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Non-Convex Low-Rank Approximation for Image Denoising and
Deblurring

Yang LEI†a), Zhanjie SONG†, Nonmembers, and Qiwei SONG†, Student Member

SUMMARY Recovery of low-rank matrices has seen significant activ-
ity in many areas of science and engineering, motivated by theoretical re-
sults for exact reconstruction guarantees and interesting practical applica-
tions. Recently, numerous methods incorporated the nuclear norm to pur-
sue the convexity of the optimization. However, this greatly restricts its
capability and flexibility in dealing with many practical problems, where
the singular values have clear physical meanings. This paper studies a gen-
eralized non-convex low-rank approximation, where the singular values are
in lp−heuristic. Then specific results are derived for image restoration, in-
cluding denoising and deblurring. Extensive experimental results on natu-
ral images demonstrate the improvement of the proposed method over the
recent image restoration methods.
key words: low-rank approximation, nuclear norm, image restoration,
non-convex optimization

1. Introduction

Low-rank approximation, as a dimensionality reduction
technique for data analysis, which aims to recover the un-
derlying low-rank matrix from its degraded observation, is
taking on increasing importance in myriad applications such
as machine learning, control, and computer vision. In var-
ious low-level vision tasks such as image restoration, the
matrix formed by nonlocal similar patches collected from
natural images is of low-rank, i.e., the low-rank prior ex-
ists to characterize the nonlocal self-similarity for a wide
range of natural images [1]–[3]. Although a flurry of studies
on low-rank matrix approximation have been reported due
to the rapid development of convex and non-convex opti-
mization techniques, comparatively little attention has been
paid to low-level vision. In this paper, we intend to concen-
trate on a generalized non-convex low-rank approximation
approach to the image restoration problem.

The literature on low-rank matrix approximation with
respect to the Frobenius norm falls into two categories: the
low-rank matrix factorization (LRMF) methods [3]–[6] and
the nuclear norm minimization (NNM) methods [7]. In
the presence of noise-corrupted observation, LRMF aims
to find a matrix, which can be factorized into the product
of two low-rank matrices. The subject of matrix factoriza-
tion has been extensively studied, ranging from the classical
singular value decomposition (SVD) to the many l1-norm
robust LRMF algorithms. Unfortunately, LRMF is gen-

Manuscript received August 6, 2015.
Manuscript revised December 24, 2015.
Manuscript publicized February 4, 2016.
†The authors are with Tianjin University, China.

a) E-mail: lei000yang@sina.com (Corresponding author)
DOI: 10.1587/transinf.2015EDP7307

erally time consuming due to the non-convexity and very
sensitive to initialization. By employing the nuclear norm
as a convex surrogate for the non-convex LRMF problem,
NNM has been attracting great research interest in recent
years [7]. Recent progress [8] proves that NNM can re-
cover most low-rank matrices by singular value threshold-
ing (SVT) method under some general constraints. While
many researchers have investigated NNM, it still has some
problems in practice. Compared to the basic rank function
in which all nonzero singular values have equal contribu-
tions, the standard nuclear norm treats each singular value
by adding them together. This ignores the prior knowledge
we often have on the matrix’s singular values. For instance,
in the application of computer vision, the column vectors
in the matrix often lie in a two-dimensional subspace, the
larger singular values are generally associated with the ma-
jor projection orientations, and thus they should be shrunk
to a lesser extent to preserve the major data components. Hu
et al., [9], proposed a truncated nuclear norm regularization
(TNNR) method, which is given by the nuclear norm sub-
tracted by the sum of the largest few singular values. How-
ever, TNNR is not flexible enough since it makes the deci-
sion of whether to regularize a singular value or not. To im-
prove the flexibility of nuclear norm, Gu et al., [3] proposed
the weighted nuclear norm method (WNNM) and study its
minimization. However, this kind of relaxation suppresses
the low-rank components and shrinks the reconstructed data.

Note that when X is restricted to be a diagonal matrix,
the nuclear norm minimization problem reduces to the com-
pressed sensing problem. Wang et al., [10] proved that in
sparse compressed sensing lp-norm minimization is more
like l0-norm minimization than l1-norm. Actually, both the-
oretical analysis and numerical experiments have shown that
the solution of lp-norm sparse coding (0 ≤ p < 1) is close
to that of the l1-minimization and it is sparser. In image
restoration, it has been shown that the image gradients of the
natural images can be better modeled with hyper-Laplacian
distribution with 0.5 ≤ p ≤ 0.8 [27]. This work, following
previous research, studies in detail a generalized non-convex
heuristic defined by J(X; p) :=

∑
i |σi(X)|p, (0 ≤ p ≤ 1).

Based on a generalized singular value thresholding (GSVT)
operator, the proposed non-covnex low-rank (NCLR) algo-
rithm is as efficient as that of the NNM problem, and greatly
improves the flexibility of WNNM.

The contribution of this paper is threefold. First, we an-
alyze in detail the non-covnex low-rank optimization prob-
lem and provide the solutions by generalized singular value
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thresholding operator. Second, we adopt the proposed
NCLR algorithm to image restoration to demonstrate its
great potentials in low level vision applications. Third the
experimental results showed that NCLR outperforms state-
of-the-art image restoration algorithms not only in PSNR
index but also in local structure preservation, leading to vi-
sually more pleasant outputs.

