TCP
and UDP port numbers for Network Address and Port Trans-
lation (NAPT). We can use our proposed mechanism in
these scenarios as follows, and the number of required pend-
ing flow rules is summarized in Table 2.

Ethernet Switching: A controller emulating Ethernet
switches must learn an association of a port where a host
is connected and its Ethernet address. It sets the flow en-
tries that have input port numbers and source and destination
Ethernet addresses in the match fields to forward packets be-
tween known hosts in the datapath. In this case, we use only
one pending flow rule; the controller sets a pending flow rule
that records an input port number and source and destination
Ethernet addresses.

IP Routing: A controller emulating IP routers must
see IP addresses in packets to associate an IP address with
an Ethernet address, and it must handle ARP packets in IPv4
and Neighbor Discovery in IPv6. The controller must also
provide an Ethernet switching function to forward packets
other than IP. This example represents cases where a switch
sees header fields of protocols in multiple layers, and we
use priorities. In IP Routing case, five pending flow rules
are used. We set two rules with the highest priority, which
match ARP and Neighbor Discovery packets. These rules
copy values in ARP headers and Neighbor Discovery related
headers to the match fields of new pending flow entries. The
second highest priority is assigned to two rules that match
other IPv4 and IPv6 packets. These rules set both source
and destination IP and Ethernet addresses to the match fields
in new pending flow entries. The lowest priority is assigned
to one rule that matches other Ethernet frames, and the rule
is the same as the case of Ethernet Switching.

NAPT: NAPT is an example of functions where a con-
troller sees header fields in transport protocols. Controllers
with the NAPT function set one pending flow rule with the
highest priority per source IP address prefix to which the
NAPT function is applied. The rule matches all packets

Table2  Number of pending flow rules in typical use cases
# of Rules
Ethernet Switching | 1
IP Routing 4 + 1 (Ethernet Switching)
NAPT 1 per source IP prefix + 5 (IP Routing)

701

whose source IP addresses are in the range to apply the
NAPT function, and the clone fields of the rule include an
IP protocol number, source and destination ports, and IP
and Ethernet addresses. Lower priorities are assigned to the
rules that handle IP and Ethernet packets, as explained for IP
Routing. A similar discussion can be applied to other cases,
such as a server load balancing function.

5.2 Loads in Switches

With our prototype switch, we have evaluated how much the
proposed mechanism reduces a load on a switch, how many
important Packet-In messages a controller can receive, and
how many pending flow entries a switch has.

To measure the above points, we simultaneously sent
two kinds of packets to the switch. One emulated where
many packets were sent from a host without any advance
notice, and called High Rate Packets. The other emulated
where a small number of packets were sent from several
hosts as usual called Low Rate Packets.

To measure a load caused to the switch until new flow
entries are installed, a controller used in this evaluation
did not install any flow entry, and the switch continued to
send Packet-In messages. This is against a normal situation,
which is that new flow entries are installed soon and subse-
quent packets are processed at the datapath, but this evalua-
tion scenario makes us measure the load before flow entries
are installed clearly. We monitored the CPU and memory
utilization, the number of pending flow entries, and the traf-
fic to the controller every second by a process running on
the switch. We also counted the number of Packet-In mes-
sages by the High and Low Rate Packets separately at the
controller.

We assume that a controller forwards packets by IP ad-
dresses, and we use two kinds of pending flow rules. One
is the rule whose clone fields include only Ethernet and IP
addresses (Rule - Host). The other is the rule whose clone
fields include all header fields including Ethernet and IP ad-
dresses, and UDP port numbers (Rule - Flow). The UDP
port numbers are not necessary for the controller. For com-
parison, we also measured without the proposed mechanism
(No Rule). No Rule also represents the load before a rule to
filter out High Rate Packets are not installed when the rule is
not installed immediately. We limit the total rate of Packet-
In messages to 100 per second and limit the rate of Packet-In
messages, which include packets that match pending flow
entries, to 50 per second by the predefined actions in the
proposed mechanism. A timeout of pending flow entries is
one second, and the pending flow rules are not expired.

