
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016
671

PAPER

Slicing Fine-Grained Code Change History

Katsuhisa MARUYAMA†a), Takayuki OMORI†, Members, and Shinpei HAYASHI††, Nonmember

SUMMARY Change-aware development environments can automati-
cally record fine-grained code changes on a program and allow program-
mers to replay the recorded changes in chronological order. However, since
they do not always need to replay all the code changes to investigate how a
particular entity of the program has been changed, they often eliminate sev-
eral code changes of no interest by manually skipping them in replaying.
This skipping action is an obstacle that makes many programmers hesitate
when they use existing replaying tools. This paper proposes a slicing mech-
anism that automatically removes manually skipped code changes from the
whole history of past code changes and extracts only those necessary to
build a particular class member of a Java program. In this mechanism,
fine-grained code changes are represented by edit operations recorded on
the source code of a program and dependencies among edit operations are
formalized. The paper also presents a running tool that slices the operation
history and replays its resulting slices. With this tool, programmers can
avoid replaying nonessential edit operations for the construction of class
members that they want to understand. Experimental results show that the
tool offered improvements over conventional replaying tools with respect to
the reduction of the number of edit operations needed to be examined and
over history filtering tools with respect to the accuracy of edit operations to
be replayed.
key words: software maintenance and evolution, program comprehension,
integrated development environments, program slicing, code changes

1. Introduction

In software development and evolution, programmers (de-
velopers and maintainers) often confront a situation where
they must understand existing code that has been written by
themselves or someone else [1]. LaToza and Myers found in
programmers’ work hard-to-answer questions about the his-
tory of code: when, how, by whom, and why this code was
changed or inserted [2]. Among these questions, one about
why a certain code was implemented in a specific way is an
especially serious problem for programmers [3], [4]. Their
study also found that programmers wanted to know the en-
tire history of a piece of code rather than its latest change.
In other words, it is worthwhile to support the exploration
of code history to answer questions about code [5]. Suitable
time-series historical information simplifies the understand-
ing of the existing code. As a result, it will facilitate pro-
grammers’ tasks of reusing or modifying existing code in

Manuscript received July 17, 2015.
Manuscript revised November 13, 2015.
Manuscript publicized December 21, 2015.
†The authors are with Dept. Computer Science, Ritsumeikan

University, Kusatsu-shi, 525–8577 Japan.
††The author is with Dept. Computer Science, Tokyo Institute

of Technology, Tokyo, 152–8552 Japan.
a) E-mail: maru@cs.ritsumei.ac.jp

DOI: 10.1587/transinf.2015EDP7282

the future.
To assist code history exploration, change-based sup-

port has recently become available [6], [7]. For example,
SpyWare [8], Syde [9], Fluorite [10], CodingTracker [11],
and OperationRecorder [12] are embedded into modern inte-
grated development environments (IDEs) and capture all of
the fine-grained code changes performed on the editors pro-
vided by their respective IDEs. In addition, some of these
recording tools collaborate with tools that visualize, filter,
and/or replay recorded code changes [13]–[16].

Using these tools helps programmers keep track of the
fine-grained code changes individually stored in a code’s
history and look at their chronological sequence. For ex-
ample, a controlled experiment conducted by Hattori et
al. demonstrated that the chronological replaying of fine-
grained code changes outperforms existing commit-based
versioning systems such as CVS [17] or Subversion [18] by
helping programmers find answers to questions related to
software evolution [19]. In addition, Parnin and DeLine in-
vestigated what is needed to assist programmers when they
resume interrupted programming tasks [20]. As a result,
they strongly prefer two different cues. One shows a chrono-
logically sorted list of the programmer’s activities, such as
code selections, code edits, and saves. This emphasizes the
helpfulness of chronologically replaying the code changes.

Although chronologically replaying fine-grained code
changes is useful for understanding how the code was writ-
ten and modified, we focus on the possibility of improv-
ing the assistance for such a replay. In general, replay-
ing is time-consuming. If a huge amount of code changes
were recorded, it would take a long time to replay every
one. In most cases, programmers do not need to investi-
gate the whole history of the code. They incrementally ob-
tain knowledge on past code changes by partially replay-
ing them, depending on their interests. To encourage pro-
grammers to exploit current replaying tools, the automatic
extraction of code changes to be replayed is required [21].
This helps them efficiently explore the history of a partic-
ular block of code and understand its evolution. Conse-
quently, this idea would alleviate the effort needed for the
time-consuming task of replaying.

This paper proposes a mechanism that automatically
extracts a collection of fine-grained code changes, all of
which may be related to a particular program entity from
the recorded change history. This mechanism is inspired
by the concept of program slicing [22], which extracts from
the code of a program a set of statements that might af-

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

672
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

fect (the calculation of) the value of a variable of interest
at a specified program point. The extracted code, which is
called a program slice, is computed by a graph reachabil-
ity algorithm for the program dependence graph of a target
program. Here, the principal concern is simplification by
program slicing to increase program comprehension [23],
although various kinds of applications of program slicing
have been proposed. Our idea exploits this simplification
power of such slicing in replaying past code changes.

In our proposed mechanism, fine-grained code changes
are represented by edit operations on the source code of a
program. Moreover, a special graph, called an operation
history graph (OpG), is introduced. It links class members
(methods and fields) of the snapshots of the source code of
a Java program by edit operations performed on their re-
spective snapshots. Each vertex of an OpG represents either
a class member or an edit operation. Edges denote the re-
lationships among class members and edit operations. By
traversing vertices and edges of an OpG, the mechanism
only extracts the edit operations that are necessary to build
(create, remove, and modify) a class member of interest
from the history that consists of all the recorded edit op-
erations. Such an extraction process and a collection of the
extracted edit operations are called operation history slicing
and an operation history slice, respectively. This paper also
presents a running tool, OperationSliceReplayer, that slices
the operation history and replays its resulting slices.

One important feature of our proposed slicing is that
the contents restored by replaying only the edit operations
included in an operation slice for a target class member on
an arbitrary snapshot of source code are usually identical to
the original contents of the target class member. This fea-
ture is derived from a property where the value resulting
from the execution of a program slice for a target variable
is always the same as the value of the target variable result-
ing from the execution of the original program. Due to this
feature, if a programmer wants to understand a particular
class member in her task, only the edit operations included
in its operation history slice are replayed. In other words,
she can avoid replaying any nonessential edit operations of
class members that she has no interest in. Consequently,
OperationSliceReplayer makes her program understanding
task more efficient.

The basic mechanism of operation history slicing and
its naive prototype were previously proposed [21]. Yet the
previous paper lacked the detailed algorithms adopted by the
mechanism and evaluation results. The main contributions
of this paper include:

• A detailed explanation of the concept of operation his-
tory slicing and its mechanism.

• A sophisticated running tool that implements the pro-
posed mechanism.

• Evaluation results that show the effectiveness of the
tool.

The remainder of our paper is organized as follows.
Section 2 introduces the conventional tools that can replay

fine-grained code changes and describes a motivating ex-
ample that shows the inconvenience of using them. Sec-
tion 3 defines an operation history graph and operation his-
tory slicing based on this graph. Section 4 explains the im-
plementation of a tool that supports the efficient replay of
edit operations. Section 5 assesses the tool’s effectiveness
by showing experimental results. Section 6 presents related
work. Finally, Sect. 7 concludes with a brief summary and
immediate future work.

2. Replaying Code Changes

According to Storey, diverse sources of information
are available to support programmers’ work in program
comprehension [24]. In fact, modern IDEs including
Eclipse [25] employ specific plug-ins that manage various
kinds of information about code changes or human activi-
ties (see Sect. 6). A program comprehension tool could ex-
ploit such information. Tools that record fine-grained code
changes and replay them [8]–[12] are typical examples of
such plug-ins that have recently become feasible.

2.1 Tools

Robbes et al. proposed a toolset, SpyWare [8], that is a mon-
itoring plug-in for IDEs. It stores the first-class changes
made by a programmer on the source code of a program.
These changes consist of the finest-level atomic change op-
erations on the abstract syntax tree (AST) of the program
and the higher-level composite change operations that ab-
stract the atomic change operations. They also presented a
benchmarking procedure to evaluate the change predictions
based on the replay of the code changes actually recorded
from IDE interactions [13].

Hattori et al. introduced a change-based approach [6] to
a multi-programmer context and presented a tool, Syde [9],
which supports team collaboration in multi-programmer
projects. The tool records several atomic change opera-
tions on the AST of a program and two refactoring trans-
formations performed by Eclipse. The change information
is broadcasted to all team members within a project to keep
them aware of what is happening in it. This awareness eases
team coordination with respect to the structural conflicts in
the project. Moreover, they provide evidence that their re-
player allows programmers to watch past changes as they
happened at the source code level. Thus, it can help pro-
grammers in various activities related to software develop-
ment and program understanding [14].

Yoon and Myers developed Fluorite [10], an event-
logging plug-in for Eclipse, which captures all of the low-
level events in the Eclipse code editor. It stores informa-
tion about each command directly invoked by a user’s ac-
tion (copying or pasting text, moving the cursor position,
selecting text by keyboard or mouse, and undoing past com-
mands) and each document change that contains the actual
deleted and inserted text. This information enables devel-
opers or researchers to easily analyze code editing history

MARUYAMA et al.: SLICING FINE-GRAINED CODE CHANGE HISTORY
673

and detect different kinds of usage patterns of the code ed-
itor. An exploratory study with Fluorite identified various
reasons why developers often have to backtrack during cod-
ing [26]. Moreover, Yoon et al. presented Azurite [16], [27],
a tool that employs two user interfaces to visualize fine-
grained code change history: a timeline view and a code
history diff view. These views provide rich manipulation
of code (e.g., selective undo) and simplify answering fre-
quently asked questions related to code editing history.