2. Related Work

As reviewed to the Sect. 1, various algorithms have been
proposed for the low-rank approximation. Based on the
problems in nuclear norm minimization, we provide a brief
survey and discussion on NNM [7] and WNNM [3]. The nu-
clear norm of a matrix X, denoted by ∥X∥∗, is defined as the
sum of its singular values, i,e,. ∥X∥∗ =

∑
i |σi(X)|1, where

σi(X) means the i-th singular value of X. Given matrix Y ,
NNM aims to approximate Y by X, while minimizing the
nuclear norm of X,

min
X
λ
∑

i

|σi(X)| + 1
2
∥X − Y∥2F , (1)

where λ is a positive constant. Theoretical studies showed
that the nuclear norm is the tightest convex lower bound of
the rank function of the matrices [11]. The relationship be-
tween nuclear norm and the rank of matrices is similar to the
relationship between the l1-norm and the l0-norm of vectors.
Cai et al., [7] proved that the NNM based low-rank ma-
trix approximation problem with F-norm data fidelity can
be easily solved by a soft-thresholding operator on the sin-
gular values of observation matrix i.e., X̂ = USλ(Σ)VT ,
where Y = UΣVT is the SVD of Y and Sλ(Σ) is the soft-
thresholding function on diagonal matrix Σ with parameter
λ. The above singular value thresholding (SVT) method has
been widely adopted to solve many NNM based problems,
such as matrix completion, robust principle component anal-
ysis (RPCA), low-rank textures, and low rank representation
(LRR) for subspace clustering.

Gu et al., [3] proposed the WNNM method to improve
the flexibility of nuclear norm. The weighted nuclear norm
of a matrix X is defined as ∥X∥w,∗ =

∑
i |wiσi(X)|, where

w = [wi, . . . , wn] is a non-negative weight vector assigned to
σi(X).

min
X
λ
∑

i

wi|σi(X)| + 1
2
∥X − Y∥2F , (2)

The weighted nuclear norm minimization (WNNM) is not
convex in general case, and it is more difficult to solve
than NNM. So far little work has been reported on the
WNNM problem. Gu et al analyzed the WNNM optimiza-
tion problem in detail and provide the solutions under dif-
ferent weight conditions (see [3]) Unfortunately, WNNM
suppresses the low-rank components and shrinks the recon-
structed data, and was only used in image denoising.

In order to improve the capability and flexibility in
dealing with image restoration problems, we consider a

generalized non-convex low-rank (NCLR) approximation in
this paper. The remainder of this paper is organized as fol-
lows. Section 3 investigates the NCLR algorithm with non-
convex low-rank regularization. Section 4 presents the mod-
eling of image restoration, and then provides the proposed
NCLR algorithm for solving the image restoration problem.
Some numerical results on both simulated and real data are
given in Sect. 5. Section 6 summarizes our work.

3. The Basic Non-Convex Low-Rank Minimization

In this section, we study a novel and general regularization
defined by J(X; p) :=

∑
i |σi(X)|p (0 ≤ p ≤ 1), the NCLR

optimization can be expressed as follows:

min
X

1
2
∥Y − X∥2F + λJ(X; p). (3)

Before proceeding with the solution of the NCLR we estab-
lish a key result (see Theorem 1 below) that will be crucial
for the NCLR.

Theorem 1: For any Y ∈ Rm×n, m ≥ n, and let Y =
UΣVT be the singular value decomposition of Y , where Σ =(

diag (σ1, σ2, . . . , σn)
0

)
. The solution of the non-convex

problem in (3) can be expressed as X̂ = UDVT , where

D =

(
diag (d1, d2, . . . , dn)

0

)
is a diagonal non-negative ma-

trix and (d1, d2, . . . , dn) is the solution of the following non-
convex optimization problem:

min
d1,d2,...,dn

n∑
i=1

1
2

(di − σi)
2 + λ|di|p. (4)

(The proof of Theorem 1 see Appendix.)
In [12] the author proposed a generalized soft-

thresholding (GST) function for solving the non-convex
lp−minimization problem min

x

1
2 (y − x)2+λ|x|p with 0 ≤ p ≤

1,

DG
p (y; λ)=

{
0 if |y| ≤ τGp (λ)

sgn(y)SG
p (|y| ; λ) if |y| > τGp (λ)

