
714
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

PAPER

Protein Fold Classification Using Large Margin Combination of
Distance Metrics

Chendra Hadi SURYANTO†a), Nonmember, Kazuhiro FUKUI†b), Fellow, and Hideitsu HINO†c), Member

SUMMARY Many methods have been proposed for measuring the
structural similarity between two protein folds. However, it is difficult to
select one best method from them for the classification task, as each method
has its own strength and weakness. Intuitively, combining multiple meth-
ods is one solution to get the optimal classification results. In this paper,
by generalizing the concept of the large margin nearest neighbor (LMNN),
a method for combining multiple distance metrics from different types of
protein structure comparison methods for protein fold classification task
is proposed. While LMNN is limited to Mahalanobis-based distance met-
ric learning from a set of feature vectors of training data, the proposed
method learns an optimal combination of metrics from a set of distance
metrics by minimizing the distances between intra-class data and enlarging
the distances of different classes’ data. The main advantage of the proposed
method is the capability in finding an optimal weight coefficient for com-
bination of many metrics, possibly including poor metrics, avoiding the
difficulties in selecting which metrics to be included for the combination.
The effectiveness of the proposed method is demonstrated on classifica-
tion experiments using two public protein datasets, namely, Ding Dubchak
dataset and ENZYMES dataset.
key words: protein fold classification, distance metrics combination, large
margin nearest neighbor, kernel learning, optimization

1. Introduction

In structural biology, comparing the similarity between pro-
tein fold structures is an important task, because proteins
with similar fold structure share the same biological func-
tions. Furthermore, the evolutionary relationship between
proteins can be inferred by structural comparison [1]. Since
the protein structures contain complex sub-structures with
large variation in the composition, comparing them is not
straightforward. Many methods have been proposed for
comparing the similarity or dissimilarity between protein
fold structures [2]–[7]. Most of them require alignment ac-
cording to the 3D protein backbone structures composed of
the folded amino acids sequences, followed by computation
of the root mean square deviation (RMSD) of the super-
imposed alpha-carbon atoms of the amino acid molecules.
However, defining an optimal alignment between the protein
structure is a difficult problem, especially when the struc-
tures are very different. Furthermore, RMSD, which is com-
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puted on the basis of the aligned and superposed structures,
is not always proportional to the number of aligned parts.
Consequently, different similarity measures have also been
proposed to complement RMSD, such as Z-Score [2] and
TM-Score [5]. The task of protein structural comparison can
also be framed as an image set comparison to avoid the diffi-
culties of alignment, by generating multiple views of protein
visualization images by using 3D graphics molecular soft-
ware. The similarity between two protein structures is then
defined by the canonical angles between the corresponding
subspaces that are generated from the image sets [7].

It is difficult to select one best method from a number
of the protein structural comparison methods. For exam-
ple, view-based methods are superior for classifying pro-
tein that have large intra-variation but have problems when
classifying proteins with very similar structures. In con-
trast, alignment-based methods are superior for differentiat-
ing very similar protein structures but inferior for comparing
very different structures [7]. This brought us to the idea of
combining multiple methods to optimize the classification
performance.

Many fusion and metric learning algorithms have been
proposed for cases in which feature vector representation
is available [8]–[14]. Unfortunately, for the case of pro-
tein structural comparison, feature vector representation is
not always available. For example, alignment methods [2]–
[6] only produce either distances or similarity values with
the aligned sub-structures. Graph-based [15] and subspace-
based representation [7] are another two examples of non-
trivial features representation for protein structures, from
which only similarity metrics can be obtained.

In this paper, we propose a combination of multiple
distance metrics for protein fold classification, illustrated in
Fig. 1. Given S distance measures {di}Si=1 (assumed to be
obtained by using multiple techniques), our task is to learn
an optimal weight coefficient w∗ ∈ RS by minimizing the
distance between samples that belong to the same class and
enlarging the distance of samples that belong to other classes
only using the sets of the distance matrices. This con-
cept is similar to that of the large margin nearest neighbor
(LMNN) [10] and closely related to the support vector ma-
chine (SVM), wherein the separation between classes is op-
timized according to convex optimization with a hinge loss
function. However, unlike SVM, which is theoretically de-
signed for two-class classification tasks, our method and the
conventional LMNN are naturally applicable to multi-class
problems. While the original LMNN learns a Mahalanobis-
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based distance metric from a set of feature vectors of train-
ing data, our proposed method learns an optimal weight co-
efficients for combination of the distance metrics from train-
ing data. The final distance, termed as overall distance, is
then defined as the linear combination of the distances that
can be used for any distance-based classification such as k-
nearest neighbor classification.

The main advantage of our proposed method is the ca-
pability in finding an optimal combination for many dis-
tance metrics, possibly including poor metrics. Accord-
ingly, when there are a number of distance measures avail-
able, we can eliminate the difficulties in selecting the ap-
propriate measures for the combination. In practice, this
property is important because the distance measure that can
perform the best on a certain data is commonly not known
beforehand.