Negara et al. argued that code change data using a
version control system (VCS) is inadequate for code evo-
lution research studies [11]. Instead, such studies should
leverage IDEs to capture code changes online rather than
inferring them from a postmortem of the snapshots stored
in the VCS. Based on this standpoint, they developed Cod-
ingTracker [11], an Eclipse plug-in that non-intrusively col-
lects fine-grained information about the code evolution of
Java programs. It records every code edit performed by pro-
grammers. Their experimental results confirmed that more
detailed and accurate information is needed for understand-
ing code changes.

In our previous work [12], we proposed Opera-
tionRecorder, an Eclipse plug-in that automatically records
fine-grained changes (i.e., edit operations, not AST change
operations) by continuously tracking the code edits per-
formed on Eclipse’s Java editor. Moreover, we presented
OperationReplayer [15], an Eclipse plug-in that allows pro-
grammers to explore the source code restored by chronolog-
ically accumulating the recorded operations. This replayer
provides functionality that not only simply replays edit oper-
ations but also backward and forward skips (i.e., rewinding
and fast-forwarding) them.

These studies are all based on the assumption that deep
knowledge of code changes is very useful for understanding
code. This is because such changes contain explicit infor-
mation about the when, how, and by whom questions that
programmers confront while writing or modifying code. On
the other hand, code changes do not explicitly contain in-
formation about why questions; they seem to represent how
a programmer has completed the code. Therefore, replay-
ing fine-grained code changes in chronological order can
visualize past programming scenes in front of the program-
mers’ eyes. This helps them image why they or other pro-
grammers have changed the code in the past. Such replay-
ing provides hints of the programmers’ understanding why
they or others reversed undesired code changes and strongly
supports conjectures about their decisions made in the past.
Consequently, code change replaying tools can accelerate
the reuse or the modification of existing code without much
effort, although it was written by someone else, since pro-
grammers can verify the rationale behind past code changes.
The replaying tools are valuable for understanding code and
its changes.

2.2 Motivation

In this paper, we take OperationReplayer to reveal a prob-

Fig. 1 Dot plot of edit operations actually recorded in our study.

lematic point concerning the use of existing replaying tools.
Figure 1 represents the edit operations (blue dots) that
were actually recorded in an exploratory study using Op-
erationRecorder. In this study, a computer science graduate
student developed a Java program for the board game Re-
versi that consists of seven source code files.

The horizontal-axis of the diagram denotes the se-
quence number of the edit operations (e.g., insertion, dele-
tion, replacement of characters, and file operations) per-
formed by the student on the Eclipse’s editor to complete
the file Game.java. The development of this file lasted
about 9.5 hours. The total number of recorded edit opera-
tions for it was 996, and the file ultimately consisted of 186
lines of code. The vertical-axis denotes 20 class members
(methods and fields) that appear in the file (to be precise,
those identified by the syntax analysis for each of the file’s
489 snapshots) during the development. For example, num-
ber 2 corresponds to method put(int x, int y) of class
Game within Game.java. Five methods disappeared due to
their changing declarators (renaming or changing parame-
ters). This file finally contained twelve methods and three
fields.

A close look at the distribution of the actual edit op-
erations for each of the class members reveals how much
trouble replaying those edit operations gives programmers.
Look at the class member labeled with number 2. The to-
tal number of edit operations that are directly related to it
is 142. This means that 14.3% of all of the edit operations
might need to be replayed when a programmer actually tries
to see the past changes of this class member. However, find-
ing only these edit operations is time-consuming with a con-
ventional tool OperationReplayer.

To complicate matters, several intervals appear in the
edit operations for each class member. This means that the
construction of a class member is not restricted to a single
time period. For example, consider the method labeled with
number 2 again. It has a large interval between the edit
operations whose sequence numbers are 70 and 603. This
interval contains the edit operations that build many other
class members. In this situation, if a programmer wants to

674
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

scrutinize how this class member has been created or modi-
fied, she will skip the edit operations that are unrelated to its
construction by rewinding and fast-forwarding the operation
history. In general, such skipping actions are annoying and
interrupt thinking and concentration.

Although the result shown in Fig. 1 is an explanatory
example, it is not a special. If a class could be sufficiently
designed before writing its code, each class member within
the class might be created at once. However, the sufficient
upfront design is not always reasonable in iterative and in-
cremental development. Adding a new field variable fre-
quently happens and causes the concurrent update of the
existing methods. Moreover, several refactoring transfor-
mations divide and/or merge them, which also cause their
concurrent update. In other words, the interval of edit oper-
ations for each of the class members is inevitable.

Here, astute readers might realize that edit operations
unrelated to a particular class member can be filtered out
by checking its name (or signature). Unfortunately, simple
filtering provided by such conventional tools as Syde [9] or
CodingTracker [11] fails to address the fine-grained track-
ing of code changes that result from the renaming, splitting,
or merging of a class member or the moving or copying of
a part of its body (e.g., cut-paste or copy-paste actions). For
example, the construction of the method labeled with num-
ber 12 seems to have been performed in a relatively short
period of time, with a total of 41 (9 + 32) edit operations.
Simple filtering can find just these edit operations. In fact,
60 edit operations were related to the construction of this
method because of its parameter changes (number 4 → 11
→ 12). In this case, simple filtering fails to collect some edit
operations that are necessary to replay the entire evolution
of the method. A similar case occurred in the construction
of the method labeled with number 17 or 18 since its body
absorbed several code fragments in the method labeled with
number 15 or 6 through copy-and-paste actions.

In summary, current replaying tools including Opera-
tionReplayer are convenient for detailed investigation of the
construction of a particular class member if its edit oper-
ations were continuously stored in its history. However,
generally, not all edit operations related to a particular class
member are continuously performed. In this case, skipping
actions are frequently repeated. Unfortunately, these actions
are an obstacle that causes many programmers to hesitate
to use existing replaying tools during comprehension tasks.
Moreover, overlooking the facts of past renamings or copy
and paste actions for a particular class member eliminates
information about when, how, by whom it was written and
modified. This increases the risk of mistakes when veri-
fying the rationale behind past code changes. For existing
replaying tools to be truly effective in realistic software de-
velopment and evolution, an automatic or semi-automatic
mechanism for skipping edit operations of no interest must
be integrated.

3. Operation History Slicing

Our proposed slicing mechanism deals with edit operations
on source code constructed under the Eclipse Java devel-
opment environment. This section describes an operation
history graph that represents the relationships among class
members of the source code and the recorded edit opera-
tions. It also defines operation history slicing using this
graph.

3.1 Recording and Replaying Edit Operations

The proposed slicing mechanism obviously assumes that
all edit operations with respect to the manual and au-
tomatic code changes performed on the editor are com-
pletely collected. We adopt as a recording tool, Opera-
tionRecorder [12]†, which can automatically the record edit
operations that affect the code in Eclipse’s Java editor. The
operations include manual typing (insertion, deletion, and
replacement of text), editing by a clipboard (copying, cut-
ting, and pasting text), undo/redo actions, and code changes
by automatic transformation (code completion, quick fix,
formatting, and refactoring). In addition, the operations
related to a file (open, close, and save) are automatically
recorded. The current version of OperationRecorder ex-
cludes the recording of actions related to file renaming
and removing and ignores the detection of the renaming of
classes and their members.

Each edit operation contains a particular text of code
that was inserted, deleted, or replaced (i.e., deleted and in-
serted at the same location of the code). It also contains
information about when and where the text was inserted,
deleted, or replaced and by whom. Every edit operation is
stored in a history file in an XML format. The following is
an example of a stored edit operation:

<normalOperation time="1310181396607"

dev="maru" cptype="NONE" offset="52">

<inserted>int x, int y</inserted>

<deleted/>

</normalOperation> .

Element <normalOperation> corresponds to one edit
operation. Such edit operations have attribute time that
stores information about when the operation was performed.
It denotes the number of milliseconds since January 1, 1970.
Attribute dev denotes the programmer’s identifier (name or
e-mail address, etc.). Attribute cptype denotes the origin of
the edit operation. Its default value is "NONE". If the oper-
ation was derived from a paste action, its value is "PASTE".
Attribute offset locates the starting point of the inserted,
deleted, or replaced (replacing) text on the code. The in-
serted (or replacing) texts and deleted (or replaced) texts

†Version 4.5 or later was used in this paper, which is an exten-
sion of the original [12].

MARUYAMA et al.: SLICING FINE-GRAINED CODE CHANGE HISTORY
675

are enclosed as elements <inserted> and <deleted>, re-
spectively. A copy operation <copyOperation> also ex-
ists. It does not affect the code appearance but is essential
for knowing the origin of text inserted by a paste action.

OperationReplayer reads the data stored in the history
of edit operations and restores the contents of the code of
interest at a specified time. Code restoration is attained by
chronologically applying every edit operation before and at
the specified time to the contents of the initial code. The off-
set values determine the location where past edit operations
were applied. Thus, programmers can see how the code has
been changed as if they watch an animated movie that tracks
its growth.

3.2 Operation History Graph

To collect all the edit operations that build a particular class
member (method or field) of code without omissions, we
must formulate the relationships between edit operations
and code fragments affected by them. An operation history
graph (OpG) is a multipartite graph that indicates which edit
operation affects the code fragment(s) within a target class
member.

In this paper, S 0 indicates the initial snapshot of (the
contents of) the source code on which an edit operation was
never performed. The subscript number is incremented by
one for each edit operation that is applied. Here, pn de-
notes the n-th edit operation, and S n indicates a snapshot
of the source code generated immediately after pn was ap-
plied to its previous snapshot (S n−1). In other words, S n

can be obtained after all the edit operations between p1 and
pn are chronologically applied to S 0. A snapshot consist-
ing of only code fragments with no syntax error is called a
parseable one.