High Rate Packets consist of packets with the same
source and destination IP addresses and different source and
destination UDP ports, and almost all of these packets are
less important for network control because we assume that
the controller does not see UDP port numbers. Most of
these packets match the pending flow rule of Rule - Flow,
and the pending flow entries of Rule - Host. To observe ef-
fects on the loads on the switch by packet rates, we change



IEICE TRANS. INE. & SYST., VOL.E99-D, NO.3 MARCH 2016

702
Table3  Number of packet-in messages and pending flow entries per second (min / average/ max)
Rate of High Rate Packets I 1000 [ 2000 [ 3000 [ 4000 [ 5000 |
Rule | High Rate Packets 30/34.4/36 32/33.5/37 30/33.8/40 29/34.3/38 31/34.1/36
Host | Low Rate Packets 4/5.0/5 5/5.0/5 4/50/6 5/5.0/5 3/49/6
Pending Flow Entries 6/6.0/7 6/6.0/7 6/63/7 6/6.0/7 6/6.0/7
Rule | High Rate Packets 99/99.9 /100 98/99.6 /100 100/ 100/ 100 98/99.7/ 100 100/ 100/ 100
Flow | Low Rate Packets 0/0.1/1 0/04/2 0/0.0/0 0/03/2 0/0.0/0
Pending Flow Entries 1006 / 1006.1 /1008 | 2007 /2007.6 /2010 | 3013/3013.8 /3018 | 4013/4016.2/4022 | 5021 /5024.3 / 5035
No High Rate Packets 100/ 100/ 100 97/99.2 /100 99 /100 /100 100/ 100/ 100 100/ 100/ 100
Rule | Low Rate Packets 0/0.0/0 0/0.8/3 0/0.0/1 0/0.0/0 0/0.0/0
Pending Flow Entries 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

High Rate Packets (1000 to 5000 pps) p,cket-In Messages

Pack P > i (max 100 messages/sec)
acket Generator PC 1Gbp€ PC running g
>

Open vSwitch é' Controller

1Gbps

Packet Generator PC
Low Rate Packets (5pps)

Fig.3

Load evaluation setting

== == Rule - Host: User
"""" Rule - Host: Kernel
Rule - Host: All

== == Rule - Flow: User
"""" Rule - Flow: Kernel
Rule - Flow: All

No Rule: User

No Rule: Kernel
No Rule: All

ooé
A
]
J
|
]
|
|

N DO ®
o

CPU Utilization(%)
o

o
|
|
X

1000 2000 3000 4000 5000
Rate of High Rate Packets (pps)

Fig.4 CPU loads in the switch

the High Rate Packets rates to 1000, 2000, 3000, 4000, and
5000 packets per second. These rates exceed the rate limi-
tation of Packet-In messages to the controller in the switch.
Each packet in the Low Rate Packets has the same source
IP address but a different destination IP address; these pack-
ets are considered important for network control. We send
five Low Rate Packets per second. Both High and Low Rate
Packets are sent for 30 seconds, and each packet had 128
bytes. We monitored loads on the switch and the Packet-In
messages at the controller for 31 seconds including the start
and end times for sending the packets, and omitted the first
and last seconds from the measurement logs. The results are
averages of 29 seconds.

Figure 3 shows an evaluation setting. We used four
PCs, two for packet generators, one for our prototype
switch, and one for an OpenFlow controller. High and Low
Rate Packets were sent from different packet generator. Two
packet generators and the controller were connected to the
switch by 1 Gbps links separately. The packet generator had
Core 2 Duo 2.16 GHz CPU, 512 MB RAM, and run Ubuntu
12.04. The switch had Xeon X5255 2.66 GHz CPU (running
at 1.99 GHz, use 1 core), 8 GB RAM, and run CentOS 6.2.
The controller was the same as the packet generator, but had
4GB RAM. The maximum length of the queue from the
datapath module to the userspace process was 1024 pack-
ets. We used Trema[25] and C to implement a controller
monitoring Packet-In messages.

5.2.1 Results

Figure 4 shows average CPU utilization in the switch. The
x-axis shows the rate of packets in High Rate Packets, and
the y-axis is average CPU utilization by percentage. User

denotes those in the userspace process, and Kernel means
those in the datapath module. We have confirmed that CPU
utilization of monitoring process was less than one percent.

When the proposed mechanism is properly configured,
the CPU utilization and its increase ratio to the packet rate
in both the userspace process and the datapath module are
much lower in the switch with the proposed mechanism
(Rule - Host) than without it (No Rule). In Rule - Flow, the
CPU utilization is almost 100 percent when the rates of High
Rate Packets are 2000 or more, and the figures of the Rule -
Flow do not show the loads on the switches; they show the
ratio of the CPU utilization of the userspace process and the
datapath module, and are almost meaningless. The memory
usage averaged 353 MB and did not differ among the rates
of the High Rate Packets.