(5)

where τGp (λ) = (2λ(1 − p))1/(2−p) + λp(2λ(1 − p))(p−1)/(2−p),

and SG
p (|y| ; λ) is obtained by solving SG

p (|y| ; λ) − y +
λp

(
SG

p (|y| ; λ)
)p−1
= 0. Following the research of [12], the

optimization solution of (3) can be expressed by

X̂ = UGp
λ(Σ)VT , (6)

where Y = UΣVT is SVD of Y , and Gp
λ(Σ) is the general-

ized singular value thresholding (GSVT) operator Gp
λ(Σ)ii =

DG
p (Σii; λ). In fact the convergence of the GST operator is

analyzed in [12]. It is also applied in this non-convex low-
rank scenario. In [12], a generalized iterated shrinkage al-
gorithm (GISA) was proposed for lp−norm minimization.
GISA was used to solve the vector optimization with a fixed
redundant matrix for sparse coding based image restoration.
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However, in this paper, the redundant matrix for sparse rep-
resentation is unfixed. We propose a novel low-rank opti-
mization framework in Eq. (3) to simultaneously learn the
adaptive redundant matrix and the sparse coefficients. On
the one hand, the novel framework extend NNM to a non-
convex relaxation which depends on the sum of singular val-
ues in lp−based heuristic J(X; p). The extended GST op-
erator in Eq. (6) is derived to solve the new objective and
followed by the rigorous theoretical proof in Appendix. On
the other hand, by blocking the vectorized nonlocal simi-
lar image patches into an approximate low-rank matrix, in
Sect. 4.1, NCLR is used to simultaneously learn the patch-
wise sparse coefficients and the adaptive sub-dictionary.

4. NCLR for Image Restoration

As important applications, in this section we adopt the
proposed NCLR algorithm to the classic image restoration
problem: an ideal image x is measured in the presence of a
linear system with an additive zero-mean white and homo-
geneous Gaussian noise

y = Hx + n, (7)

where y is the observed measurement, H is a degradation
matrix, x is the unknown original image vector and n is the
additive noise vector with standard deviation σn. With dif-
ferent settings of degradation matrix, Eq. (7) can represent
different IR problems: when H is an identity matrix, the
problem is image denoising; and the problem becomes de-
blurring when H is specified by a blurring kernel[13]–[15].
Image restoration is not only an important pre-processing
step for many vision applications, but also an ideal test bed
for evaluating statistical image modeling methods. The sem-
inal work of nonlocal means [16] triggers the wide study
of nonlocal self-similarity (NSS) based methods for image
restoration. NSS refers to the fact that there are many re-
peated local patterns across a natural image, and those non-
local similar patches to a given patch can help much the
reconstruction of it. Recently, efforts have been made to
improve the restored image quality by exploiting the NSS,
such as the nonlocal means (NLM) methods [17], Block-
matching 3D filtering (BM3D) [18], [19], centralized sparse
representation (CSR) [20] and nonlocal centralized sparse
representation (NCSR) [21]. Intuitively, by stacking the
nonlocal similar patch vector into a matrix, this matrix
should be a low-rank matrix and has sparse singular val-
ues. This assumption is validated by Wang et al., [17] where
they called it the nonlocal spectral prior. In [1], Dong et
al., combined NNM and L2,1−norm group sparsity for im-
age restoration, and demonstrated very competitive results.
In [2], a simultaneous sparse coding (SSC) scheme was pro-
posed to code similar patches simultaneously and achieved
impressive restoration results. In this section, we introduce
the use of NCLR to solve the SSC model.

4.1 Simultaneous Sparse Coding by NCLR

Instead of sparsely coding each patch individually, the pre-
vious NNM model simultaneously codes a set of patches.
Mathematically, the model can be expressed as follows:

(Ui,Ai) = arg min
Ai

{
∥Xi − UiAi∥2F + τiJ(Ai)

}
(8)

where Xi = [xi,1, xi,2, . . . , xi,m] ∈ Rn×m, Ai =

[αi,1, αi,2, . . . , αi,m] ∈ Rn×m denote dataset and sparse coeffi-
cients matrix, respectively [16], Ui ∈ Rn×m denotes the dic-
tionary, τi is a regularization parameter and J(Ai) denotes
the regularization term. The dataset Xi is constructed by
grouping the K-nearest-neighbor (K-NN) nonlocal similar
patches to xi,1 (i.e., m = K + 1). In this paper, J(Ai) is de-

fined as J(Ai) = ∥Ai∥p,q =
n∑

l=1

∥∥∥Al
i

∥∥∥p

q
with 0 ≤ p ≤ 1 and

q = 2, where Al
i denotes the vector of the l-th row of matrix

Ai. Note that, if p = 1, model in Eq. (8) will be recast to the
conventional NNM model in Eq. (2). In Sect. 5.1 we show
that 0.6 ≤ p ≤ 0.8 is better than that with p = 1 in terms of
suppressing noise.

Suppose σi,l denotes the standard deviation of the
sparse coefficients Al

i in the l-th row, then

J(Ai) =
n∑

l=1

ωi,l

 m∑
k=1

αi,k(l)2

p/2

=

n∑
l=1

mp/2σ
p
i,l. (9)

Substituting Eq. (9) into Eq. (8), we obtain the follow-
ing

(Ui,Ai) = arg min
Ai

∥Xi − UiAi∥2F + τim
p/2

n∑
l=1

σ
p
i,l. (10)

Now we consider the decomposition of the matrix
Ai first appeared in [11]: given a diagonal matrix Λi =

diag{λi,1, λi,2, . . . , λi,r} and a matrix Vi ∈ RK×r defined as
vi,l =

1
λi,l

(Al
i)

T , r = max {n,m}, then Ai = ΛiVT
i . Due to the

unitary property of vi,l, we have

mσ2
i,l = ∥Al

i∥22 = ∥λi,lvT
i,l∥22 = λ2

i,l. (11)

Following Eq. (10) and Eq. (11),

(Ui,Λi,Vi)=arg min
Ui,Λi,Vi

∥∥∥Xi−UiΛiVi
T
∥∥∥2

F
+τi

r∑
l=1

λ
p
i,l(12)

where λi,l and vi,l denote the l-th singular value and l-
th column of matrix Vi, respectively. Equation (12) is a
non-convex low-rank approximation problem which can be
solved by the proposed GSVT operator (see Eq. (6)). The
sparsity of Λi enforce the coding coefficients of exemplar
patch to be spatially sparse.