We demonstrate the effectiveness of the proposed
method through classification experiments on 27 fold
classes of proteins using Ding Dubchak dataset [16], [17]
and six classes of protein enzymes using ENZYMES
dataset [15]. Our proposed method is closely related to mul-
tiple kernel learning (MKL) [18]–[20], where MKL com-
bines multiple kernel matrices instead of distances. There-
fore, we compared the performance of our proposed method
with generalized MKL (GMKL) [19] in addition to naı̈ve av-
eraging and voting.

We regard our current paper as an extension of our pre-
vious work [21] that introduce three loss functions for ob-
taining the optimal weights for the distance metrics combi-

Fig. 1 Basic idea of the proposed method. Let ds(Pi, P j) be the distance
between two sample proteins Pi and P j computed using method s. The
objective is to optimize the weight combination of multiple distance mea-
sures {1, . . . , S }, by minimizing the distances between each protein and its
intra-class proteins and enlarging the distances of different class proteins
under margin l, using only the sets of the distance matrices.

nation. The contributions of the present work are as follows:

• generalization of the concept of the LMNN to learn op-
timal weight coefficients for a combination of distance
metrics, as in [21];

• introduction of three loss functions to the problem for-
mulation for combining distance metrics using hinge
loss, smooth hinge loss, and logistic loss;

• comprehensive experiments on protein fold and en-
zymes classification, including performance compar-
ison with naı̈ve methods (averaging and voting) and
GMKL [19] using the public protein dataset of Ding
Dubchak [16], [17] and ENZYMES [15].

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of LMNN. Section 3 describes
how distance metrics are combined according to LMNN and
presents the formulation of LMNN using three types of loss
functions. Section 4 provides the experimental results and
discussions. Finally, Sect. 5 is devoted to the conclusion.

2. Large Margin Nearest Neighbor (LMNN)

Conventional metric learning algorithms search for a trans-
formation of feature vectors of the sample data to obtain an
optimal metric, used for task that depends on distances, such
as classification using nearest-neighbor method [22]. Many
metric learning methods have been proposed [8]–[14]. In
the following, we review LMNN [10], which is the basis of
our proposed method.

LetD = {(xi, yi)}ni=1 be a training set, where xi ∈ Rd is a
data point (a feature vector) and yi ∈ {1, 2, . . . ,C} is the class
label of xi. Then, LMNN searches for a linear transforma-
tion W : Rd → R f ( f ≤ d), ensuring that the data points in
the same class are brought closer to each other and that the
margins between different classes are made larger, as shown
in Fig. 2. The cost function to be minimized consists of two
terms as follows:

F(W) =
n∑

i=1

∑

j:y j=yi

‖W(xi − x j)‖2 +

μ

n∑

i=1

∑

j:y j=yi

∑

h:yh�yi

[
1+‖W(xi−x j)‖2−‖W(xi−xh)‖2

]
+
,

(1)

where μ > 0 is a balancing parameter between the two

Fig. 2 Illustration of how LMNN works. The small circle in the center
represents one sample data point xi. LMNN learns a transformation matrix
from a set of feature vectors of samples to pull in data points of the same
class and push out data points of different classes with a margin of one unit
distance.
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terms. The first term imposes a cost when the distances be-
tween the data points in the same class are large and the
second term imposes a cost when the distances between the
data points in different classes are smaller than the distances
to data points within the class. Here, [·]+ is the hinge loss
defined as

[x]+ =

⎧⎪⎪⎨⎪⎪⎩
x, if x > 0,

0, otherwise.
(2)

To optimize F(W), the transformation matrix W is parame-
terized as the Mahalanobis-based distance metric with a co-
variance matrix C =W�W, so that Eq. (1) becomes

F(C) =
n∑

i=1

∑

j:y j=yi

M(xi, x j)+

μ

n∑

i=1

∑

j:y j=yi

∑

h:yh�yi

[
1 +M(xi, x j) −M(xi, xh)

]
+
, (3)

where M(xi, x j) = (xi − x j)�C(xi − x j). The cost function
F(C) can be optimized using semidefinite programming or
subgradient descent [10].

3. Extending LMNN for Combining Distance Metrics

While the conventional distance metric learning aims to
learn a new distance metric through transformation of fea-
ture vectors, the goal of our proposed method is to learn
an optimal overall distance through combination of mul-
tiple distance metrics. The motivation is to deal with the
protein fold classification task where a number of protein
structural dissimilarity measures are defined without feature
vector representation in addition to dissimilarity measures
defined in vector spaces with feature vectors representation.
In the following, we reformulate Eq. (1) to work with dis-
tances instead of feature vectors.

Let the distance measure between two data points xi

and x j computed using a concrete distance function with
corresponding weight w be d(xi, x j;w). The cost function
in Eq. (1) is then rewritten as a cost function J(w):

J(w)=
n∑

i=1

∑

j:y j=yi

⎡⎢⎢⎢⎢⎢⎢⎣d2(xi, x j;w) + μ
∑

h:yh�yi

[L(i, j, h;w)]+

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(4)

L(i, j, h;w) = l + d2(xi, x j;w) − d2(xi, xh;w). (5)

The same as in Eq. (1), μ > 0 is a balancing parameter be-
tween the two terms. However, here the margin is set as a
tuning parameter l ≥ 0, while in Eq. (1) the margin is fixed
to 1. In the original formulation of LMNN [10], the distance
d was parameterized as a Mahalanobis-based distance. On
the other hand, we parameterize d as a convex combination
of multiple distance measures.