Table 3 shows the number of Packet-In messages per
second received by the controller, and that of pending flow
entries per second at the switch. High Rate Packets and Low
Rate Packets show packets included in the Packet-In mes-
sages are from High or Low Rate Packets, and Pending Flow
Entries is the number of pending flow entries in the switch.

In Rule - Flow and No Rule, which do not use the pro-
posed mechanism properly, the packets from the High Rate
Packets fill the queue of the Packet-In messages to the con-
troller in the switch, and most of packets in the Low Rate
Packets are dropped. In Rule - Host, the switch can filter
out packets with a few pending flow entries. Some of the
maximum number of Low Rate Packets in Rule - Host ex-
ceed five, which we sent from the packet generator as Low
Rate Packets, and this should be due to a small jitter caused
by the switch and the controller.

The traffic between the controller and the switch is very
small compared to link speeds that the current servers and
switches have. The traffic from the controller to the switch
was around 10 kbps to 50 kbps, and in the opposite direction,
about 70 kbps in Rule - Host, and around 180 kbps in Rule -
Flow and No Rule.

5.3 Processing Time of Actions in Switches

We have also measured an execution time of each action
in switches to evaluate the overhead introduced by our pro-
posed mechanism. Major modifications in our proposed
mechanism include creating an pending flow entry when a
packet arrives at a switch, and limiting the rate of packets
that match the entries. To evaluate how these modifications
affect packet processing time, we measured the execution
times related to the limitation of the rate of packets and send-



KOTANI and OKABE: A PACKET-IN MESSAGE FILTERING MECHANISM FOR PROTECTION OF CONTROL PLANE IN OPENFLOW SWITCHES

Table 4  Execution times by components in switches
Execution Time in nsec
Component (min / average / max)
Datapath Queue to Userspace Process 3305/3511.9/6939
Rate Limitation 75/201.9/511
Output to Physical Port 487 /690.8 / 4045

Userspace | Enqueue Packet-In Messages 2174 /2440.4 / 5995

Dequeue Packet-In Messages and Send 12621/ 13505.4 / 38641
Dequeue Waiting Packet-In Messages and Send | 10061 /11663.9 /20857
Set Flow Entry for Pending Flow Table 11968 /12617.0 / 19536

ing Packet-In messages.

In the datapath, we measured and compared the time
to queue a packet to the userspace process (Queue to the
Userspace Process), the rate limitation time (Rate Limit),
and the time to output a packet to a port (Output Port) for
reference. When the proposed mechanism is used, pack-
ets that match the pending flow entries are processed by
“Rate Limit” and “Queue to the Userspace Process.” With-
out the proposed mechanism, the packets are just processed
by “Queue to the Userspace Process.”

In the userspace process, we measured the time to cre-
ate a flow entry for the pending flow tables (Set Filter) and to
send a Packet-In message. The process of sending a Packet-
In message consists of three components. First, all packets
sent as Packet-In messages are queued (Enqueue Packet-In
messages). Second, the packets are dequeued and sent im-
mediately to controllers if a switch gets tokens from the rate
limitation mechanism for all Packet-In messages; otherwise
the packets are queued in another line (Dequeue Packet-In
Messages and Send). Finally, the packets are sent when they
get the tokens or are dropped if they fail to get the tokens
(Dequeue waiting Packet-In Messages and Send).

We used the same PCs as Sect.5.2. We modified the
code of the prototype switch to measure the execution times
per component. We executed each component 1000 times
and calculated the average execution times (Table 4). The
execution times for other components are not included in
the results, such as flow table matching.

6. Discussion

This section discusses whether our proposed mechanism is
really effective, overhead on a switch caused by our pro-
posed mechanism, possibility to implement in hardware
by comparing functions in traditional networking devices
and standard OpenFlow mechanism, drawbacks of our pro-
posed mechanism including situations where our proposed
mechanism does not work well and disadvantage from the
view of users, possible attacks and mitigations to our pro-
posed mechanism, and relationship with existing attacks like
DDoS and SYN floods.