4.2 Adaptive Regularization Parameter

An important issue of the NNM is the selection of the regu-
larization parameters τi. According to previous subsection,
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the sparsity of Ai = ΛiVi is equivalent to the non-convex
regularization of the sparse coefficients, i.e.,

αi = arg min
αi

m∑
j=1

(∥∥∥xi, j − Uiαi, j

∥∥∥2

2
+ τi∥αi, j∥pp

)
. (13)

In Eq. (13), the parameter τi should be adaptively deter-
mined for better restoration performance. This subsection
provides a Bayesian interpretation to set an adaptive regular-
ization parameter τi. In the literature of wavelet denoising,
the Maximum a Posterior (MAP) estimator for the regular-
ization parameter has been derived [22]. In this paper, we
extend the derivation to the proposed model.

For the convenience of expression, we define θi := αi,
where αi are the concatenation of αi, j. The MAP estimation
of θi can be formulated as:

θXi = arg max
θi
{log P(Xi|θi) + log P(θi)}. (14)

The likelihood term is characterized by the Jointly
Gaussian distribution:

log P(Xi|θi) = log P(Xi|αi)

=
m∏

j=1

1√
2πσw

exp
(
− 1

2σw2

∥∥∥xi, j − Uiαi, j

∥∥∥2

2

)
, (15)

where σw denotes the standard variance of the additive
Gaussian noise, and θi are assumed to be independent. As
[8] and [10] discussed, the sparse coding noise θi can be well
characterized by the Laplacian distribution:

P(θi) =
m∏

j=1

n∏
l=1

{
1

√
2πσi(l)

exp

(
−|θi(l)|
σi(l)

)}
, (16)

where θi, j(l) is the l-th elements of θi, j, and σi(l) is the stan-
dard deviation of θi, j(l).

Following Eq. (14), Eq. (15) and Eq. (16), we obtain:

θXi

=arg min
θi

m∑
j=1

(
∥∥∥xi, j−Uiαi, j

∥∥∥2

2
+2
√

2σ2
w

n∑
l=1

|θi, j(l)|p
σi(l)|θi, j(l)|p−1 ).

(17)

Then, the sparse codes α can be estimated by:

αXi

=arg min
αi

m∑
j=1

(∥∥∥xi, j−Uiαi, j

∥∥∥2

2
+

n∑
l=1

2
√

2σ2
w

σ
p
i (l)

∣∣∣αi, j(l)
∣∣∣p) . (18)

Comparing Eq. (18) and Eq. (13), we have

τi,l = 2
√

2σ2
w/σ

p
i (l), (19)

where σi(l) denotes standard deviation of the locally esti-
mated variance at the position l.

4.3 Modeling of Image Restoration

According to Eq. (14), the objective function of the restora-
tion method can be formulated as:

(x̂, Ûi, α̂i)
= arg min

x,Ui,αi

(∥y −Hx∥22

+β
∑
i

m∑
j=1

(∥∥∥Ri, jx − Uiαi, j

∥∥∥2

2
+ τi

∥∥∥αi, j

∥∥∥p

p

)
),

(20)

where Ri, j is the matrix extracting patch xi, j from x at loca-
tion (i, j), β is an adaptive regularization parameter. Equa-
tion (20) can be solved by using a variable-splitting scheme
that separates the image x and sparse coefficients {αi}.

Given x̂(k), the estimates of αi, j and Ui by solving
Eq. (13), then we are alternatively concerned with the fol-
lowing optimization:

x̂(k+1)=arg min
x

(∥y−Hx∥22 + β
∑

i

m∑
j=1

∥∥∥Ri, jx−Ûiα̂i, j

∥∥∥2

2
)

(21)

which is a quadratic optimization problem that admits a
closed form solution:

x(k+1) =

HT y + β
∑
i

m∑
j=1

(
Ri, jx − Uiαi, j

)
HT H + β

∑
i

m∑
j=1

Ri, j
T Ri, j

(22)

The above alternative optimization process can be iterated
until convergence.

4.4 Summary of the Algorithm

As we mentioned in Sect. 4, in our NCLR algorithm the non-
convex low-rank approximation method is used to code each
patch. First, we cluster the patches of observed image y into
M clusters. For a given patch y j, we check which cluster it
falls into by calculating its distances to means of the clus-
ters, i.e., find the similar patch group Y j. Total L similar
patches are selected for each chosen exemplar. Second, the
non-convex low-rank approximation method is used to si-
multaneously learn the adaptive sub-dictionary and sparse
coefficients. Last, by Eq. (22) we aggregate the clusters to
restore the clean image. Finally, the proposed NCLR algo-
rithm is summarized in Algorithm 1.