3.1 Combination of Distances

As mentioned in the introduction, methods for comparing

protein fold structures use either distances (dissimilarities)
or similarity scores to evaluate the similarity between two
proteins. Before combination of the distances or similar-
ity scores, these values need to be normalized into a dis-
tance measure with range 0 ≤ di j ≤ 1, by redefining
di j = Di j/max(D), where di j is the distance between xi and
x j, and D is the n× n distance matrix for n training samples.
Likewise, we can convert a similarity measure to a distance
measure by letting di j = 1 − (ui j/max(U)), where ui j de-
notes the similarity value between xi and x j, and U is the
n × n similarity matrix for n training samples.

The linear combination of S distance measures is writ-
ten as follows:

d(xi, x j;w) =
S∑

s=1

wsds(xi, x j), (6)

where ds(xi, x j) are the normalized distance measures be-
tween xi and x j as obtained from the multiple protein struc-
ture comparison methods. To ensure that the convexity and
S -simplex constraints are satisfied, the weight for each dis-
tance measure w = (w1, . . . , wS )� ∈ RS must satisfy

S∑

s=1

ws = 1, ws ≥ 0. (7)

Assuming that each distance ds(xi, x j) satisfies the axiom
of distance metric, i.e., non-negativity, coincidence axiom,
symmetry, and triangle inequality, Eq. (6) also satisfies the
axiom of distance metric.

3.2 Optimization for LMNN

In the following, we formulate the optimization algorithm to
obtain the optimal parameter w∗. First, Eqs. (4) and (5) are
rewritten as

J(w) = w�Mw + μ
n∑

i=1

∑

j:y j=yi

∑

h:yh�yi

[L(i, j, h;w)]+ (8)

L(i, j, h;w) = l + w�di jd�i jw − w�dihd�ihw, (9)

where

M =
n∑

i=1

∑

j:y j=yi

di jd�i j, (10)

di j = (d1(xi, x j), . . . , dS (xi, x j))
� ∈ RS , (11)

d(xi, x j;w) = w�di j. (12)

The first term in Eq. (8) is a smooth quadratic function that
can be directly optimized. In contrast, the second term con-
tains hinge loss [x]+, which is not straightforward to opti-
mize since it is not a smooth function. In the following, we
first provide an iterative algorithm to optimize Eq. (8) and
then present three approaches for solving the second term.
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Algorithm 1 Gradient based Algorithm for Minimizing
J(w)

Initialize: w0 = (1/S , . . . , 1/S ), μ > 0, l > 0, ε are set to small values,
such as 10−5 or 10−6, and M is as in Eq. (10).
repeat

w← w − ε
⎧⎪⎪⎨⎪⎪⎩Mw + μ

n∑
i=1

∑
j:y j=yi

∑
h:yh�yi

gi jh

⎫⎪⎪⎬⎪⎪⎭
Simplex projection:
for s = 1, . . . , S do

if ws < 0 then ws ← 0
end for
for s = 1, . . . , S do
ws ← ws∑S

s=1 ws

end for
until converges
Output: optimal coefficient w∗ ← w

The first approach optimizes hinge loss by using the subgra-
dient algorithm [21]. The second approach adds relaxation
to the hinge loss through smoothing the hinge loss. Finally,
the third approach replaces hinge loss with logistic loss.

3.2.1 Optimization Algorithm

Algorithm 1 provides an iterative algorithm based on the
gradient method for optimizing Eq. (8). In Algorithm 1, gi jh

is replaced with either gHL
i jh , gS HL

i jh , or gLL
i jh, which corresponds

to the gradient of the second terms when using hinge loss
(Sect. 3.2.2), smooth hinge loss (Sect. 3.2.3), or logistic loss
(Sect. 3.2.4), respectively.

3.2.2 Hinge Loss Optimization

Hinge loss [·]+ in Eq. (8) is not differentiable at the origin,
but it is possible to optimize the hinge loss by using the sub-
gradient method. The subgradient of [L(i, j, h;w)]+ is as fol-
lows [21]:

R
s � gHL

i jh =

⎧⎪⎪⎨⎪⎪⎩
2(di jd�i j − dihd�ih)w, if z > 0,

0, otherwise,
(13)

where z = L(i, j, h;w).

3.2.3 Smooth Hinge Loss Optimization

Smooth hinge loss [23] adds an intermediate criterion to the
hinge loss so that it is differentiable everywhere. Smooth
hinge loss is defined as follows:

hsmooth(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − 1
2 , if x ≥ 1,

1
2 x2, if 0 < x < 1,

0, otherwise.

(14)

By replacing [L(i, j, h;w)]+ with hsmooth(L(i, j, h;w)), the
gradient becomes

R
s � gS HL

i jh =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2(di jd�i j − dihd�ih)w, if z ≥ 1,

(2(di jd�i j − dihd�ih)w)z, if 0<z<1,

0, otherwise,

(15)

where z = L(i, j, h;w).