Let M(S i) be a set of all the class members within
parseable snapshot S i. If its contents are not parseable,
M(S i) is empty (M(S i) = ∅). V is a set that collects all the
vertices for the class members within every snapshot and all
the vertices for every edit operation. V is defined as follows:

V = { v.m | m ∈ M(S i) ∧ 0 ≤ i ≤ z }
∪ { v.p | p = pi ∧ 1 ≤ i ≤ z },

where i is an index number representing a subscript of a
snapshot or an edit operation. z is an index number repre-
senting a subscript of latest snapshot S z (and a subscript of
latest edit operation pz). v.m denotes a vertex corresponding
to class member m, and v.p denotes a vertex corresponding
to edit operation p.

Next, consider the edges that link two vertices included
in V . We first define two adjacent snapshots S i and S j

(i < j), both of which are parseable. There is no parseable
snapshot S k that satisfies i < k < j since S i and S j are ad-
jacent. To be precise, no snapshot exists between S i and S j

under j = i + 1 or none of snapshots between S i and S j

are parseable. The edges of an OpG G are divided into the
following four types:

(a) Let pk (i < k ≤ j) be an edit operation that changes
S i into S j. If pk is an edit operation and its inserted
or deleted text contains any code fragment included in
class member mx within S i, pk affects mx backwards. If
pk is a copy operation and its copied text is (partially)
extracted from mx, pk also affects mx. In these cases,
v.mx (∈ V) and v.pk (∈ V) are linked by backward-
change edge v.mx →b v.pk in G.

(b) Consider pk under the same situation as the aforemen-
tioned (a). If the inserted or deleted text of edit oper-
ation pk contains any code fragment included in class
member my within S j, pk affects my forwards. In this
case, v.pk (∈ V) and v.my (∈ V) are linked by forward-
change edge v.pk → f v.my in G.

(c) Consider a situation where the contents of class mem-
ber mx within S i remains in class member my within
S j without any change. In this case, v.mx (∈ V) and
v.my (∈ V) are linked by no-change (unchanged) edge
v.mx →n v.my in G.

(d) Let px be a cut or copy operation that inserts any text
into a clipboard from snapshot S x−1, and let py be a
paste operation that inserts the text stored in the clip-
board into snapshot S y. S x−1 and S y may be adja-
cent or they may not be. If the deleted or copied text
of px equals the inserted text of py after removing all
white spaces, and neither cut nor copy operations were
performed between px and py, v.pi (∈ V) and v.p j

(∈ V) are linked by ccp-change (cut-copy-paste) edge
v.pi →c v.p j in G.

E is a set of all the edges that satisfy one of the above
four types of edges (→b, → f , →n, or →c). An OpG is a
directed graph consisting of a set of vertices (V) and a set of
directed edges (E), which is represented by G = (V, E).

Here, it is natural that an OpG consists of vertices rep-
resenting edit operations and class members since it is used
while collecting the edit operations related to the construc-
tion of a class member. On the other hand, it may not be
obvious that an OpG consists of the four relationships de-
scribed above. Thus, we briefly explain why an OpG in-
volves them.

The formulation of an OpG assumes the adoption of
operation history slicing. In this formulation, there are
two standpoints: extracted operation history slices should
include essential edit operations and should exclude non-
essential ones. According to our experience, the omission
of essential edit operations makes it harder for programmers
to accurately capture their fine-grained code changes. Thus,
operation history slices never exclude essential edit opera-
tions even if they adversely include nonessential ones.

For an OpG to satisfy this policy, its formulation uti-
lizes a parseable snapshot and identifies the class members
in it. Moreover, an edit operation between two snapshots
absolutely affects (inserts, deletes, copies) their code frag-
ments. If these code fragments belong to particular class
members, the edit operation is engaged in their construction.
At the same time, the contents of the class members, ex-

676
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

Fig. 2 An operation history graph (OpG). The whole OpG consists of 231 vertices and 240 edges.

cluding the affected code fragments, are preserved without
any change made by the edit operation. This relationship is
necessary to propagate the past changes of their former ones
into them. Cut, copy, and paste operations affect not only the
contents of the snapshots but also those of the clipboard pro-
vided by an IDE (or operation system). In the formulation,
the clipboard is considered a unique and the virtual snap-
shot that crosses over actual snapshots. This virtual snap-
shot disappears from the OpG. In summary, by detecting the
impacts of the edit operations on every class member in the
parseable snapshots, operation history slicing does not omit
any of the edit operations necessary for the construction of
a particular class member.

Figure 2 depicts part of an OpG representing the con-
struction of an explanatory example of Java code. This code
contains only one class with eight class members (three
fields and five methods), which was completed by 65 edit
operations. The whole OpG contains all the edit operations
performed during the construction and all the class members
in its snapshots. Each triangle indicates a vertex correspond-
ing to an edit operation. For example, p31, p32, p46, p47, and
p48 are edit operations of the programmer’s typing, p29 is a
copy operation, and p30 is a paste operation. Each oval in-
dicates a vertex corresponding to a class member. A dotted
rectangle indicates the snapshot to which a class member be-
longs. Arrows marked with labels b, f, n, and c indicate the
four types of edges: backward-change, forward-change, no-
change edge, and ccp-change, respectively. Dashed arrows
and wavy lines denote the abbreviation of edges.

3.3 Detection of Change Edges

In creating an OpG, it is necessary to detect which class
member of a parseable snapshot is affected by an edit op-
eration of interest. Our proposed mechanism tracks the off-
set values of the modified parts of the code and links all the
edit operations with their corresponding class members. The
offset value indicates the location where each edit operation
was performed on the code.

Both backward-change and forward-change edges are
easily detected if only one edit operation pk is performed
between adjacent and parseable snapshots S i and S j (i <
k ≤ j). This detection is attained by checking if the off-
set value of each letter in the text of pk falls within the
ranges of the offset values for class members in S i or S j.
However, this simple detection might be violated when two
or more edit operations are performed between S i and S j.
Consider two edit operations, ph and pk, between S i and S j

(i < h < k ≤ j). If ph shifts the offset range for mx within
S i by inserting text before mx and pk deletes any text of mx,
the offset value of a letter in the deleted text of pk indicates
the wrong position on S i. This is because this offset value
indicates the position on S h, not on S i. Unfortunately, since
S h is not parseable, it is not present in the OpG. In this case,
ph adversely affects pk.

To solve this problem, several offset values should be
adjusted according to the length of the inserted and deleted
texts of their neighboring edit operations. In the detection
of backward-change and forward-change edges between an
edit operation and a class member of an OpG, the adjusted
offset value of the edit operation is compared with the offset
range of the class member. The details of the adjustment
algorithms of the offset values and the detection algorithms
of the backward-change and forward-change edges will be
described in Sects. 4.1 and 4.2.

After the detection of all the backward-change and
forward-change edges, the no-change edges are detected.
If mx within snapshot S i has no forward-change edge, my
within snapshot S j has no backward-change edge, and the
full names of mx and my are the same. v.mx and v.my are
linked by no-change edge v.mx →n v.my. The full name
is a unique identifiable name constructed by concatenating
the fully qualified name of a class, special character “#”,
and the declarator (name and parameter list) of a method
or the name of a field. For example, “fqn#m(int x)” and
“fqn#f” are the full names for a method with declarator
“m(int x)” and a field with variable name “f” of class
“fqn”, respectively. This way successfully detects the no-

MARUYAMA et al.: SLICING FINE-GRAINED CODE CHANGE HISTORY
677

change edges except when a class name is changed. If a
class name is changed, the detection mechanism tracks the
changes of the offset range for each class member. Basically,
for each p of the edit operations performed between S i and
S j, calculation o = o − i.p + d.p for offset value o of my is
repeated. If the adjusted offset range of my equals the offset
range of mx and their field names or method declarators are
the same, no-change edge v.mx →n v.my exists.

The detection of ccp-change edges is easy based on the
definitions described in Sect. 3.2. For example, p29 is a copy
operation and p30 is a paste operation. The contents of the
copied text and the inserted one by paste are the same and
there is no other cut or copy operation between them. There-
fore, ccp-change edge p29 →c p30 exists in the OpG shown
in Fig. 2.

3.4 Operation History Slice

By traversing the vertices and edges of an OpG, the pro-
posed mechanism can extract edit operations necessary to
build a class member of interest from the history consisting
of all the operations. Here, GS is an OpG for source code S .
Let R(GS , v.mm) be a set of vertices of GS that reach vertex
v.mm corresponding to class member m within snapshot of
S :

R(GS , v.m) = { u ∈ V(GS) | u→∗ v.m }.
V(GS) is a set of all the vertices of GS . Relation→∗ means
the reflexive and transitive closure of relation→, which in-
dicates one of the four types of edges (→b,→ f ,→n, or→c)
of GS .

Here, sometimes an edit operation exists with no
forward-change edge in the OpG. For example, this occurs
when an edit operation deletes or cuts the entire contents
of a method or a field. Since such an edit operation will
be properly replayed, R′(GS , v.m) was newly derived from
R(GS , v.m):

R′(GS , v.m) = R(GS , v.m)

∪ { w ∈ V(GS) | u→b w ∧ u ∈ R(GS , v.m) }.
A reachable set of edit operations Rp(GS , v.m) is de-

fined as follows:

Rp(GS , v.m) = Vp(GS) ∩ R′(GS , v.m).

Vp(GS) is a set of vertices with respect to all the edit opera-
tions.

Next consider a sequence of edit operations to be re-
played. Let Q(S) be a sequence that lists all the edit opera-
tions for S .

Q(S) = 〈 p1, . . . , pz 〉.
For every recorded edit operation, p1 is the first (earli-

est) and pz is the last (latest). The above sequence is drawn
up in chronological order. In other words, the time when
pi was performed is earlier than or equal to the time when

p j (i < j) was done†. In this case, only one edit operation
exists for S , Q(S) = 〈p1〉.

Operation history slice Sq(S ,m) is a minimal sub-
sequence of Q(S) that satisfies the following condition:

∀v.pk ∈ Rp(GS , v.m) [pk ∈ Sq(S ,m) ∧
Sq(S ,m) � Q(S) ∧ #Rp(GS , v.m) = #Sq(S ,m)].