5. Experimental Results

In this section, we report our experimental results on image
denoising and deblurring with NCLR algorithm described
in the previous section. These experimental results are used
to support the effectiveness of the proposed NCLR image
restoration algorithm. All the experiments are conducted
and timed on the same workstation with an Intel Xeon E5-
2620 2.00GHz CPU that has 4 cores and 32.0GB memory,
running Windows 7 and Matlab R2013b.

5.1 Image Denoising

We compare the proposed NCLR based denoising method
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with several recently developed denoising methods, includ-
ing the block-matching 3D filtering (BM3D) method [18],
[19], expected patch log likehood (EPLL) method [23], the
learned simultaneous sparse coding (LSSC) method [24],
the nonlocally centralized sparse representation (NCSR)
method [21], the spatially adaptive iterative singular-value
thresholding (SAIST) method [1] and the weighted nuclear
norm minimization (WNNM) method [3]. A set of 14 natu-
ral images which commonly used in the literature of image
denoising are tested for the comparison. The patch size is
6× 6, 7× 7, 8× 8 and 9× 9 for different noise level, respec-
tively. Here we set β = 0.1 and total L = 30 similar patches
which are selected for each chosen exemplar.

Table 1 lists the PSNR results of NCLR algorithm on
several test images by using p = 0.5, 0.6, . . . , 1. Table 1
shows that 0.7 ≤ p ≤ 0.9 is better than that with p = 1 in
terms of suppressing noise, which indicates that non-convex
low-rank image denoising can much improve the denoising
performance.

By setting p = 0.8, the PSNR results of the test meth-
ods are reported in Table 2–5. The highest PSNR result for
each image and on each noise level is highlighted in bold.
We have the following observations. The proposed NCLR

Algorithm 1

Input: Noisy image
1: Initialize x̂(0) = y, ŷ(0) = y, the maximum number of iteration K;
2: for k = 1 : K do
3: Iterative regularization y(k+1) = x̂(k) + δT HT (y −Hŷ(k)),

where relaxation parameter δ is the pre-determined constant
4: for each patch y(k+1)

j ∈ y(k+1) do
5: Find similar patch group Y j

6: Singular value decomposition

[Û
(k+1)
j , Λ̂(k+1)

j , V̂
(k+1)
j ] = SVD(Y j)

7: Get the estimation: X̂
(k+1)
j = Û

(k+1)
j Gp

λ(S )(V̂
(k+1)
j )T

8: end for

9: Reconstructed image by aggregate X̂
(k+1)
j to form the clean image

x̂(k+1) by Eq. (22)
10: end for

Output: Clean image x̂(K)

Table 2 PSNR(dB) results by different image denoising methods (σn = 10).

NNM BM3D EPLL LSSC NCSR SAIST WNNM NCLR
C.Man 32.87 34.18 34.02 34.24 34.18 34.30 34.44 34.74
House 35.97 36.71 35.75 36.95 36.80 36.66 36.95 37.06
Peppers 33.77 34.68 34.54 34.80 34.68 34.82 34.95 35.08
Leaves 33.55 34.04 33.29 34.52 34.53 34.92 35.20 35.21
Starfish 32.62 33.30 33.29 33.74 33.65 33.72 33.99 34.13
Monarch 33.54 34.12 34.27 34.44 34.51 34.76 35.03 35.16
Lena 35.19 35.93 35.58 35.83 35.85 35.90 36.03 36.15
Barbara 34.40 34.98 33.61 34.98 35.00 35.24 35.51 35.51
Boat 33.05 33.92 33.66 34.01 33.91 33.91 34.09 34.14
Hill 32.89 33.62 33.48 33.66 33.69 33.65 33.79 33.82
F.print 31.38 32.46 32.12 32.57 32.68 32.69 32.82 32.85
Man 32.99 33.98 33.97 34.10 34.05 34.12 34.23 34.26
Couple 32.97 34.04 33.85 34.01 34.00 33.96 34.14 34.14
Straw 29.84 30.89 30.74 31.25 31.35 31.49 31.62 31.78
AVE 32.216 34.061 33.726 34.221 34.206 34.296 34.485 34.652

achieves the highest PSNR in almost every case. It achieves
1.34dB-2.23dB improvement over the NNM method in av-
erage and outperforms the WNNM method by 0.1dB-0.2dB
in average (up to 0.36dB on image S traw with noise level
σn = 50) consistently on all the four noise levels. We
also list the average CPU time of each algorithm in Table
6. From Table 6, we can observe that the proposed NCLR
is faster than LSSC, NCSR, and SAIST. Although NCLR is
slower than WNNM in some noise level (σ = 10, σ = 30),
it achieves better performance than WNNM. In Algorithm
1, let m denotes the width of patch y j, n denotes the hight
of patch y j, L denotes the number of similar patches, M is
the number of clusters and K denotes the iterations, then
the computation cost of NCLR is O((L2mn +m3n3)MK). In
fact, the main computational cost of NCLR, WNNM, NNM,
SAIST and LSSC in each iteration is the computation of the
singular value decomposition. Since non-convex relaxation
provides better approximation to the original low-rank as-
sumption, the proposed NCLR algorithm is converged with
a few iterations. This reduces the computational cost of
NCLR. We also illustrate our comparisons graphically by
plotting in Fig. 1 the PSNR value versus the number of it-
erations taken by these algorithms for denoising of image
House with noise corruptionσ = 50. From Fig. 1 we can see
that NCLR outperforms WNNM, NNM, SAIST and LSSC.