6.1 Effects of Our Proposed Mechanism

As we have expected, our experiment results show that
switches using the proposed mechanism properly, which use
the rule that records only Ethernet and IP addresses, dra-
matically reduce the CPU load in the userspace process on
the switches, and its benefits rise as the rate of the High

703

Rate Packets was increased. This is because most of the
High Rate Packets match pending flow entries and are fil-
tered out at the datapath module, and the userspace process
handles fewer packets than in switches without the proposed
mechanism. The packet rates used in our experiment are
much smaller than the maximum rate in the Gigabit Ether-
net, about 1.5 million pps, but we infer from the results that
these trends are the same because more packets are dropped
by the datapath module if a packet rate is increased.

The results of load evaluation (Sect. 5.2) indicate that
it is hard to reduce the load in the userspace process on the
switches by approaches that do not install a rule to filter out
High Rate Packets immediately. The load of No Rule in
Fig. 4 corresponds to the load of the switches that process
multiple packets in the userspace process before installing a
rule to filter out such packets, like sending Packet-In mes-
sages to the controller, and counting packets for detection
of DoS. The load of the userspace process in No Rule in-
creases more than with our proposed mechanism as the rate
of High Rate Packets increases, and the switches would be
overloaded and become out of control before the rule for fil-
tering out such packets is installed if a lot of packets go to
the userspace process. When the switches install the rule to
filter out High Rate Packets immediately like our proposed
mechanism, the load of the switches would not increase so
much like Rule - Host in Fig. 4.

In addition to the decrease of the load on the switches
by the userspace process, the switches with our proposed
mechanism can surely send Low Rate Packets to the con-
troller and reduce the number of Packet-In messages by fil-
tering out High Rate Packets selectively. No Rule in Table 3
indicates that High Rate Packets fill queues to send Packet-
In messages to the controller, and there is no room to send
Packet-In messages containing Low Rate Packets. Rule -
Flow in Table 3 shows that our proposed mechanism can fil-
ter out only High Rate Packets, and the switches do not need
to drop Low Rate Packets.

It depends on networks that how much Low Rate Pack-
ets are dropped in practice, such as the number of hosts and
the behavior of hosts. Low Rate Packets are dropped when
both High Rate Packets and Low Rate Packets are sent si-
multaneously. According to Table 3, almost all Low Rate
Packets should be dropped at a queue from the datapath to
the CPU of a switch or the userspace process in our proto-
type switch in this situation because the queue should be full
due to High Rate Packets.

Our proposed mechanism can reduce the duration that
the queue is full by High Rate Packets and Low Rate Pack-
ets are dropped. High Rate Packets are not filtered out un-
til a flow entry to filter out such packets are installed, and
Low Rate Packets may not be passed to the CPU of a switch
during that time. Without our proposed mechanism, the fol-
lowing procedure is required to install a flow entry to filter
out such packets: (1) A packet goes to the CPU of a switch
from the datapath, and the software on the switch creates
and sends a Packet-In message. (2) The controller sends
flow entries that should be installed to the switch. (3) The



704

switch installs the flow entries sent by the controller in the
datapath. Switches with our proposed mechanism installs an
entry to filter out High Rate Packets at Step 1, and Low Rate
Packets arriving after Step 1 can be passed to the controller
without the effect of High Rate Packets.

According to our experiments (Table 4), the time to
send a Packet-In message and to installs a flow entry to fil-
ter out High Rate Packets is in the order of microseconds. It
is hard to estimate that how much it takes until a controller
sends a response message to install a flow entry because it
depends on controller implementation, but the time is in the
order of milliseconds or tens of milliseconds according to
Tootoonchian et al. [26]. Thus, in general, we can reduce
the time when a switch drops Low Rate Packets by the re-
sponse time of the controller.

When many pending flow entries are created like “Rule
- Flow” case, the proposed mechanism works badly; almost
no Low Rate Packets arrives at the controller, and a load
on the switches is the highest among the three cases. This
is due to a matching process of packets with a number of
pending flow entries. From this results, it is recommended
that controllers should not include unnecessary header fields
in the clone fields of the rule to keep the number of pending
flow entries low.

6.2 Overhead by Our Proposed Mechanism

Regarding the execution time overhead in the datapath, the
rate limitation mechanism introduces small overhead, but
the time to send packets to the userspace process is much
larger than this overhead. Therefore we can reduce the CPU
utilization on the datapath by limiting the rate of packets that
go to the userspace process.