3.2.4 Logistic Loss Optimization

Another alternative to using hinge loss is to use logistic loss
log(1 + ex), which is convex and differentiable everywhere.
The cost function J(w) in Eq. (8), approximated by logistic
loss, is then written as follows:

w�Mw + μ
n∑

i=1

∑

j:y j=yi

∑

h:yh�yi

log(1 + ez), (16)

where z = L(i, j, h;w). The gradient of Eq. (16) is given by

R
s � gLL

i jh =
2el+w�(di j d�i j−dih d�ih)w(di jd�i j − dihd�ih)w

1 + el+w�(di j d�i j−dih d�ih)w
. (17)

3.3 Flow of The Classification Framework

Figure 3 shows the flow of the classification framework.

(1) Training Phase:

Step 1: Given n training proteins and S methods that com-
pute either similarities or distances, compute S n × n
distance matrices in which each element is normal-
ized (0 ≤ ds(xi, x j) ≤ 1).

Step 2: Find the optimal w∗ ∈ RS by using Algorithm 1.

(2) Recognition Phase:

Step 1: Given an input protein, compute S distances
(d1, . . . , dS ) between the input protein and each train-
ing protein and normalize the value similarly to that in
the training phase.

Step 2: Compute the overall distance doverall by combining
the S distances, using w∗.

Step 3: Apply k-nearest neighbor to the overall distance
doverall to predict the fold class of the input protein.

4. Experiments

To evaluate the validity of the proposed method, we con-
ducted protein fold classification experiments using Ding
Dubchak dataset [16], [17] and ENZYMES dataset [15], and
compared the results with those from conventional methods
based on averaging, voting, and GMKL [19]. The classifica-
tion performance was evaluated in terms of precision (ratio
of true positives to true positives and false positives) and
recall (ratio of true positives to true positives and false neg-
atives).

4.1 Experiments on Ding Dubchak Dataset

The Ding Dubchak dataset [16], [17] contains 27 fold
classes of 693 proteins, as shown in Table 1. We conducted
the classification experiments by combining distance met-
rics from the extracted features of the amino acid sequences
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Fig. 3 Flow of the classification framework.

Table 1 27-fold protein compositions used in the experiments.

No. Fold class # Proteins
1 Alpha; Globin-like 19
2 Alpha; Cytochrome c 16
3 DNA-binding 3-helical bundle 32
4 Alpha; Four-helical up-and-down bundle 15
5 Alpha; 4-helical cytokines 18
6 Alpha; EF-hand 15
7 Beta; Immunoglobulin-like beta-sandwich 74
8 Beta; Cupredoxins 21
9 Beta; Viral coat and capsid proteins 29

10 Beta; ConA-like lectins/glucanases 13
11 Beta; SH3-like barrel 16
12 Beta; OB-fold 32
13 Beta; beta-Trefoil 12
14 Beta; Trypsin-like serine proteases 13
15 Beta; Lipocalins 16
16 A/B; beta/alpha (TIM)-barrel 77
17 A/B; FAD (also NAD)-binding motif 23
18 A/B; Flavodoxin-like 24
19 A/B; NAD(P)-binding Rossmann-fold 40
20 A/B; P-loop nucleotide triphosphate

hydrolases 22
21 A/B; Thioredoxin-like 17
22 A/B; Ribonuclease H-like motif 22
23 A/B; alpha/beta-Hydrolases 18
24 A/B; Periplasmic binding protein-like 15
25 A+B; beta-Grasp 15
26 A+B; Ferredoxin-like 40
27 Small; Small inhibitors, toxins, lectins 39
Total 693

and the 3D structural comparison methods. The original
dataset does not contain the 3D structure of the proteins.
Therefore, we downloaded the 3D structure for each pro-
tein from ASTRAL SCOP [24] for use by the 3D structural
comparison methods. In the experiments, 18 types of simi-
larity (or dissimilarity) metrics were used. Table 2 lists all
distance metrics. We used 12 distances computed from 12
types of feature vectors extracted from the sequence of the
amino acids [17] (D-1 to D-12), 2 dissimilarity measures

from two 3D structural comparison methods (D-13 and D-
17), and 4 similarity measures from four 3D structural com-
parison methods (D-14, D-15, D-16, and D-18). All the dis-
tance measures D1 to D-18 satisfy the axiom of a metric.
Note that measures D-13 to D-18 lack of explicit feature
vector representation. Since our main focus is to validate
the effectiveness of the proposed method for metrics combi-
nation, we did not use any novel methods for computing the
distances of the features from the sequences of the amino
acids.

4.1.1 Experimental Setting

We conducted the experiments 10 times by repeatedly split-
ting the dataset into 50% training and 50% test data using
stratified random sampling and used the same 10 set of train-
ing and test data for the conventional methods and the pro-
posed methods. Since we compared the proposed method
with GMKL [19], all metrics needed to be converted to ker-
nel matrices, which are basically similarity matrices. All of
the metrics are also needed to be converted to distance ma-
trices for applying the proposed method. For GMKL, we
converted all distances into kernel matrices by using a radial
basis function exp(−d2

i j/σ). The σ was tuned by simulated
annealing, by using 5-fold cross validation of the training
data. For the proposed method, to ensure the equivalence
with those in GMKL, the obtained kernel matrices were con-
verted back to distance matrices by using the method de-
scribed in Sect. 3.1.