Q1 � Q2 means that Q1 is a sub-sequence of Q2.
#Op(GS , v.m) indicates the number of elements included
in Op(GS , v.m), and #Sq(S ,m) indicates the number of el-
ements included in Sq(S ,m). These numbers are always
equal. m is a slicing criterion that denotes a class member
of interest within snapshot S .

The code of final snapshot S 65 for the OpG shown in
Fig. 2 has eight class members. For methods setX() and
setY() within S 65, their operation history slices are as fol-
lows:

Sq(G, setX@S 65)

= 〈14, 15, 16, 17, 18, 19, 20, 21, 29, 61, 62〉,
Sq(G, setY@S 65)

= 〈14, 15, 16, 17, 18, 19, 20, 21, 22, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 63, 64〉.
Each operation history slice contains 11 or 22 edit op-

erations. Thus, their ratios to the total number of recorded
edit operations are 16.9% (= 11/65) and 33.8% (= 22/65).

4. Implementation

We developed a tool called OperationSliceReplayer that
consists of four modules: Code restorer, OpG construc-
tor, OpG slicer, and Code viewer. The Code restorer re-
stores every snapshot of the code based on the history of
edit operations recorded by OperationRecorder and then se-
lects parseable ones from among all the restored snapshots.
It employs the syntax analyzer module ASTParser built in
Eclipse JDT to check whether a snapshot is parseable. In
this syntax analysis, the ranges of the offset values of class
members within the parseable snapshots are calculated. The
OpG constructor creates an OpG by collecting vertices in-
dicating the recorded edit operations and the class members
within the restored snapshots and by detecting the edges be-
tween these vertices. The OpG slicer calculates an operation
history slice for a criterion given by a programmer using the
OpG. The Code viewer displays past snapshots of code in
chronological order by replaying only the edit operations in-
cluded in the slice.

This section first describes two algorithms that adjust
the offset values of the letters stored in each edit operation
and two algorithms of the backward-change and forward-
change edges using the adjusted offset values. These algo-
rithms are all implemented in the OpG constructor. This
section also explains the usage of OperationSliceReplayer.

†Although two edit operations are performed at the same time,
OperationRecorder suitably determines their chronological order
and records them in XML files.

678
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

4.1 Adjustment Algorithms of Offset Values

Algorithms 1 and 2 explain the procedures that adjust the
offset values to detect the backward-change and forward-
change edges. Here, the offset value of the n-th letter in the
text of p is represented by o.p[n]. i.p denotes the length
of the inserted text of p, and d.p denotes the length of the
deleted text of p. Function GetOps(a, b), which returns an
ordered collection of the edit operations between edit op-
erations pa and pb, is extracted from the original sequence
that lists all the edit operations in chronological order. In
GetOps(a, b), the first one is pa and the last one is pb. Func-
tion GetOpsRev(a, b) returns an ordered collection that lists
the edit operations in GetOps(a, b) in reverse order.

Here, we show examples of the adjustment of the offset
values using the snapshots and edit operations in Fig. 3. In
parseable snapshots S 45 and S 48, [\t] and [\n] are invis-
ible symbols indicating a tab character and a new-line one,
respectively. Edit operation p46 for S 45 adversely affects edit
operation p47 since offset value o.p46[1] (= 293) was less
than or equal to o.p47[1] (= 303). Similarly, both p46 and
p47 adversely affect edit operation p48. In these cases, the
adjustment for o.p47[1] and o.p48[1] should be done based
on Algorithm 1. For example, with respect to the first letter
in the text of p47 for S 45, adjusted offset value o.p′47[1] was
calculated as follows:

o.p′47[1] = o.p47[1] − i.p46 + d.p46

= 303 − 11 + 0 = 292.

Note however, that the value of o.p′47 finally became equal to

Algorithm 1: AdjustBackwardOffset

in : o – offset value of a letter in a target edit operation
out: o′ – offset value after adjustment
o′ = o
foreach p ∈ GetOpsRev(i + 1, k − 1) do

if o.p[1] ≤ o′ then
o′ = o′ − i.p + d.p
if o′ < o.p[1] then o′ = o.p[1]

end
end
return o′

Algorithm 2: AdjustForwardOffset

in : o – offset value of a letter in a target edit operation
out: o′ – offset value after adjustment
o′ = o
foreach p ∈ GetOps(k + 1, j) do

if o.p[1] ≤ o′ then
o′ = o′ + i.p − d.p
if o′ < o.p[1] then o′ = o.p[1]

end
end
return o′

the value of o.p46, which was o.p′47 = 293, since the actual
value of o.p′47 was less than o.p46. In another example with
respect to the first letter in the text of p48 for S 45, adjusted
offset value o.p′48[1] was calculated as follows:

o.p′48[1] = o.p48[1] − i.p47 + d.p47 − i.p46 + d.p46

= 303 − 0 + 1 − 11 + 0 = 293.

The above calculations are both related to the edit op-
erations for their precedent parseable snapshot. When the
edit operation must be adjusted to its subsequent parseable
snapshot, the addition and subtraction for its offset value
must be interchanged, as shown in Algorithm 2. How-
ever, this adjustment was not required for p46 and p47 in
Fig. 3 since o.p46[n1] ≤ o.p47[n2] ≤ o.p47[n3] for any letter
(1 ≤ n1 ≤ i.p46 ∧ 1 ≤ n2 ≤ d.p47 ∧ 1 ≤ n3 ≤ i.p48) in the
text of p46, p47, and p48.

4.2 Detection Algorithms of Change Edges

Algorithms 3 and 4 explain the procedures that detect the
backward-change and forward-change edges. Here, o′ is the
adjusted offset value of a letter in the text of edit operation
p. If the value of o′ falls within the range of offset values
[os, oe] of class member m in a previous parseable snapshot,
that is, os ≤ o′ ≤ oe, backward-change edge v.m →b v.p is
added to an OpG. os and oe are the offset values of the start-
ing and ending points of m. For a class member in a sub-
sequent parseable snapshot, the same comparison is done to
detect forward-edit edge v.p → f v.m. Since p potentially
affects multiple class members at the same time, this offset
comparison is repeatedly applied to every letter in the text.
To be precise, each letter in the deleted or copied text is
compared to detect a backward-change edge, and each letter
in the inserted text is compared to detect a forward-change
edge.

In Fig. 3, the adjusted offset value of first letter “r” of
the text that was inserted by p46 equals 293 (i.e., o.p′46[1]

Fig. 3 Detection of backward- and forward-change edges.

MARUYAMA et al.: SLICING FINE-GRAINED CODE CHANGE HISTORY
679

Fig. 4 OperationSliceReplayer perspective in Eclipse.

Algorithm 3: DetectBackwardChangeEdges

in : p – target edit operation
in : M – set of class members in target snapshot
inout: G – OpG
for m ∈ M do

len← length of deleted or copied text of p
for n← 1 to len do

o′ = AdjustBackwardOffset(o.p[n])
if o′ falls within offset range for m then

Adds backward-change edge m →b p into G
end

end
len← length of inserted text of p
if len � 0 then

o′ = AdjustBackwardOffset(o.p[1])
if o′ falls within offset range for m then

Adds backward-change edge m →b p into G
end

end
end

= o.p46[1] = 293). The range of the offset values of
method getRadius() within S 45 is [266, 295]. Thus, let-
ter “r” in the inserted text of p46 was probably inserted into
getRadius() within S 45. Next consider p47. In this case,
S 46 is not parseable, and thus a class member correspond-
ing to p47 cannot be detected in S 46. Moreover, the offset
value of a letter in the text of p47 must be adjusted. Since
the adjusted offset value o.p′47[1] (= 293) falls within the
range [266, 295] of getRadius() within S 45, the first let-
ter “u” in the deleted text of p47 was probably deleted from
getRadius() of S 45. In the same manner, the first letter
“i” in the inserted text of p48 was considered to be inserted
into getRadius() of S 45. Consequently, three backward-
change edges, v.mx →b v.p46, v.mx →b v.p47, and v.mx

Algorithm 4: DetectForwardChangeEdges

in : p – target edit operation
in : M – set of class members in target snapshot
inout: G – OpG
if p is a copy operation then return

for m ∈ M do
len← length of inserted text of p
for n← 1 to len do

o′ = AdjustForwardOffset(o.p[n])
if o′ falls within offset range for m then

Adds forward-change edge m → f p into G
end

end
len← length of deleted text of p
if len � 0 then

o′ = AdjustForwardOffset(o.p[1])
if o′ falls within offset range for m then

Adds forward-change edge m → f p into G
end

end
end

→b v.p48, were detected, where v.mx indicates the vertex
for getRadius() of S 45. Similarly, three forward-change
edges, p46 → f v.my, p47 → f v.my, and p48 → f v.my, were
detected, where v.my indicates the vertex for getRadius()
of S 48. These six change edges can be seen in Fig. 2.

4.3 Usage

Since OperationSliceReplayer was built as an Eclipse per-
spective, a programmer can instantly switch from its Java
development perspective. Figure 4 shows screenshots of the
OperationSliceReplayer perspective on Eclipse. The view
at the top helps a programmer select code (a file) to be re-

680
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

played. The code is restored in the left view. To see the
growth of a particular class member, she can activate the
slicing menu, as shown in the left screenshot. This menu
presents all the class members in the currently restored code
that is parseable. If the code is not parseable, the tool
tries to find an immediately precedent parseable snapshot
and presents a list of its class members on the menu. The
recorded edit operations are listed in the right view. She can
replay one-by-one (plus rewind and fast-forward) the whole
history of the recorded edit operations by pushing each of
the buttons. In the right screenshot, the edit operations and
the code fragments included in the operation history slice
for the criterion given by the programmer are displayed in
black. On the other hand, the edit operations and code frag-
ments not included in the slice are displayed in gray. She
can replay only the sliced history of the edit operations.