In the userspace process, the execution time to create
and set a flow entry for the pending flow table, which in-
cludes installing a new flow entry to flow tables, is almost
the same as the time to immediately send a Packet-In mes-
sages. If packets that are sent to the controller arrive at
a higher rate than the limited rate, additional large execu-
tion time is needed due to queueing the packets. Although
the execution time by the proposed mechanism for the first
packet is twice or more than without it, it can drop many
packets at the datapath and reduce the execution rate of the
process to send Packet-In messages. As a result, the total
execution time is much smaller with the proposed mecha-
nism than without it when Packet-In messages are arrived at
high rate. Even though the overhead evaluation is very spe-
cific to the Open vSwitch, we believe that a comparison of
the execution times in the userspace process can be applied
to other switches like hardware switches, because they send
Packet-In messages from their software OpenFlow agents.

Another overhead introduced by the proposed mecha-
nism is the number of pending flow entries. If they are big,
large memory and TCAM space will be occupied by pend-
ing flow tables. We do not believe that this concern is sig-
nificant. The pending flow rules set the header fields used
for the pending flow tables based on the header fields that

IEICE TRANS. INE. & SYST., VOL.E99-D, NO.3 MARCH 2016

controllers see, and the rules should be much less than the
flow entries. Both the size of the pending flow tables and
the flow entries are determined by the number of different
values in the header fields that the controllers see, such as
IP addresses of connected hosts, and the flows sent by the
hosts. The pending flow entries are soon expired, and we
regard that the controllers replace the pending flow entries
with the flow entries. Therefore, additional TCAM or mem-
ory space required by the pending flow tables is very small,
and we can ignore this overhead unless the controllers use
some flow entry compression algorithms.

Another important point is the flexibility of controlling
the network. We showed that the controllers can use the
proposed mechanism in typical use cases, Ethernet switch-
ing, IP routing, NAPT, etc. with a few pending flow rules.
Using examples of the pending flow rules, we also showed
that constructing pending flow rules is a similar process as
discussing how controllers use the match fields in the flow
tables. Therefore, we believe that the proposed mechanism
hardly sacrifice the flexibility of controlling the network that
OpenFlow provides.

6.3 Similarity with OpenFlow Mechanisms and Possibil-
ity for Hardware Implementation

The proposed mechanism should be implemented not only
in software switches but also in hardware switches. The pro-
posed mechanism’s design, which has high affinity with the
flow tables in OpenFlow, simplifies its implementation in
hardware switches.

The matching procedures in the pending flow rules and
tables are almost the same with that in the flow tables. Both
use priority, input port, and the match fields for looking
up their entries. Therefore, both hardware and software
switches can look up entries in the pending flow rules and
tables without introducing additional overhead by reusing a
flow table lookup mechanism in the OpenFlow switches. In
addition, the switches do not need to lookup multiple tables
by translating the pending flow rules and tables to flow en-
tries, as we did in our prototype switch.

We do not propose any specific mechanism to process
packets that match the pending flow entries, and the re-
sponsibility for this mechanism, the Predefined Actions in
Sect. 3.4, falls on the network operators and controller de-
velopers. We can reuse existing OpenFlow actions and in-
structions for the predefined actions. If they select the ac-
tions and instructions from the existing OpenFlow mech-
anisms, OpenFlow switches including both hardware and
software switches would be able to execute the predefined
actions in the datapath. For example, the prototype switch
uses a combination of limiting the rate of matched packets
and sending packets to the controller as Packet-In messages,
which can be replaced with a Meter instruction in OpenFlow
and the Output action to the controller. In Sect. 3.4, we gave
another example where packets are flooded in the network.
In this case, we can use a list of Output actions or the Group
action to send packets to all ports in a group except the input



KOTANI and OKABE: A PACKET-IN MESSAGE FILTERING MECHANISM FOR PROTECTION OF CONTROL PLANE IN OPENFLOW SWITCHES

port. The network operators and controller developers may
prefer other actions, not limited to above.

Implementation of the pending flow rules is slightly
complicated. The pending flow rules require switches to
create and install a new pending flow entry, including copy-
ing values of header fields specified by the clone fields from
packets. It is difficult to execute this process by reusing ex-
isting OpenFlow mechanisms in the datapath, but conven-
tional networking hardware has similar functions that cre-
ate a new forwarding entry using values in packets, such as
MAC address learning. We can implement actions for the
pending flow rules by using these mechanisms.