The parameters of the proposed method (margin l, bal-
ancing parameter μ, and k for k-NN) and GMKL were also
tuned using 5-fold cross validation of the training data. For
the proposed method, a number of balancing parameters and
margins were then prepared, with values ranging from 0.01
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to 1 in steps of 0.05. For GMKL, several step size limits
for the backtracking line-search algorithm were set as fol-
lows: upper values: 0.1, 1.0, 2.1; lower values: 0.1, 0.3, 0.9.
For the SVM used by GMKL, we also tuned the misclassi-
fication penalty, which was set to 0.5, 1, 1.5, and 2. We then
applied the proposed method to all combinations of parame-
ters with hinge loss, smooth hinge loss, and logistic loss op-
timization, and GMKL with L2 regularization. When using
averaging, voting, and the proposed method, the k-nearest
neighbor of the combined distances was used. When using
GMKL, one-against-all SVM was used.

4.1.2 Experimental Results

Firstly, as the baseline performance, classification experi-
ments were conducted for each feature and method listed in
Table 2 with k-nearest neighbor. Table 3 summarizes the
experimental results for all the features based on amino acid
sequences and methods based on the 3D structures. In the
study of protein analysis, protein fold prediction using the
features from amino acid sequences has been known to be
a very difficult task. Consequently, the classification results
when using D-1 to D-12 were poor, just as expected. In
contrast, although protein fold classification using the 3D
structure is also a challenging task, since the fold categories
are determined by the 3D geometrical structure the perfor-
mances when using D-13 to D-18 were much better than
when using D-1 to D-12. From Table 3, we can also confirm
that the scoring used in the protein structure comparison, ei-
ther similarity or dissimilarity, could significantly affect the
classification results. For example, when using CE [2], [6],

Table 2 List of similarity and dissimilarity metrics used in the exper-
iments. Metrics D-1 to D-12 are based on the feature extraction of the
protein sequences [16], [17]; D-13 to D-18 are similarity (or dissimilarity)
measurements based on the 3D protein structures.

Name Type Features or methods
D-1 Euclidean distance Amino acid composition
D-2 Euclidean distance Predicted 2nd structure
D-3 Euclidean distance Hydrophobicity
D-4 Euclidean distance van der Waals Volume
D-5 Euclidean distance Polarity
D-6 Euclidean distance Polarizability
D-7 Euclidean distance Pse Amino Acid-1
D-8 Euclidean distance Pse Amino Acid-4
D-9 Euclidean distance Pse Amino Acid-14

D-10 Euclidean distance Pse Amino Acid-30
D-11 Euclidean distance SW BLOSUM62
D-12 Euclidean distance SW PAM50
D-13 RMSD dissimilarity CE [2], [6]
D-14 Z-Score similarity CE [2], [6]
D-15 Canonical angles similarity CMSM [21]
D-16 FATCAT similarity FATCAT [4], [6]
D-17 RMSD dissimilarity TM-Align [5]
D-18 TM-Score similarity TM-Align [5]

Table 3 Average precision (Prec.) and recall (Rec.) [%] for each baseline feature and method.

D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 D-9 D-10 D-11 D-12 D-13 D-14 D-15 D-16 D-17 D-18
Prec. 42.4 36.6 27.8 30.9 28.2 24.9 35.0 33.8 30.1 27.8 51.4 48.1 86.6 92.7 75.3 92.4 83.3 98.8
Rec. 38.2 37.4 24.9 25.5 25.1 21.8 32.1 29.0 23.9 20.4 44.8 43.5 83.4 92.2 74.2 91.2 59.9 98.7

the recall when using RMSD (D-13) was 83.4%, but when
using the Z-Score (D-14) the recall improved to 92.2%.
When using TM-Align, the recall when using RMSD (D-17)
was only 59.9%. In contrast, when using TM-Score (D-18),
the performance significantly improved to 98.7%.

Secondly, we used several combinations of the distance
matrices to demonstrate both the effectiveness and limita-
tions of the proposed method, and compared the results with
naı̈ve methods such as averaging, voting, and GMKL [19]
as the representative method from multiple kernel learning
based algorithm. We did not compare our method with the
conventional feature-based distance metric learning meth-
ods [8]–[14] because of the unavailability of the explicit fea-
ture vectors. Tables 4 and 5 show the combinations of dis-
tance matrices and the classification results for each method,
respectively. In Table 5, HL, SHL, and LL are the proposed
methods using hinge loss, smooth hinge loss, and logistic
loss, respectively. In the following, we discuss the perfor-
mance of each method shown in Table 5.

When using averaging, which is basically the same as
using a uniform weight (each entry of w is 1/S , where S
is the number of the distances) to combine the distances,
the performance was significantly affected by the number of
good distance metrics. For example, when all the distance
metrics were from the 3D structure-based method (com-
bination C-4), the averaging method achieved high preci-
sion (97.0%) and recall (96.4%). However, when the met-
rics from both amino acid sequence and 3D structure based
methods were combined, averaging performed poorly com-
pared with the other methods.