In Fig. 2 and Fig. 3, we show the visual quality of the

Table 1 NCLR based image denoising PSNR(dB) results by different p.

p=0.5 p=0.6 p=0.7 p=0.8 p=0.9 p = 1
σn = 10

House 36.95 37.02 37.05 37.06 37.03 36.97
Leaves 35.06 35.18 35.23 35.21 35.09 34.92

σn = 30
Monarch 28.89 28.94 29.02 29.06 29.08 28.97
Barbara 30.17 30.21 30.24 30.26 30.19 30.14

σn = 50
Peppers 26.97 27.03 27.09 27.09 27.09 27.04
F.print 24.73 24.78 24.80 24.81 24.75 24.71

σn = 100
Starfish 22.32 22.34 22.37 22.38 22.37 22.36
Straw 19.87 19.91 19.96 20.03 19.97 19.87
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Table 3 PSNR(dB) results by different image denoising methods (σn = 30).

NNM BM3D EPLL LSSC NCSR SAIST WNNM NCLR
C.Man 27.43 28.64 28.36 28.63 28.59 28.36 28.80 28.90
House 30.99 32.09 31.23 32.41 32.07 32.30 32.52 32.60
Peppers 28.11 29.28 29.16 29.25 29.10 29.24 29.49 29.58
Leaves 26.81 27.81 27.18 27.65 28.14 28.29 28.60 28.71
Starfish 26.62 27.65 27.52 27.70 27.78 27.92 28.08 28.16
Monarch 27.44 28.36 28.35 28.20 28.46 28.65 28.92 29.06
Lena 30.15 31.26 30.79 31.18 31.06 31.27 31.43 31.43
Barbara 28.59 29.81 27.57 29.60 29.62 30.14 30.31 30.26
Boat 27.82 29.12 28.89 29.06 28.94 28.98 29.24 29.26
Hill 28.11 29.16 28.90 29.09 28.97 29.06 29.25 29.24
F.print 25.84 26.83 26.19 26.68 26.92 26.95 26.99 27.07
Man 27.87 28.86 28.83 28.87 28.78 28.81 29.00 29.01
Couple 27.36 28.87 28.62 28.77 28.57 28.72 28.98 29.03
Straw 23.52 24.84 24.64 24.99 25.00 25.23 25.27 25.55
AVE 27.619 28.756 28.374 28.720 28.714 28.851 29.063 29.134

Table 4 PSNR(dB) results by different image denoising methods (σn = 50).

NNM BM3D EPLL LSSC NCSR SAIST WNNM NCLR
C.Man 24.88 26.12 26.02 26.35 26.14 26.15 26.42 26.45
House 27.84 29.69 28.76 29.99 29.62 30.17 30.32 30.46
Peppers 25.29 26.68 26.63 26.79 26.82 26.73 26.91 27.08
Leaves 23.36 24.68 24.38 24.81 25.04 25.25 25.47 25.50
Starfish 23.83 25.04 25.04 25.12 25.07 25.29 25.44 25.50
Monarch 24.46 25.82 25.78 25.88 25.73 26.10 26.32 26.40
Lena 27.74 29.05 28.42 28.95 28.90 29.01 29.24 29.31
Barbara 25.75 27.23 24.82 27.03 26.99 27.51 27.79 27.84
Boat 25.39 26.78 26.65 26.77 26.66 26.63 26.97 26.99
Hill 25.94 27.19 26.96 27.14 26.99 27.04 27.34 27.31
F.print 23.37 24.53 23.59 24.26 24.48 24.52 24.67 24.81
Man 25.66 26.81 26.72 26.72 26.67 26.68 26.94 27.01
Couple 24.84 26.46 26.24 26.35 26.19 26.30 26.65 26.67
Straw 20.99 22.29 21.93 22.51 22.30 22.65 22.74 23.10
AVE 24.953 26.312 25.853 26.334 26.257 26.431 26.659 26.745

Table 5 PSNR(dB) results by different image denoising methods (σn = 100).

NNM BM3D EPLL LSSC NCSR SAIST WNNM NCLR
C.Man 21.49 23.07 22.86 23.15 22.93 23.09 23.36 23.53
House 23.65 25.87 25.19 25.71 25.56 26.53 26.68 26.91
Peppers 21.24 23.39 23.08 23.20 22.84 23.32 23.46 23.54
Leaves 18.73 20.91 20.25 20.58 20.86 21.40 21.57 21.75
Starfish 20.58 22.10 21.92 21.77 21.91 22.10 22.22 22.38
Monarch 20.22 22.52 22.23 22.24 22.11 22.61 22.95 23.04
Lena 24.41 25.95 25.30 25.96 25.71 25.93 26.20 26.25
Barbara 22.14 23.62 22.14 23.54 23.20 24.07 24.37 24.40
Boat 22.48 23.97 23.71 23.87 23.68 23.80 24.10 24.10
Hill 23.32 24.58 24.43 24.47 24.36 24.29 24.75 24.70
F.print 20.01 21.61 19.85 21.30 21.39 21.62 21.81 21.90
Man 22.88 24.22 24.07 23.98 24.02 24.01 24.36 24.41
Couple 22.07 23.51 23.32 23.27 23.15 23.21 23.55 23.58
Straw 18.33 19.43 18.84 19.43 19.10 19.42 19.67 19.96
AVE 21.539 23.196 22.656 23.033 22.916 23.243 23.504 23.604

Table 6 CPU time(min) results by different image denoising methods.