The proposed mechanism is still beneficial if switches
need to process an action for the pending flow rules by
OpenFlow agents in the switches. After the action for
the pending flow rules is executed, subsequent packets that
match the new pending flow entry are filtered out in the dat-
apath, and the load on the OpenFlow agents is reduced.

6.4 Drawbacks of Our Proposed Mechanism

The proposed mechanism works well when the datapath in
switches can also extract values of packet header fields used
in the match fields of the pending flow rules and tables, and
when the datapath can apply the predefined actions to pack-
ets that match the pending flow entries. In other words, there
might be some cases where the controllers use some header
fields, but the datapath cannot parse them and extract the
values. Some OpenFlow switches support part of the header
fields in the OpenFlow specifications because supporting all
header fields for matching is not mandatory in the speci-
fications, for example, VLAN ID in 802.1Q headers, pay-
loads in ARP, and ICMPv6 type and codes do not have to
be parsed. We can add code to support protocols if we can
write it for switches, but most hardware switches do not al-
low users to modify their firmware in practice.

Although OpenFlow and the proposed mechanism do
not define how to handle packets that include header fields
that switches cannot parse, in some cases the switches
should send such packets to controllers without dropping
them, for example, ARP packets. In this case, since we can-
not mitigate the overloads in the switches by the proposed
mechanism, we have no choice but to set the switches to
send all Packet-In messages including packets of such pro-
tocols and to limit the total rate of Packet-In messages.

From the users’ view, networks using the proposed
mechanism may drop some packets in the beginning of such
operations as connecting a new host to networks or sending
a new flow. On a network side, these operations generate a
new pending flow entry. For example, when a controller sets
the flow entries per host and the pending flow rules whose
clone fields include source and destination Ethernet and IP
addresses, and a host starts to establish several TCP sessions
to the same host at the same time; the second or later TCP
SYN packets may be lost because of a filtering mechanism
by the pending flow tables. This should not be a big prob-
lem because Ethernet and IP networks do not assure that

705

networks deliver packets to destinations, and hosts retrans-
mit packets at intervals of a few seconds if necessary until
the hosts receive reply packets. If a certain kind of packet
should not be dropped, we can use other mechanisms, like
AVANT-GUARD [8] with our proposed mechanism, to pro-
vide special care for such packets.

6.5 Attacks and Mitigations

A malicious host can attack networks using OpenFlow and
the proposed mechanism by exploiting it. If such attack-
ers know header fields that controllers who manage a tar-
get network use to forward packets, they can send packets
that have different values in the header fields used by the
controllers. In this case, the processes for the pending flow
rules are executed frequently. As a result, the CPU load on
the switches is increased if the switches are implemented to
execute actions for the pending flow rules in their CPUs, and
the number of pending flow entries is explosively increased,
like “Rule - Flow” case in the evaluation.

It is hard to distinguish these packets from others and
to drop them without additional detection systems, but some
mitigation exists for such attacks. Regarding the CPU load
by processing the pending flow rules, controlling resources
consumed by processing the rules helps keep a load low in
switches at the cost of dropping packets without process-
ing by the pending flow rules. Temporarily disabling the
proposed mechanism might work well to reduce a load on
switches when the switches frequently handle packets that
match entries in the pending flow rules.

To keep the number of pending flow entries low,
switches may have to evict some entries by cache algo-
rithms. When no packet that increases the switch load ar-
rives, it might not necessary to protect the switches from the
overload, and the pending flow entries are merely matched
with the packets; the Least Recently Used (LRU) algorithm
may work well to evict the entries in this case. When
switches receive attacks that explosively increase the num-
ber of pending flow entries, attackers send packets whose
header fields have different values for efficient attacks, and
such packets do not match any pending flow entry. The sim-
ple First In First Out (FIFO) algorithm may adequately mit-
igate these situations.

Finally, we discuss the relationship between the pro-
posed mechanism and existing attacks, especially DDoS and
TCP SYN floods. In these attacks, hosts send many packets
to a certain network without any advance notice, and pre-
venting switches from such packets is one of our motiva-
tions if the switches are configured to send such packets to
the controllers as Packet-In messages.