The voting-based method uses the most votes among
the distance metrics to determine the fold category of an in-
put protein. The overall performance of the voting-based
method was better than that of averaging, but voting also
requires a majority of the distance metrics to have good
accuracy. The performance of the voting method was bet-
ter than averaging when multiple distance metrics from 3D
structure-based methods were included (combinations C-3).

Multiple kernel learning is known to be the most
widely used method for combination of metrics. When

Table 4 Combinations of distance matrices.

D-1 to 3D structure based
Comb. D-12 D-13 D-14 D-15 D-16 D-17 D-18

C-1 �
C-2 � �
C-3 � � � � � � �
C-4 � � � � � �
C-5 � �
C-6 � � �
C-7 � � � �
C-8 � � � � �
C-9 � � � � � �
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Table 5 Average classification results in term of precision and recall [%] for combinations of distance
matrices. HL, SHL, and LL stand for hinge loss, smooth hinge loss, and logistic loss, respectively. Bold
text indicates the best precision or recall among the methods.

Precision Recall
Averaging Voting GMKL Ours Averaging Voting GMKL Ours

[19] HL SHL LL [19] HL SHL LL
C-1 52.3 58.0 58.0 51.0 51.5 50.6 41.3 50.3 54.8 45.6 45.9 42.2
C-2 63.8 67.7 86.6 99.0 98.7 98.1 54.0 59.5 84.4 98.9 98.6 98.0
C-3 89.4 91.4 97.6 98.8 98.5 97.8 87.0 88.3 97.4 98.7 98.3 97.5
C-4 97.0 97.0 92.5 98.8 98.4 97.3 96.4 96.5 92.3 98.7 98.2 96.8
C-5 65.8 66.1 86.0 90.1 90.2 90.4 55.2 58.3 84.4 89.2 89.2 89.5
C-6 75.5 75.4 93.1 95.4 95.9 95.7 67.1 68.3 92.3 95.0 95.6 95.4
C-7 76.9 78.5 92.5 96.0 96.1 95.9 69.5 71.5 91.7 95.7 95.8 95.6
C-8 79.4 86.1 93.4 96.3 96.3 96.0 72.5 80.6 92.8 96.0 96.0 95.7
C-9 85.8 87.9 96.5 96.8 96.5 96.4 81.6 82.9 96.2 96.4 95.9 95.9

Table 6 Average precision and recall [%] for combination C-1 using
LMNN, SVM, and random forest (RF).

Precision Recall
Voting Concatenation Voting Concatenation

LMNN 61.78 56.25 53.04 52.50
SVM 63.74 59.66 32.18 38.50
RF 63.86 63.48 46.18 52.41

GMKL [19] was used, the classification results improved
significantly compared to results with the averaging and vot-
ing. For combination C-1, GMKL outperformed the other
methods. However, the results for the other combinations
were worse than with the proposed method. For compar-
ison purpose, Table 6 shows the experimental results using
original LMNN, SVM, and random forest (RF) for combina-
tion C-1 where feature representations were available. The
combination was done by either voting or concatenation of
the feature vectors. In voting-based method, the LMNN,
SVM, or RF was first applied to each type of the features
in the combination C-12 and then the final classification re-
sults were decided through voting among the 12 distances.
In concatenation method, all feature vectors were first con-
catenated. Then, the LMNN, SVM, or RF was applied to
the concatenated features. For SVM, we tested using linear,
quadratic, and third degree polynomial kernel, where we re-
ported the best results which were produced with quadratic
kernel. For the RF, the number of trees was empirically set
to 1000. When using voting-based method, all the meth-
ods obtained higher precisions than that of GMKL, where
the highest precision of 63.86% was obtained by using ran-
dom forest. With concatenation of the features before ap-
plying each method (LMNN, SVM, and RF), the precisions
decreased. However, in term of recall, the performance
of GMKL was still better than the performance of LMNN,
SVM, and RF with either voting-based method or concate-
nation of the feature vectors.

The proposed method was used together with the three
types of loss functions described in Sect. 3.2. The overall
performances for the three loss functions were compara-
tively similar to one other. Although LMNN-based meth-
ods did not perform well for combination C-1, the precision
and recall for the proposed method with smooth hinge loss
(SHL) were slightly better than the best results from the sin-

Fig. 4 Error rates for combination C-3.

Table 7 The p-value of the t-test for single measure D-18 and combina-
tion C-3.

D-18 GMKL HL SHL LL
D-18 - 0.0046 0.7351 0.2693 0.0007

GMKL 0.0046 - 0.0005 0.0265 0.6470
HL 0.7351 0.0005 - 0.0661 0.0002

SHL 0.2693 0.0265 0.0661 - 0.0081
LL 0.0007 0.6470 0.0002 0.0081 -

gle measure (D-11). In the case when the combination con-
sists of distances from both amino acid sequence features
and 3D structure-based methods, the proposed method out-
performed averaging, voting, and GMKL. This suggests that
when distance metrics are very different in terms of perfor-
mance, our method is still able to find the optimal weights
for combination. In combination C-2, where there were 12
poor distances with one very good distance measure, the
proposed method with hinge loss could still achieve preci-
sion and recall comparable to the single measure of D-18.