Here we briefly describe how to restore the code related
to only the edit operations included in an operation history
slice. Actually, the partial replay of all the recorded edit
operations often hampers the correct restoration of the orig-
inal snapshot since such replay often revokes the change of
the offset values performed by the edit operations that are
not included in the slice. This might penalize programmers’
tasks for understanding code. Thus, it is significant in the
implementation of OperationSliceReplayer to correctly re-
store the original snapshot without changing its layout. In
other words, the apparent positions of all the class members
within the original snapshot must be preserved, although the
recorded edit operations are partially replayed. To realize
such replay, the tool replays all the recorded the edit opera-
tions without removing any of them. It preserves the orig-
inal color of the code fragments corresponding to the edit
operations included in an operation history slice, but decol-
ors the code fragments corresponding to the edit operations
not included in the slice. This coloring helps programmers
distinguish the two types of edit operations that are either
necessary or unnecessary to build a particular class mem-
ber.

5. Evaluation

We carried out experiments with OperationSliceReplayer
to assess its effectiveness. These experiments dealt with a
situation where a programmer wants to understand the evo-
lution of a particular class member within an existing Java
program. If she can obtain the history of the code of the
program, she can usually exploit it with the replaying tools
mentioned in Sect. 2.1. OperationSliceReplayer provides
the functionality of replaying past edit operations as well as
these conventional tools. In addition, it reduces the search
space for investigating past code changes by automatically
selecting only the edit operations that can help her under-
standing.

To develop research questions, we sorted out the fol-
lowing five techniques when she understands past code
changes:
T1 She investigates every edit operation stored in the op-

eration history for code appearing in all the files.
T2 She investigates the edit operations related to a file con-

taining a class member of interest.
T3 She investigates the edit operations related to the con-

struction of a class member of interest by slicing the
whole operation history for the code appearing in all
files (inter-files mode in OperationSliceReplayer).

T4 She investigates the edit operations related to the con-
struction of a class member of interest by slicing the
operation history for the code appearing in a file con-
taining the class member (intra-file mode in Opera-
tionSliceReplayer).

T5 Several conventional tools including Syde [9] or Cod-
ingTracker [11] infer the corresponding AST nodes
from the collected raw edits. By using these tools,
she investigates only the edit operations filtered with
respect to a class member of interest.
Based on these techniques, we address the following

research questions:

RQ1 How much does the automation of operation history
slicing reduce the effort to investigate code changes
when a programmer understands them?

RQ2 Are the outcomes of operation filtering sufficient to
present an accurate replay, compared with those of op-
eration history slicing?

Figure 5 depicts the edit operations stored in the oper-
ation history. The five techniques deal with their respective
areas enclosed in dotted or broken lines.

T1 obtains all of the information about code changes
but requires a huge amount of effort. Therefore, T1 is of no
practical use. On the other hand, T2 fails to obtain enough
information, unlike T1. Nevertheless, it is preferable except
for T3 and T4, since any class member is enclosed in a file in
a Java program. T3 conceptually provides enough informa-
tion like T1 (if an operation history slicing algorithm and its
implementation are perfect) to restage past code changes on
a particular class member. Similarly, T4 provides the same
information as T2 in restaging. From these perspectives, we
answer RQ1.

Whereas RQ1 focuses on effort reduction by operation
history slicing, RQ2 assesses the accuracy of operation fil-
tering and slicing. Both T3 (slicing) and T5 (filtering) have

Fig. 5 Edit operations used for respective techniques.

MARUYAMA et al.: SLICING FINE-GRAINED CODE CHANGE HISTORY
681

Table 1 Main characteristics of experimental Java application programs.

Application Development period Files Lines of code Class members Edit operations Parseable snapshots
App 1 2008/11/05 ∼ 2008/11/06 7 500 59 2,650 1,248
App 2 2012/08/10 ∼ 2012/08/31 7 772 88 3,717 1,688
App 3 2013/10/03 ∼ 2013/11/29 14 1,831 215 16,204 9,976

Table 2 Information about operation history graphs for application programs.

Application #Vp #Vm #V #Eb #E f #En #Ec #E
App 1 2,650 15,459 18,109 2,279 2,452 14,384 72 19,187
App 2 3,714 25,214 28,928 3,089 3,420 23,726 52 30,287
App 3 16,204 173,052 189,256 13,869 14,284 164,657 510 193,320

a beneficial effect on the reduction of the search space for
investigating edit operations. In this situation, if the accu-
racy of T5 closely resembles that of T3, T3 is unneeded.
Conversely, if T5 overlooks several edit operations and fails
to accurately restage past code changes, T3 appreciates in
value. From this perspective, we answer RQ2.

We know that readers want to learn the practical ben-
efits to programmers who have to understand how existing
code has been written and modified. However, it is hard
to determine their tasks that are performed in the actual
software development and evolution and that directly assess
such benefits. Therefore, our experiments assume that the
automatic reduction of search space eliminates the annoy-
ing tasks that will likely happen while understanding the ex-
isting code. Moreover, the accurate detection of the search
space mitigates the risk of misunderstanding. This elimi-
nation and mitigation help programmers easily and quickly
obtain accurate knowledge about the code.

5.1 Experiment Design

In our experiments, we prepared a set of edit operations that
were actually collected during the development of Java ap-
plication programs by three computer science graduate stu-
dents. Table 1 summarizes the main characteristics: the
numbers of lines of code of the final snapshot, the class
members appearing in the final snapshot, the edit operations
recorded during development, and the parseable snapshots
restored from the edit operations of each program used in
the experiments. Both App 1 and App 2 implement a board
game, and App 3 implements a puzzle video game. Unfortu-
nately, the original history of the edit operations contained
several deficiencies. Thus, we manually fixed them to re-
play every edit operation without any conflicts†. The values
shown in Table 1 correspond to the operation history after
fixing.

Table 2 shows information about the operation history
graphs for the application programs. Columns #Vp and #Vm

indicate the numbers of vertices that correspond to all the
edit operations and to all the class members appearing in

†OperationSliceReplayer detects several conflicts such as the
mismatch between texts of the code restored from edit operations
and the code when saving it, the deletion of non-existent text, and
the insertion of text out of the code.

every parseable snapshot, respectively. The value of #V de-
notes the total number of vertices of an operation history
graph (#V = #Vp + #Vp). Columns #Eb, #E f , #En, and #Vc

indicate the numbers of backward-change, forward-change,
no-change, and ccp-change edges, respectively. The value
of #E denotes the total number of edges of an operation his-
tory graph (#E = #Eb + #E f + #En + #Ec).

We obtained the operation history slices in the follow-
ing two ways:

Exp 1 We selected all the class members that appear in the
final snapshot of each of the application programs as
the operation history slicing criteria. As a result, we
totally obtained 362 (59 + 88 + 215) slices from all the
programs.

Exp 2 We randomly selected 1,000 class members that ap-
pear in every snapshot as the operation history slicing
criteria. As a result, we obtained 1,000 slices (6.4%,
4.0%, and 0.58%) from the respective application pro-
grams.

5.2 Experimental Results

Table 3 summarizes the results with experiment Exp 1. LOC
and #M show the numbers of lines of code and the class
members for each file. T2Ave, T3Ave, T4Ave, and T5Ave de-
note the average number of edit operations for each file,
which are collected by T2, T3, T4, and T5, respectively.
S Ave, WAve, and FAve will be explained in Sects. 5.2.1 and
5.2.2.

5.2.1 Reduction of Effort

To answer RQ1, we prepared two evaluation metrics. One
represents the ratio of the number of edit operations that pro-
grammers investigate to the number of edit operations that
they ignore. This metric is called the size ratio. In our ex-
periments, we measured the size ratio as follows:

S (m) = T4(m) / T2(m).

T2(m) or T4(m) indicates the number of edit operations for
class member m, which is obtained by T2 or T4. In this
metric, we set up a baseline by T2 instead of T1 since a
programmer seldom uses T1 and tends to use T2. Every
value of S (m) is between 0 and 1 (0%∼100%). The lower

682
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

Table 3 Experimental results with Exp 1.

Application File LOC #M T2Ave T3Ave T4Ave T5Ave S Ave WAve FAve

Board.java 40 5 310 67.0 67.0 22.6 21.6% 2.0 35.9%
CUIView.java 39 3 225 99.7 71.7 69.3 31.9% 1.8 61.1%
Game.java 186 15 996 108.5 108.5 60.0 10.9% 4.4 79.0%

App 1 Stone.java 29 7 122 18.3 18.3 14.9 15.0% 4.5 73.8%
SwingView.java 190 27 865 63.8 53.1 20.5 6.1% 19.8 61.4%
View.java 5 1 11 5.0 5.0 5.0 45.5% 1.6 100.0%
Reversi.java* 11 1 121 115.0 115.0 115.0 95.0% 1.0 100.0%
Board.java 352 34 1,692 55.9 55.9 37.7 3.3% 42.0 72.2%
BoardPanel.java 138 17 680 39.4 39.4 37.2 5.8% 7.7 93.4%
ControlPanel.java 52 9 179 53.3 53.3 9.9 29.8% 1.2 61.7%

App 2 InfoPanel.java 40 7 175 21.6 21.6 21.6 12.3% 1.4 100.0%
Main.java 16 1 533 516.0 485.0 428.0 91.0% 1.1 82.9%
Reversi.java 87 12 90 374.5 14.5 8.9 16.1% 2.2 26.6%
Xoard.java** 87 6 365 59.3 59.3 58.2 16.3% 2.9 97.5%
ComPanel.java 15 2 158 45.5 39.0 18.5 24.7% 2.7 54.2%
Field.java 389 35 3,805 239.3 231.1 70.3 6.1% 75.8 59.0%
GameFrame.java 81 2 796 374.5 374.5 364.5 47.0% 1.9 52.4%
GaugePanel.java 98 13 541 68.5 45.0 33.8 8.3% 7.5 45.0%
KaeruPanel.java 174 10 2,096 589.1 353.9 192.5 16.9% 15.4 61.0%
NextPuyoPanel.java 45 7 248 27.1 27.1 19.6 10.9% 2.7 79.5%

App 3
OjamaField.java 77 18 203 65.2 10.4 7.4 5.1% 23.5 42.5%
OjamaPanel.java 192 36 1,548 149.0 47.3 18.7 3.1% 19.0 40.5%
PlayerPanel.java 79 4 755 471.5 167.8 148.3 22.2% 20.8 27.4%
Puyo.java 22 8 174 12.6 12.6 8.9 7.3% 2.1 63.8%
PuyoPair.java 189 24 1,223 101.9 86.2 37.5 7.0% 11.6 55.0%
PuyoPanel.java 400 46 4,288 194.6 167.0 66.8 3.9% 43.8 67.6%
ScorePanel.java 61 95 332 32.0 32.0 25.9 9.6% 6.3 73.6%
TempField.java 9 1 37 18.0 18.0 18.0 48.6% 1.1 100.0%

*The original file name was replaced with Reversi.java for privacy protection.
**The file name was changed from Board.java since OperationSliceReplayer cannot deal with file renaming.