It depends on controllers whether DDoS or TCP SYN
flood packets can be filtered out by the proposed mecha-
nism. When they see port numbers in packets, the clone
fields in the pending flow rules include port numbers as well
as IP and Ethernet addresses in the packets. In this case, the
same situations happen with attacks that exploit the pend-
ing flow rules and tables, and we cannot use the proposed



706

mechanism to protect the switches. When controllers are
designed to use wildcards in the flow entries and the packets
used by the attacks only have different values in the header
fields that are set to be wildcards in flow entries, we can
effectively filter out such packets with the proposed mecha-
nism and wildcards because the clone fields in the pending
flow rules do not include such header fields.

7. Conclusion

In this paper, we proposed a new mechanism to protect the
control plane, especially a software part in switches, from
packets that bring excessive loads to it. In terms of a con-
trol plane protection, we need a mechanism to filter out
less important packets for network control to keep loads on
switches low in addition to extend the variety of actions that
OpenFlow switches can execute.

A key of the proposed mechanism is to record values of
some header fields in the switches, and the switches apply
some filtering actions (predefined actions) to packets that
match the recorded values. The controllers use a part of the
header fields in the packets, and the switches record values
of the header fields that the controllers use. The controller
sets such header fields to the switches as “Pending Flow
Rules”, and values in packets are recorded in “Pending Flow
Tables.” We provide how to use the proposed mechanism in
several use cases. We also provide the evaluation results us-
ing our prototype switch that show the proposed mechanism
can reduce loads on switches and that important Packet-In
messages are allowed to pass through. With the proposed
mechanism, we can control how packets that do not match
any entry in the flow tables should be handled to maintain
low loads on the switches, like OpenFlow uses flow tables
for offloading packet forwarding to hard-wired offload en-
gines such as ASICs.

Future work will provide mitigation mechanisms for
the explosion of the number of pending flow entries and ex-
cessive loads by attacking the pending flow rules. We only
provided experimental results using a software switch, Open
vSwitch. An implementation and an evaluation using hard-
ware switches is another future work. Another future work
is a way to provide flexibility of the predefined actions in
the pending flow tables, such as flooding packets.

Acknowledgments

This work was supported in part by JSPS KAKENHI
(No. 13J04479).

References

[1] D. Kotani and Y. Okabe, “A Packet-in Message Filtering Mechanism
for Protection of Control Plane in Openflow Networks,” ACM/IEEE
ANCS 14, pp.29-40, ACM, Oct. 2014.

[2] W. Bux, W.E. Denzel, T. Engbersen, A. Herkersdorf, and R.P.
Luijten, “Technologies and Building Blocks for Fast Packet For-
warding,” IEEE Commun. Magazine, vol.39, no.1, pp.70-77, Jan.
2001.

(3]

[4]

[3]

(6]

(71

[8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

IEICE TRANS. INE. & SYST., VOL.E99-D, NO.3 MARCH 2016

J.W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J.
Naous, R. Raghuraman, and J. Luo, “NetFPGA—An Open Platform
for Gigabit-Rate Network Switching and Routing,” IEEE MSE 07,
pp-160-161, IEEE, June 2007.

N. McKeown, “Software-defined networking,” IEEE INFOCOM
’07, Keynote Talk, April 2009.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
Enabling Innovation in Campus Networks,” SIGCOMM Comput.
Commun. Rev., vol.38, no.2, pp.69-74, March 2008.

D. Chang, M. Kwak, N. Choi, T. Kwon, and Y. Choi, “C-flow: An
efficient content delivery framework with OpenFlow,” ICOIN 2014,
pp.270-275, Feb. 2014.

Y. Nakagawa, K. Hyoudou, and T. Shimizu, “A Management
Method of IP Multicast in Overlay Networks Using Openflow,”
HotSDN ’12, pp.91-96, ACM, Aug. 2012.

S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and Vigilant Switch Flow Management in Software-defined
Networks,” ACM CCS 2013, pp.413-424, ACM, Nov. 2013.

S. Shirali-Shahreza and Y. Ganjali, “FleXam: Flexible Sampling
Extension for Monitoring and Security Applications in Openflow,”
HotSDN ’13, pp.167-168, ACM, Aug. 2013.

L. Veltri, G. Morabito, S. Salsano, N. Blefari-Melazzi, and A. Detti,
“Supporting Information-Centric Functionality in Software Defined
Networks,” IEEE ICC 2012, pp.6645-6650, June 2012.