Figure 4 shows the boxplot of the error rate for combi-
nation C-3. Table 7 shows the p-value of the t-test for the 10
repeated experiments using the proposed method with com-
bination C-3, GMKL, and the single measure D-18. From
the Table 7, we can conclude that with more than 95% con-
fidence (p = 0.0005) the proposed method using hinge loss
performed better than that of the GMKL. The t-test results
show that the combination of all 18 distances using the pro-
posed method with hinge loss and smooth hinge loss per-
formed the same as the single measure D-18. This points
to the capability of the proposed method in finding an opti-
mal combination when combining heterogeneous metrics to
eliminate the necessity for preselecting the distance metrics.
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Table 8 Average computational time and iterations for the proposed
methods and GMKL for combination C-3.

HL SHL LL GMKL
Time (in secs) 11.05 148.88 133.59 628.63

Iteration 80 131 60 -

Fig. 5 Costs imposed by hinge loss (HL), smooth hinge loss (SHL), and
logistic loss (LL).

4.1.3 Computational Time and Further Discussion

Table 8 compares the average computational time and itera-
tion required for the proposed method and GMKL to com-
plete the optimization for combination C-3. The experi-
ments were conducted using Intel Xeon E5-2630 2.3 Ghz
with 32 GB RAM. The proposed methods were imple-
mented using Matlab, while the computation of the cost
function and gradient for smooth hinge loss and logistic
loss were implemented using C. When using the proposed
method with hinge loss optimization, one experiment can
be completed in a relatively short time, this is because the
computation of the subgradient is very simple. With smooth
hinge loss, more iterations were required before conver-
gence, which points to the longer computational time. Lo-
gistic loss required the least iterations to converge. How-
ever, since it requires to compute exponential function in
each iteration, the average computational time was longer
than that of the hinge loss. For GMKL, we used the pub-
licly available Matlab code from [19] that uses the quadratic
programming function from Matlab optimization toolbox.
Average computational time of GMKL was 628.63 seconds.
GMKL was basically fast, except for the case when con-
vergence solution could not be obtained. In that case, we
used active-set method in quadratic programming, which
can deal with non-convex problem with the trade-off in com-
putational time.

Next, we conducted 10 repeated experiments for com-
bination C-1, C-2, C-3, and C-4 by using hinge loss with
random initial weights instead of equal weights. For com-
bination C-3, the average precision and recall were 98.7%
and 98.6%, respectively. For combination C-4, the average
precision and recall were both 98.7%. For combination C-2,
the average precision and recall were 99.0% and 98.9%, re-
spectively. For combination C-1, the average precision and
recall were 50.6% and 45.3%, respectively. By comparing
these results with those in Table 5, we can see that the pro-
posed method is not largely affected by the initial weights.

Finally, we discuss the characteristics of the hinge loss,

Table 9 Average of optimal weight coefficients [%] for combination C-
3, obtained by hinge loss (HL), smooth hinge loss (SHL), and logistic loss
(LL) over the 10 repeated experiments.

Distances HL SHL LL
D-1 3.06 ± 0.11 0.89 ± 0.03 4.20 ± 0.00
D-2 1.61 ± 0.04 0.77 ± 0.03 2.37 ± 0.00
D-3 0.41 ± 0.01 0.27 ± 0.01 2.56 ± 0.00
D-4 0.17 ± 0.00 0.24 ± 0.01 2.42 ± 0.00
D-5 0.00 0.24 ± 0.01 2.55 ± 0.00
D-6 0.00 0.26 ± 0.01 2.01 ± 0.00
D-7 0.10 ± 0.00 0.23 ± 0.00 2.86 ± 0.00
D-8 0.05 ± 0.00 0.21 ± 0.00 2.30 ± 0.00
D-9 0.00 0.18 ± 0.00 1.07 ± 0.00
D-10 0.00 0.00 2.20 ± 0.01
D-11 0.45 ± 0.01 0.37 ± 0.01 0.52 ± 0.00
D-12 0.00 0.28 ± 0.01 0.19 ± 0.00
D-13 3.03 ± 0.06 4.88 ± 0.25 17.63 ± 0.02
D-14 3.78 ± 0.22 4.63 ± 0.38 16.22 ± 0.01
D-15 18.92 ± 2.70 24.14 ± 4.75 8.16 ± 0.02
D-16 0.32 ± 0.01 0.48 ± 0.02 3.85 ± 0.00
D-17 4.39 ± 0.24 4.10 ± 0.28 13.06 ± 0.01
D-18 63.72 ± 5.45 57.83 ± 7.97 15.85 ± 0.01

smooth hinge loss, and logistic loss. Figure 5 shows how
the costs imposed by the hinge loss were smoothened by
smooth hinge loss and logistic loss. Table 9 shows the op-
timal weight coefficients when combining all distance met-
rics (combination C-3) using each loss function. Hinge loss
tends to sparsely pick up the metrics, where the majority of
the weights were given to D-18 (63.72%). Although D-15
performed worse than other 3D structure based method (see
Table 3), the average weight for D-15 was 18.92%, which
were higher than the other distances. This suggests that the
proposed method can selectively adjust the weight for the
most optimal combination. When using hinge loss, there
were five distances with zero weights (D-5, D-6, D-9, D-10,
and D-12). Smooth hinge loss also put most of the weights
to D-18 (57.83%). However, smooth hinge loss considered
more distance metrics than hinge loss whereas only D-10
had zero weight. When the cost function used logistic loss,
all of the distance metrics were used. This suggests that
using smooth loss functions, such as smooth hinge loss or
logistic loss, the weights were more uniformly distributed
over the available distance metrics.