Fig. 6 Size ratio for each operation history slice (S).

the value of S (m) is, the higher is the rate of the reduction
of edit operations that programmers care about.

The other metric represents the spreading of edit oper-
ations. This is called the spreading ratio. Although opera-
tion history slicing leads to various rates of the reduction of
the number of edit operations, its impact depends on how
the edit operations are spread in a slice. As mentioned in
Sect. 2.2, if edit operations disperse in the wide range of the
operation history, it is hard for programmers to find them. In
addition, they often perform skipping actions for the replay-
ing the operations. Accordingly, the burden on programmers
is increased. Conversely, if edit operations are concentrated,
programmers can easily replay them. In the experiments, we
measured the spreading ratio in an operation history slice as
follows:

W(m) = Range(f irst(T4(m)), last(T4(m))) / T4(m).

f irst(T4(m)) and last(T4(m)) indicate the first and last edit

operations in the chronological sequence of all the edit op-
erations in T4(m). Range(o f , ol) denotes the number of edit
operations sandwiched between of and ol, which are ex-
tracted from the whole operation history. The higher the
value of W(m) is, the wider is the range of edit operations
that programmers care about.

In Table 3, S Ave denotes the average value of all size
ratios S (m) for each file in Exp 1. A low value of S Ave rep-
resents a high reduction of required effort of programmers
with respect to the slice size (the number of edit operations
in a slice). Figure 6 shows more generalized results with
Exp 2†. These results present the overall trend of S (m). The

†There seems to be some correlation between slice size and
size ratio. The values of the Spearman’s rank correlation coeffi-
cients are 0.8671387, 0.7728087, 0.8234806 for App 1, App 2,
and App 3, and their p-values for the test of no correlation are all
less than 0.05.

MARUYAMA et al.: SLICING FINE-GRAINED CODE CHANGE HISTORY
683

Fig. 7 Spreading ratio for each operation history slice (W).

Fig. 8 Accuracy ratio for each operation history slice (F).

horizontal-axis of the three diagrams denotes slices that are
arranged in the ascending order by size. The vertical-axis
denotes the values of S (m). For every application, most of
the values of S (m) are low. Small-sized slices greatly re-
duce the required effort. One result, for example, is that the
values for 984, 953, and 985 of all the 1,000 slices are less
than 0.5 (50%). This means that more than half of the edit
operations is not needed to be replayed for most of the class
members.

In Table 3, WAve denotes the average value of all the
spreading ratios W(m) for each file in Exp 1. All the values
of W(m) are between 1 and 75.8. If the value of WAve is close
to 1, edit operations obtained by operation history slicing are
concentrated in a narrow range. In this case, we cannot ex-
pect to reduce the burden on programmers. Conversely, a
high value of WAve greatly reduces the burden. According to
the results in Exp 1, we expect to reduce the burden for sev-
eral files with high values. Similar results were derived from
Exp 2 as shown in Fig. 7. The horizontal-axis of the three
diagrams denotes slices that are also shown in Fig. 6. The
vertical-axis denotes the values of W(m). For every appli-
cation, a considerable number of slices are likely to greatly
reduce the burden. As an example, the values of W(m) for
174, 315, and 344 slices exceed 10. The edit operations to
be replayed in these slices disperse in a range more than ten-
fold their sizes.

In summary, the experimental results with respect to
S (m) demonstrate that the automation of operation history
slicing of OperationSliceReplayer can reduce the required
effort to investigate code changes. Moreover, the experi-
mental results with respect to W(m) reveal that troublesome
actions can be removed for skipping edit operations that do
not have to be replayed.

5.2.2 Accuracy

To answer RQ2, we prepared one evaluation metric that rep-
resents the ratio of the number of edit operations obtained
by operation history slicing (T3) to the number of edit op-
erations obtained by filtering (T5). In the experiments, this
ratio, which is called the accuracy ratio by filtering, is cal-
culated as follows:

F(m) = T5(m) / T3(m).

T3(m) or T5(m) indicates the number of edit operations for
class member m, which is obtained by T3 or T5. Here, the
slicing algorithm of OperationSliceReplayer embraces an
algorithm that infers the correspondence of the class mem-
bers to the edit operations and extracts a slice that always
contains the edit operations collected by filtering. Every
value of F(m) is between 0 and 1 (0%∼100%). If the value
of F(m) equals 1, filtering T5 selects every edit operation
related to the construction of m. Conversely, if the value of
F(m) is less than 1, an edit operation was overlooked by T5.
The lower the value of F(m) is, the more accurate slicing is
compared with filtering.

In Table 3, FAve denotes the average values of all the ac-
curacy ratios F(m) for each file in Exp 1. Figure 8 presents
an overall trend of F(m) with Exp 2. The horizontal-axis of
the three diagrams denotes the slices also shown in Fig. 6.
The vertical-axis denotes the values of F(m). For example,
one result is that the values for 388, 424, and 612 slices
do not equal 1 (100%). In other words, operation filtering
cannot sufficiently pick up the edit operations to restage the
entire construction of a particular class member in 38.8%,

684
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

42.4%, and 61.2% cases. These results demonstrate that op-
eration filtering collects the edit operations that are insuffi-
cient to capture accurate code changes.

5.3 Discussion

This section discusses several factors that can alter the ef-
fectiveness of OperationSliceReplayer.

5.3.1 Correctness of Slices

In respect to the correctness of the extracted operation his-
tory slices, we manually verified snapshots of code restored
by replaying the edit operations included in the slices. Op-
eration history slicing is expected to inherit a property from
program slicing [22]. In other words, the original contents
of a target class member on an arbitrary snapshot should
always be the same as the contents restored by replaying
only the edit operations included in an operation history
slice for the same target class member on the same snap-
shot. As far as we examined several operation history slices
in the experiments, all the slices satisfied this property. For
example, OperationSliceReplayer tracked the renaming of
a class member and correctly restored it without overlook-
ing any edit operations related to a class member that later
changed into the renamed class member.

However, our examination revealed the shortcomings
of operation history slicing at the same time. In creating an
OpG, our proposed mechanism tries to detect the backward-
edit and forward-edit edges that represent the impact of the
edit operations on the class members by comparing their off-
set values. This comparison can find the changes that were
performed inside each of the class members but ignores
those performed outside of it. For this reason, documen-
tation comments (e.g., Javadoc comments in most cases)
that immediately precede class member declarations are not
included in any operation history slice. In addition, if the
body of a method is divided into multiple smaller methods,
every edit operation that builds the original method is in-
cluded together in a slice for either one of the divided meth-
ods. In this case, a programmer reluctantly replays several
edit operations in which she has no interest. To construct
more accurate slices, further investigation of fine-grained
code changes is required, although useful techniques that
can improve our proposed mechanism remain unclear.

5.3.2 Performance of Implementation

All the experiments were carried out on a MacBook Pro with
an Intel Core i7 3.1GHz CPU, running on Mac OS X 10.10.4
and Eclipse 4.3.1 loaded with a Java VM (JRE 1.7.0) to
which 4GB of memory was allocated. The processing times
to extract the operation history slices in OperationSliceRe-
player were about 8, 7, and 60 seconds for App 1, App 2,
and App 3 in Exp 1, respectively. The creation of an OpG in
the OpG constructor required the most time. The process-
ing times to calculate an operation history slice in the OpG

slicer were all less than 1 second. The same results were
observed in Exp 2. This is because the current implemen-
tation of OperationSliceReplayer creates an OpG the first
time and holds information about all the nodes and edges in
the memory.

According to the results of the experiments, if a tar-
get application is built by a series of 2,000 edit operations
(its size resembles that of App 3), the current implementa-
tion has potential to complete the extraction of any opera-
tion history slice in an acceptable time period for practical
use. However, this might be a special case. A huge amount
of edit operations are expected to be recorded under large-
scale and/or long-term projects in actual software develop-
ment and evolution. To work around this realistic case, the
implementation needs to be improved in terms of speed and
space efficiency.

One challenging solution is an improved implementa-
tion that incrementally both creates an OpG every time a
snapshot of source code becomes parseable and stores its
information in the external memory. Fortunately, not ev-
ery edit operation recorded in the past will be canceled and
a new one will simply be added. Moreover, the new im-
plementation independently creates part of an OpG by ana-
lyzing edit operations between two parseable snapshots. In
other words, it only requires edit operations that were per-
formed after the immediately precedent parseable snapshot.
This allows it to flush out information about edit operations
that were already analyzed.