P. Wette and H. Karl, “Which Flows Are Hiding Behind My Wild-
card Rule?: Adding Packet Sampling to Openflow,” SIGCOMM
Comput. Commun. Rev., vol.43, no.4, pp.541-542, Aug. 2013.

M. Yu, J. Rexford, M.J. Freedman, and J. Wang, “Scalable
Flow-Based Networking with DIFANE,” ACM SIGCOMM 2010,
pp.351-362, ACM, Aug. 2010.

M. Fernandez, “Comparing OpenFlow Controller Paradigms Scal-
ability: Reactive and Proactive,” IEEE AINA 2013, pp.1009-1016,
March 2013.

Open Networking Foundation, “OpenFlow Switch Specification
1.3.4,” March 2014.

Open Networking Foundation, “OpenFlow Switch Specification
1.5.1,” March 2015.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M.
Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker,
“Onix: A Distributed Control Platform for Large-scale Production
Networks,” OSDI " 10, pp.1-6, USENIX, Oct. 2010.

A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control
Plane for OpenFlow,” INM/WREN 2010, p.3, USENIX, April 2010.
P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” HotSDN ’14,
pp.1-6, Aug. 2014.

AR. Curtis, J.C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling Flow Management for High-
Performance Networks,” SIGCOMM Comput. Commun. Rev.,
vol.41, no.4, pp.254-265, Aug. 2011.

D.J. Bernstein, “SYN cookies.” http://cr.yp.to/syncookies.html

D. Kotani and Y. Okabe, “Packet-In Message Control for Reducing
CPU Load and Control Traffic in OpenFlow Switches,” European
Workshop on Software Defined Networks, pp.42-47, Oct. 2012.

J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos
defense mechanisms,” SIGCOMM Comput. Commun. Rev., vol.34,
no.2, pp.39-53, April 2004.

T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of Net-
work-based Defense Mechanisms Countering the DoS and DDoS
Problems,” ACM Comput. Surv., vol.39, no.1, April 2007.

R. Mahajan, S.M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S.
Shenker, “Controlling high bandwidth aggregates in the network,”
SIGCOMM Comput. Commun. Rev., vol.32, no.3, pp.62-73, July
2002.

Trema Project, “Trema: Full-stack openflow framework for ruby/c.”


http://dx.doi.org/10.1145/2658260.2658276
http://dx.doi.org/10.1109/35.894379
http://dx.doi.org/10.1109/mse.2007.69
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/icoin.2014.6799480
http://dx.doi.org/10.1145/2342441.2342460
http://dx.doi.org/10.1145/2508859.2516684
http://dx.doi.org/10.1145/2491185.2491215
http://dx.doi.org/10.1109/icc.2012.6364916
http://dx.doi.org/10.1145/2486001.2491710
http://dx.doi.org/10.1145/1851182.1851224
http://dx.doi.org/10.1109/aina.2013.113
http://dx.doi.org/10.1145/2620728.2620744
http://dx.doi.org/10.1145/2043164.2018466
http://dx.doi.org/10.1109/ewsdn.2012.23
http://dx.doi.org/10.1145/997150.997156
http://dx.doi.org/10.1145/1216370.1216373
http://dx.doi.org/10.1145/571697.571724

KOTANI and OKABE: A PACKET-IN MESSAGE FILTERING MECHANISM FOR PROTECTION OF CONTROL PLANE IN OPENFLOW SWITCHES

http://trema.github.io/trema/

[26] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-
wood, “On controller performance in software-defined networks,”
Hot-ICE’12, USENIX, April 2012.

Daisuke Kotani is a student of Graduate
School of Informatics, Kyoto University. He re-
ceived his B.E. and M.E. degrees from Kyoto
University in 2011 and 2012 respectively. His
research interests include Internet architecture
and distributed systems. He is a member of
IPSJ, IEEE and ACM.

Yasuo Okabe received his B.E., M.E. and
D.E. degrees from Department of Information
Science, Kyoto University in 1986, 1988 and
1994, respectively. He was an instructor from
1988 to 1994, and was an associate professor
from 1994 to 2002 at Kyoto Univesity. Since
2002 he has been a professor at Academic Cen-
ter of Computing and Media Studies, Kyoto
University, and he is currently the director of
the center. His research interest includes Inter-
net architecture, ubiquitous networking and dis-
tributed algorithms. He is a member of IPSJ, ISCIE, JSSST, IEEE and
ACM.

707