σn = 10
NNM BM3D EPLL LSSC NCSR SAIST WNNM NCLR

AVE 4.65 0.03 1.19 18.64 7.15 10.28 4.93 5.49
σn = 30

AVE 5.80 0.04 1.19 21.84 8.53 12.48 6.35 6.04
σn = 50

AVE 4.61 0.06 1.24 10.70 16.08 7.20 4.76 2.91
σn = 100

AVE 7.24 0.06 1.22 13.78 13.31 9.91 7.36 3.08

denoised images by the competing algorithms on two typical
images with moderate noise corruption σ = 30 and strong
noise corruption σ = 100. Figure 2 shows an example in
low level noise corruption, we can see that all the competing
algorithms can achieve good denoising output in low level
noise corruption. Figure 3 demonstrates that the proposed
NCLR is very effective in reconstructing image details from
the strong noisy observation. As can be seen in the high-
lighted window, NCLR generates much less artifacts and
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Fig. 1 Convergence result on image House by different methods (noise level σn = 50).

Fig. 2 Denoising results on image Cameraman by different methods (noise level σn = 30). From
left to right and top to bottom: original image, noisy image, and denoised image by BM3D [19] (PSNR
= 28.64dB), EPLL [23] (PSNR = 28.36dB), LSSC [24] (PSNR = 28.63dB), NCSR [21] (PSNR =
28.59dB), WNNM [3] (PSNR = 28.80dB), and NCLR (PSNR = 28.90dB).

preserves much better the image edge structures than other
competing methods. In summary, NCLR shows strong de-
noising capability, producing visually much more pleasant
denoising outputs while having higher PSNR indices.

5.2 Image Deblurring

In the experiments of image deblurring, two types of blur
kernels include a 9 × 9 uniform blur and a Gaussian ker-
nel of standard deviation σn = 1.6 were used for simula-
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Fig. 3 Denoising results on image Monarch by different methods (noise level σn = 30). From left
to right and top to bottom: original image, noisy image, and denoised image by BM3D [19] (PSNR
= 22.52dB), EPLL [23] (PSNR = 22.23dB), LSSC [24] (PSNR = 22.24dB), NCSR [21] (PSNR =
22.11dB), WNNM [3] (PSNR = 22.95dB), and NCLR (PSNR = 23.04dB).

Fig. 4 Deblurring performance comparison on the Butter f ly image. From left to right and top to
bottom: original image, noisy and blurred image (9×9 uniform blur, σn =

√
2), and deblurred image by

FISTA [25] (PSNR = 28.37dB), BM3D [26] (PSNR = 29.21dB), CSR [20] (PSNR = 29.75dB), NCSR
[21] (PSNR = 29.68dB), and NCLR (PSNR = 30.75dB).

tions. Additive Gaussian white noises with standard devia-
tion σn =

√
2 was added to the blurred images. The basic

parameters of NCLR are as follows: the patch size is 6 × 6,
total L = 40 similar patches are selected for each chosen
exemplar and p = 0.8. We compare the proposed NCLR de-
blurring method with four recently image deblurring meth-
ods, including the constrained TV deblurring (denoted by

FISTA) method [25], the IDD-BM3D deblurring method
[26], the centralized sparse representation deblurring (CSR)
method [20] and the nonlocally centralized sparse represen-
tation deblurring (NCSR) method [21].

The PSNR results on a set of 7 photographic images are
reported in Table 7. From Table 7, we can see that the pro-
posed NCLR algorithm significantly outperforms the FISTA
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Table 7 PSNR(dB) results by different image deblurring methods

9 × 9 Uniform Blur, σn =
√

2
Images Butterfly Boats C. Man House Parrot Lena Barbara Starfish Peppers Leaves Average
FISTA 28.37 29.04 26.82 31.99 29.11 28.33 25.75 25.75 28.43 26.49 28.008
BM3D 29.21 31.20 28.56 34.44 31.06 29.70 27.98 29.48 29.62 29.38 30.063
CSR 29.75 31.10 28.55 30.30 32.09 29.95 27.93 30.31 29.64 29.97 29.959
NCSR 29.68 31.08 28.62 34.31 31.95 29.96 28.10 30.28 29.66 29.98 30.362
NCLR 30.75 31.13 28.67 34.51 32.31 29.88 28.70 30.81 29.81 31.01 30.758