4.2 Experiments on ENZYMES Dataset

In this experiment, we conducted classification experiments
on ENZYMES dataset that contains six classes of protein
enzymes (100 proteins in each class), where a graph-based
representation is used to represent each protein [15]. Since
it is not trivial to combine graph-based representation, con-
ventional feature combinations and metric learning cannot
be used. We combined three types of graph-based kernel
matrices: the Weisfeiler-Lehman based subtree kernel [25],
propagation based graph kernel [26], and GraphHopper ker-
nel [27]. We conducted three repeated experiments by ran-
domly selecting 30% of samples in each class as training
and the rest as testing. When using the proposed method,
the kernel matrices were converted into distance matrices as
in the previous experiments with the Ding Dubchak dataset
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Table 10 Summary of the classification results in term of precision and
recall [%] for ENZYMES dataset. Bold text indicates the best results
among the methods.

Method Precision Recall
Single metric (k-NN):
- GraphHopper [25] 55.3 54.4
- Propagation [26] 19.6 18.3
- Weisfeiler-Lehman [27] 31.8 27.5
Combination:
- Averaging (k-NN) 53.2 46.9
- Voting (k-NN) 52.7 31.7
- GMKL (SVM) 55.6 50.1
Ours (fixed step size, 1-NN):
- Hinge loss 55.3 54.4
- Smooth hinge loss 55.3 54.4
- Logistic loss 53.7 52.7
Ours (with Armijo rule, 1-NN):
- Hinge loss 54.2 53.4
- Smooth hinge loss 55.8 54.9
- Logistic loss 53.1 52.4

and fixed value of k = 1 for the k-NN was used. When using
GMKL, the kernel matrices were directly used. The param-
eters for the proposed methods and the GMKL were tuned
in the same manner as in the previous experiments. In addi-
tion to the use of the fixed value for step size in the proposed
methods (ε = 10−5), we also used an adaptive step size by
using Armijo rule [28]. We reported the experimental results
based on the average of the three repeated experiments.

4.2.1 Experimental Results

Table 10 summarizes the experimental results. By using
k-NN, the classification results using each kernel were rel-
atively low. With averaging and voting, the performance
were worse than those with the GraphHopper kernel which
has 55.3% precision and 54.4% recall. When using GMKL,
the precision was slightly better than that of GraphHopper,
while the recall was not as bad as the averaging and voting.
When using the proposed method with fixed step size, the
hinge loss and smooth hinge loss put weight only to Graph-
Hopper kernel, resulting the same performance as Graph-
Hopper kernel. With Armijo rule, the proposed method with
smooth hinge loss could slightly improve the performance
of the GraphHopper kernel, where the precision and recall
were improved to 55.8% and 54.9%, respectively. These re-
sults suggest that the proposed method can still effectively
deal with distance metrics that have poor performance.

5. Concluding Remarks

In this paper, we proposed a method that finds optimal com-
binations of distance metrics for protein fold classification
task by generalizing the concept of LMNN for combining
multiple distance metrics. LMNN was originally proposed
for learning Mahalanobis-based distance metric from a set
of feature vectors of sample data. On the other hand, our
objective is to find an optimal combination of distance met-
rics from multiple protein structural measurement methods,
where natural feature vector representation is not always
available. The final distance, termed as overall distance,

is then defined as a linear combination of the multiple dis-
tance measures. The convex optimization problem is solved
by using an iterative algorithm based on the subgradient and
gradient methods; for this we adopted three types of loss
functions: hinge loss, smooth hinge loss, and logistic loss.
The effectiveness of the proposed method was demonstrated
through classification experiments using the Ding Dubchak
dataset and ENZYMES dataset, where the proposed method
outperformed the naive conventional methods and GMKL.
In particular, the proposed method could effectively find an
optimal combination for distance metrics with very differ-
ent performance. Thus, we can avoid the difficulties in pre-
selecting distance metrics among a number of available dis-
tance metrics. However, an analyst should make an effort
to make a list of possible distance measures before apply-
ing the proposed method. If there is no single good measure
is included in the list of the metrics, the proposed method
may not work effectively. In contrast, it is not a big problem
if many poor metrics exist in the list because the proposed
method can construct an optimal combination of poor met-
rics and good metrics.

To further improve the performance of the proposed
method, imposing a locality neighborhood constraint by
considering only the instances in a close region [10] is one
direction of our future works. To impose explicit locality,
another direction is by imposing different weights for differ-
ent region ranges, as in the local metric learning [29], to our
problem formulation. Since the proposed method is techni-
cally generic, we will also consider applying the proposed
method to different classification tasks other than the protein
fold classification problem.
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