Once a programmer activates operation history slicing,
the new implementation loads information about the OpG
and restores it. In this case, it does not need to load all of the
information. The current implementation has already man-
aged the OpG in a hierarchical way. It consists of sub-OpGs
for respective files and ccp-change edges across them since
the change edges (except the ccp-change ones) can connect
only the nodes related to each file. At first, the new im-
plementation loads information about the ccp-change edges
across the sub-OpGs for different files and restores a sub-
OpG for a file with respect to a given slicing criteria. Then
it picks up the needed files and restores their sub-OpGs on
demand. This solution is likely to overcome the efficiency
problem since a limited number of edit operations are re-
lated to each file in most cases and also cut/copy-and-paste
actions across different files are not frequently executed.

5.3.3 Threats to Validity

Exp 1 and Exp 2 do not directly show practical benefits to
actual programmers who have to understand how existing
code has been written and modified. To obtain experimental
results that show such benefits, we must design an exper-
iment that simulates the programmers’ tasks that are per-
formed in actual software development and evolution. Un-
fortunately, this is obviously hard, and such an experiment
is likely to include threats to the internal validity. Exp 1 and
Exp 2 escape such threats and present only results in which
operation history slicing achieves automatic and accurate re-

MARUYAMA et al.: SLICING FINE-GRAINED CODE CHANGE HISTORY
685

duction of the search space to understand the existing code.
Several factors other than this reduction might bring practi-
cal benefits.

Moreover, Exp 1 and Exp 2 might include threats of
the construct validity. We have no firm evidence that the five
techniques, T1 ∼ T5, reflect typical programmers’ tasks for
understanding past code changes. Three metrics based on
these techniques (size ratio, spreading ratio, and accuracy
ratio) may not reflect the reduction of search space.

Of course, threats to the external validity exist. The
results in Exp 1 and Exp 2 were derived from only three
small-sized applications that were written by university stu-
dents. Different results would be obtained from experiments
with the operation history of code written by professional
programmers in realistic software development or evolution.
Moreover, all the applications are related to game programs
with less variation in characteristics. Experimental results
might depend on their target domains or quality. To check
whether the results in Exp 1 and Exp 2 can be generalized
to describe any situation in software development and evo-
lution, a large number of experiments with edit operations
for various applications must be made.

6. Related Work

Typical file-based version control systems (VCSs), such
as CVS [17], Subversion (SVN) [18], and Git [28], store
changes as line-based textual differences between two ver-
sions of a file that contains code and they allow program-
mers to scan them. In these systems, the collection of the
differences is considered the change history. Unfortunately,
several studies pointed out that the code changes stored in
such histories are problematic because of their incomple-
tion and imprecision [6], [11], [29], [30]. If a program-
mer changes the same code multiple times, a subsequent
code change might override an earlier one. The overrid-
den change might not be present in the history. If mul-
tiple changes are overlapped on the same piece of code,
the history cannot recover precise information about those
changes. For example, the time ordering of the changes is
unclear or a lump of code appearing at a certain moment is
broken. Programmers are required to identify the changes
that have been actually made to a particular piece of code.

Several approaches based on IDE monitoring support
programmers’ tasks in software evolution. Mylyn [31] con-
structs a task context by capturing interactions between a
programmer and her programming tools and computes a
weighted value that represents the degree-of-interest (DOI)
for each task. It reduces the amount of information the
IDE displays based on DOI values. Similarly, HeatMap [32]
highlights entities related to code by coloring based on
past navigation, modification, or deletion of entities. Nav-
Tracks [33] and Team Tracks [34] record past navigation
events that are performed on IDEs to help future program-
mers explore code. Such navigation seems to be replays of
recorded IDE operations.

With respect to the automatic recording of program-

mer operations and their visualization, Project Watcher [35]
resembles our idea. Furthermore, several techniques us-
ing the animated visualization of software history have
been proposed. Evolution Storyboard [36] consists of a se-
quence of animated panels that represent the past changes
of the structural dependency between two software artifacts.
YARN [37] generates architecture-level animations of the
changing dependency between sub-systems.

These IDE-based approaches can help programmers
understand the existing code and its evolution. However,
they do not directly replay edit operations for code per-
formed on editors in IDEs. All the recorded information
is highly abstracted during its analysis or visualization. Our
goal is to provide a mechanism and its tool that makes re-
playing past code changes more efficient. This agrees with
the goal of several studies [8], [9], [13], [14], [38], [39], in-
cluding the work mentioned in Sect. 2.1, all of which fo-
cus on replaying fine-grained code changes and help pro-
grammers understand the code and its evolution. Although
the granularity of the code changes treated in these studies
slightly differs from that of the code changes relayed in our
OperationSliceReplayer, the concept of operation history
slicing can be applied to existing replaying tools.

Regarding the change relation and its graph representa-
tion, a few challenges are closely related to our study. Alam
et al. proposed the concept of a time dependence relation
between two structural changes on code, which indicates
that one change to a code entity follows (depends on) an-
other change [40]. Their approach uses information at the
entity-level changes (changes related to functions, function
calls, variables) that are lifted from the line-level changes
stored in the code repository and constructs a time depen-
dence relation among those entity-level changes. The time
dependence relation helps programmers or managers track
accurately and timely the progress of a project. A change
impact graph (CIG) [41] and a genealogy of changes [42] are
based on a concept that closely resembles time dependence,
although they deal with code entities at different levels of
granularity. They all represent information on the temporal
dependence among code changes. From this point of view,
our operation history graph (OpG) can be considered a vari-
ant of the aforementioned graphs. A big difference is the
unit of code change. An OpG represents a dependence rela-
tion between finer-grained and more accurate code changes,
i.e., edit operations actually performed on code by program-
mers, created using offset-level mapping instead of entity-
level or line-level mapping.

Obviously, the closest study to this paper is history slic-
ing [43], [44], which extracts a set of the lines of code of
interest from the whole history of lines of code. A history
slice is computed by traversing the history graph. Each of
the vertices represents a line of code in a revision of a file.
Each edge links a vertex in one specific revision and another
vertex in its succedent revision, which is assigned using tra-
ditional line mapping techniques (e.g., [45]). The concepts
of history slicing and our operation history slicing are the
same but their mechanisms are vastly different. As men-

686
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

tioned before, our operation history slicing uses an OpG
created by offset-level mapping instead of a history graph
created by line-level mapping. Furthermore, our mapping is
applied to entities in a parseable snapshot of code without
concern for its revisions. On the other hand, history slic-
ing strongly involves the revisions of code. Consequently,
the two types of history slices have a big difference in their
properties. A history slice is simply a set of lines of code,
whereas an operation history slice is a set of edit operations,
each of which contains information on past code additions
and/or deletions. In other words, our operation history slice
is applied to code as an edit script that can then be replayed.
To demonstrate the possibility of replaying, we developed a
running implementation.

History reordering [46] also deals with edit operations
recorded by OperationRecorder, in common with our opera-
tion history slicing. However, the goal of history reordering
is not to reduce the amount of information on the history
in its understanding, but to restructure the mixed changes to
make them easier to reuse, revert, and understand.

7. Conclusion

For understanding its evolution, replaying past edit opera-
tions for code is useful but is often time-consuming. This
paper presented a mechanism of operation history slicing
that can automatically eliminate the nonessential skipping
of edit operations for class members of no interest. This
mechanism employs an operation history graph that repre-
sents the impact of edit operations on snapshots of code.

The development of OperationSliceReplayer contin-
ues. Two immediate issues remain for its enhancement. It
currently treats inner or anonymous classes as part of class
members (methods to be exact) including these classes. To
separate such classes from their respective outer class mem-
bers, nesting the offset ranges of the class members and the
classes enclosed by them will be considered.

Our future work will expand the definition of an OpG,
which currently contains only inter-snapshot dependence
relations related to code changes. However, conventional
(intra-snapshot) relations obtained from cross-referencing
information (program dependency or method call) within a
program might be valuable. For example, replaying the con-
struction of one method would likely involve replaying the
construction of another method called by the method. The
concept of time dependence relation [40] is also worth intro-
ducing into our mechanism.

Acknowledgments

This work was partially sponsored by the Grant-in-Aid
for Scientific Research (24500050, 26730042, 15H02685,
15K15970) from the Japan Society for the Promotion of Sci-
ence (JSPS).

References

[1] A. von Mayrhauser and A.M. Vans, “Program comprehension dur-

ing software maintenance and evolution,” Computer, vol.28, no.8,
pp.44–55, 1995.

[2] T.D. LaToza and B.A. Myers, “Hard-to-answer questions about
code,” Proc. PLATEAU ’10, pp.8:1–8:6, 2010.

[3] T.D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental mod-
els: A study of developer work habits,” Proc. ICSE ’06, pp.492–501,
2006.

[4] A.J. Ko, R. DeLine, and G. Venolia, “Information needs in collo-
cated software development teams,” Proc. ICSE ’07, pp.344–353,
2007.

[5] A.W.J. Bradley and G.C. Murphy, “Supporting software history ex-
ploration,” Proc. MSR ’11, pp.193–202, 2011.

[6] R. Robbes and M. Lanza, “A change-based approach to soft-
ware evolution,” Proc. ERCIM Working Group on Software Evo-
lution, Electronic Notes in Theoretical Computer Science (ENTCS),
vol.166, pp.93–109, Elsevier, Jan. 2007.

[7] P. Ebraert, J. Vallejos, P. Costanza, E.V. Paesschen, and T. D’Hondt,
“Change-oriented software engineering,” Proc. ICDL ’07, pp.3–24,
2007.

[8] R. Robbes and M. Lanza, “SpyWare: A change-aware development
toolset,” Proc. ICSE ’08, pp.847–850, 2008.

[9] L. Hattori and M. Lanza, “Syde: A tool for collaborative software
development,” Proc. ICSE ’10, pp.235–238, 2010.

[10] Y. Yoon and B.A. Myers, “Capturing and analyzing low-level events
from the code editor,” Proc. PLATEAU ’11, pp.25–30, 2011.