Gaussian Blur, σn =
√

2
FISTA 30.36 29.36 26.81 31.50 31.23 29.47 25.03 29.56 29.42 29.36 29.210
BM3D 30.73 31.68 28.17 34.08 32.89 31.45 27.19 31.66 29.99 31.40 30.924
CSR 30.75 31.40 28.24 32.31 33.44 31.23 27.81 32.25 30.17 31.44 30.904
NCSR 30.84 31.49 28.43 33.63 33.39 31.26 27.91 32.27 30.16 31.57 31.095
NCLR 31.56 31.64 28.73 33.83 33.60 31.43 28.71 32.74 30.17 32.17 31.458

Fig. 5 Deblurring performance comparison on the Leaves image. From left to right: original image,
noisy and blurred image (PSF = [1 4 6 4 1]T [1 4 6 4 1]/256, σn = 1.6), deblurred image
by FISTA [25] (PSNR = 29.36dB), BM3D [26] (PSNR = 31.40dB), CSR [20] (PSNR = 31.44dB),
NCSR [21] (PSNR = 31.57dB), and NCLR (PSNR = 32.17dB).

Table 8 CPU time(min) by different image deblurring methods

FISTA BM3D CSR NCSR NCLR
9×9 Uniform Blur 6.75 0.08 8.00 5.95 2.83
Gaussian Blur 6.67 0.07 5.58 8.51 2.72

and BM3D method, and also performs better than NCSR
and CSR on most test images. In average, the NCLR gain
over NCSR can be up to 0.396dB. The visual comparison
of the deblurring methods are shown in Fig. 4 and Fig. 5,
from which we can see that the NCLR method produces
much cleaner and sharper image edges and textures than
other methods. The average CPU time of each algorithm
is listed in Table 8, and we can see that the proposed NCLR
is faster than FISTA, CSR, and NCSR.

6. Conclusion

This paper has studied the non-convex low-rank (NCLR)

approximation as a significant generalization of the nuclear
norm minimization problem. The lp non-convex relaxation,
which improves the sparsity of a singular matrix value,
can be solved by generalized singular value thresholding
(GSVT) operator. Then the proposed NCLR algorithm was
applied to image restoration. The Bayesian interpretation
approach was provided to estimate an adaptive regulariza-
tion parameter. Then the whole image is reconstructed by
the proposed NCLR algorithm. Experimental results on im-
age denoising and deblurring demonstrated that the NCLR
can achieve highly competitive performance to the recently
denoising and deblurring methods.
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Appendix: Proof of Theorem 1

In order to proof Theorem 1, we need to introduce Lemma
1 as follows.

Lemma 1: For any A ∈ Rm×n and a diagonal non-
negative matrix W ∈ Rm×n, let A = XΦYT be the singu-

lar value decomposition of A, we have
n∑

i=1
σi(A)σi(W) =

max
UT U=I,VT V=I

trace(WVT AU), where I is the identity matrix,

σi(A) and σi(W) are the i-th singular values of matrices
A and W, respectively. When U = X and V = Y ,
trace(WVT AU) reaches its maximum value.

Proof. The proof is immediate from properties of trace.
We are now in the position to proof the Theorem 1.

Proof. For any X ∈ Rm×n, its singular value decomposition
can be expressed as X = ŪDV̄T , where Ū and V̄ are unitary

matrices, and D =

(
diag (d1, d2, . . . , dn)

0

)
with d1 ≥ d2 ≥

. . . ≥ dn ≥ 0. Then we have

min
X

1
2
∥Y − X∥2F + λ

∑
i
|σi(X)|p ⇔

min
Ū,V̄ ,D

1
2
∥Y − ŪDV̄T ∥2F + λ

∑
i
|σi(ŪDV̄T )|p ⇔

min
Ū,V̄,D

1
2
∥Y∥2F−trace(YV̄T DŪ)+

1
2
∥D∥2F+λ

∑
i
|σi(ŪDV̄T )|p⇔

min
D

1
2
∥D∥2F+λ

∑
i
|σi(ŪDV̄T )|p− max

ŪT Ū=I
V̄T V̄=I

trace(YV̄T DŪ)

 ,
where d1 ≥ d2 ≥ . . . ≥ dn ≥ 0. According to Lemma 1, we
have

max
ŪTŪ=I,V̄TV̄=I

trace(YV̄TDŪ)= max
UTU=I,VTV=I

trace(UΣVT V̄TDŪ)

= max
(UŪ)T (UŪ)=I,(VV̄)T (VV̄)=I

trace(Σ(VV̄)T D(UŪ)T ) =
n∑

i=1

diσi,

and the optimization is obtained at Ū = U and V̄ = V . We
then have
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min
X

1
2
∥Y − X∥2F + λ

∑
i
|σi(X)|p ⇔

min
D

1
2
∥D∥2F + λ

∑
i
|σi(ŪDV̄T )|p −

n∑
i=1

diσi

⇔
min

D

 n∑
i=1

1
2

di
2 − diσi + λ |di|p

⇔
min

D

 n∑
i=1

1
2

(di − σi)
2 + λ|di|p

 .
Form the above derivation, we can see that the optimal solu-
tion of the lp nuclear norm problem in Eq. (3) is X̂ = UDVT ,
where D is the optimum of the constrained optimization
problem in Eq. (3). The proof is then completed.
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