[11] S. Negara, M. Vakilian, N. Chen, R.E. Johnson, and D. Dig, “Is
it dangerous to use version control histories to study source code
evolution?,” Proc. ECOOP ’12, Lecture Notes in Computer Science,
vol.7313, pp.79–103, Springer Berlin Heidelberg, 2012.

[12] T. Omori and K. Maruyama, “A change-aware development en-
vironment by recording editing operations of source code,” Proc.
MSR ’08, pp.31–34, 2008.

[13] R. Robbes, D. Pollet, and M. Lanza, “Replaying IDE interac-
tions to evaluate and improve change prediction approaches,” Proc.
MSR ’10, pp.161–170, 2010.

[14] L. Hattori, M. Lungu, and M. Lanza, “Replaying past changes
in multi-developer projects,” Proc. IWPSE-EVOL ’10, pp.13–22,
2010.

[15] T. Omori and K. Maruyama, “An editing-operation replayer with
highlights supporting investigation of program modifications,” Proc.
IWPSE-EVOL ’11, pp.101–105, 2011.

[16] Y. Yoon, B.A. Myers, and S. Koo, “Visualization of fine-grained
code change history,” Proc. VL/HCC ’13, pp.119–126, 2013.

[17] “CVS — Concurrent versions system,” http://www.nongnu.org/cvs/
[18] “Apache subversion,” http://subversion.apache.org/
[19] L. Hattori, M. D’Ambros, M. Lanza, and M. Lungu, “Software

evolution comprehension: Replay to the rescue,” Proc. ICPC ’11,
pp.161–170, 2011.

[20] C. Parnin and R. DeLine, “Evaluating cues for resuming interrupted
programming tasks,” Proc. CHI ’10, pp.93–102, 2010.

[21] K. Maruyama, E. Kitsu, T. Omori, and S. Hayashi, “Slicing and
replaying code change history,” Proc. ASE ’12, pp.246–249, 2012.

[22] M. Weiser, “Program slicing,” IEEE Trans. Softw. Eng., vol.SE-10,
no.4, pp.352–357, 1984.

[23] M. Harman, S. Danicic, and Y. Sivagurunathan, “Program compre-
hension assisted by slicing and transformation,” UK Program Com-
prehension Workshop, Durham University, 1995.

[24] M.A. Storey, “Theories, methods and tools in program comprehen-
sion: Past, present and future,” Proc. IWPC ’05, pp.181–191, 2005.

[25] Eclipse.org, “Eclipse,” http://www.eclipse.org/
[26] Y. Yoon and B.A. Myers, “An exploratory study of backtrack-

ing strategies used by developers,” Proc. CHASE ’12, pp.138–144,
2012.

[27] Y. Yoon and B.A. Myers, “Supporting selective undo in a code edi-
tor,” Proc. ICSE ’15, pp.223–233, 2015.

[28] “Git,” http://git-scm.com/
[29] E. Kitsu, T. Omori, and K. Maruyama, “Detecting program changes

http://dx.doi.org/10.1109/2.402076
http://dx.doi.org/10.1109/2.402076
http://dx.doi.org/10.1145/1937117.1937125
http://dx.doi.org/10.1145/1134285.1134355
http://dx.doi.org/10.1109/icse.2007.45
http://dx.doi.org/10.1145/1985441.1985469
http://dx.doi.org/10.1016/j.entcs.2006.06.015
http://dx.doi.org/10.1145/1352678.1352680
http://dx.doi.org/10.1145/1368088.1368219
http://dx.doi.org/10.1145/1810295.1810339
http://dx.doi.org/10.1145/2089155.2089163
http://dx.doi.org/10.1007/978-3-642-31057-7_5
http://dx.doi.org/10.1145/1370750.1370758
http://dx.doi.org/10.1109/msr.2010.5463278
http://dx.doi.org/10.1145/1862372.1862379
http://dx.doi.org/10.1145/2024445.2024464
http://dx.doi.org/10.1109/vlhcc.2013.6645254
http://dx.doi.org/10.1109/icpc.2011.39
http://dx.doi.org/10.1145/1753326.1753342
http://dx.doi.org/10.1145/2351676.2351713
http://dx.doi.org/10.1109/tse.1984.5010248
http://dx.doi.org/10.1109/wpc.2005.38
http://dx.doi.org/10.1109/chase.2012.6223012
http://dx.doi.org/10.1109/icse.2015.43
http://dx.doi.org/10.1109/apsec.2013.48

MARUYAMA et al.: SLICING FINE-GRAINED CODE CHANGE HISTORY
687

from edit history of source code,” Proc. APSEC ’13, pp.299–306,
2013.

[30] K. Herzig and A. Zeller, “The impact of tangled code changes,”
Proc. MSR ’13, pp.121–130, 2013.

[31] M. Kersten and G.C. Murphy, “Using task context to improve pro-
grammer productivity,” Proc. FSE ’06, pp.1–11, 2006.

[32] D. Röthlisberger, O. Nierstrasz, S. Ducasse, D. Pollet, and R.
Robbes, “Supporting task-oriented navigation in IDEs with config-
urable HeatMaps,” Proc. ICPC ’09, pp.253–257, 2009.

[33] J. Singer, R. Elves, and M.A. Storey, “NavTracks: Supporting
navigation in software maintenance,” Proc. ICSM ’05, pp.325–334,
2005.

[34] R. DeLine, M. Czerwinski, and G. Robertson, “Easing program
comprehension by sharing navigation data,” Proc. VL/HCC ’05,
pp.241–248, 2005.

[35] K.A. Schneider, C. Gutwin, R. Penner, and D. Paquette, “Mining
a software developer’s local interaction history,” Proc. MSR ’04,
pp.106–110, 2004.

[36] D. Beyer and A.E. Hassan, “Animated visualization of software his-
tory using evolution storyboards,” Proc. WCRE ’06, pp.199–210,
2006.

[37] A. Hindle, Z.M. Jiang, W. Koleilat, M.W. Godfrey, and R.C.
Holt, “YARN: Animating software evolution,” Proc. VISSOFT ’07,
pp.129–136, 2007.

[38] R. Robbes, “Mining a change-based software repository,” Proc.
MSR ’07, pp.15–22, 2007.

[39] R. Robbes and M. Lanza, “Characterizing and understanding devel-
opment sessions,” Proc. ICPC ’07, pp.155–166, 2007.

[40] O. Alam, B. Adams, and A.E. Hassan, “Measuring the progress
of projects using the time dependence of code changes,” Proc.
ICSM ’09, pp.329–338, 2009.

[41] D.M. German, G. Robles, and A.E. Hassan, “Change impact graphs:
Determining the impact of prior code changes,” Proc. SCAM ’08,
pp.184–193, 2008.

[42] I.I. Brudaru and A. Zeller, “What is the long-term impact of
changes?,” Proc. RSSE ’08, pp.30–32, 2008.

[43] F. Servant and J.A. Jones, “History slicing,” Proc. ASE ’11,
pp.452–455, 2011.

[44] F. Servant and J.A. Jones, “History slicing: Assisting code-evolution
tasks,” Proc. FSE ’12, pp.1–11, 2012.

[45] G. Canfora, L. Cerulo, and M.D. Penta, “Identifying changed source
code lines from version repositories,” Proc. MSR ’07, pp.14–21,
2007.

[46] S. Hayashi and M. Saeki, “Recording finer-grained software
evolution with IDE: An annotation-based approach,” Proc.
IWPSE-EVOL ’10, pp.8–12, 2010.

Katsuhisa Maruyama received his B.E. and
M.E. degrees in electrical engineering and Ph.D.
in information science from Waseda University,
Japan, in 1991, 1993, and 1999, respectively.
He is a professor of the Department of Com-
puter Science, Ritsumeikan University. He has
worked for NTT (Nippon Telegraph and Tele-
phone Corporation) and NTT Communications
Corporation before he joined Ritsumeikan Uni-
versity. He was a visiting researcher at Insti-
tute for Software Research (ISR) of University

of California, Irvine (UCI). His research interests include software refac-
toring, program analysis, software reuse, object-oriented design and pro-
gramming, and software development environments. He is a member of
the IEEE Computer Society, ACM, IPSJ, and JSSST.

Takayuki Omori is a lecturer at the Depart-
ment of Computer Science, Ritsumeikan Uni-
versity. He obtained his Ph.D. in Engineering
from Ritsumeikan University in 2008. From
September 2013 to March 2014, he was a vis-
iting assistant professor at the University of
British Columbia. His current research inter-
ests include software evolution, and fine-grained
code changes in software development.

Shinpei Hayashi received his B.E. degree
in information engineering from Hokkaido Uni-
versity in 2004. He also received his M.E. and
Ph.D. degrees in computer science from Tokyo
Institute of Technology in 2006 and 2008, re-
spectively. He is currently an assistant profes-
sor of computer science at Tokyo Institute of
Technology. His research interests include soft-
ware changes and software development envi-
ronments.

http://dx.doi.org/10.1109/apsec.2013.48
http://dx.doi.org/10.1109/msr.2013.6624018
http://dx.doi.org/10.1145/1181775.1181777
http://dx.doi.org/10.1109/icpc.2009.5090052
http://dx.doi.org/10.1109/icsm.2005.66
http://dx.doi.org/10.1109/vlhcc.2005.32
http://dx.doi.org/10.1049/ic:20040486
http://dx.doi.org/10.1109/wcre.2006.14
http://dx.doi.org/10.1109/vissof.2007.4290711
http://dx.doi.org/10.1109/msr.2007.18
http://dx.doi.org/10.1109/icpc.2007.12
http://dx.doi.org/10.1109/icsm.2009.5306313
http://dx.doi.org/10.1109/scam.2008.33
http://dx.doi.org/10.1145/1454247.1454257
http://dx.doi.org/10.1109/ase.2011.6100097
http://dx.doi.org/10.1145/2393596.2393646
http://dx.doi.org/10.1109/msr.2007.14
http://dx.doi.org/10.1145/1862372.1862378

