
1092
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

PAPER

FXA: Executing Instructions in Front-End for Energy Efficiency∗

Ryota SHIOYA†a), Member, Ryo TAKAMI††, Masahiro GOSHIMA†††, Nonmembers,
and Hideki ANDO†, Member

SUMMARY Out-of-order superscalar processors have high perfor-
mance but consume a large amount of energy for dynamic instruction
scheduling. We propose a front-end execution architecture (FXA) for im-
proving the energy efficiency of out-of-order superscalar processors. FXA
has two execution units: an out-of-order execution unit (OXU) and an in-
order execution unit (IXU). The OXU is the execution core of a common
out-of-order superscalar processor. In contrast, the IXU consists only of
functional units and a bypass network only. The IXU is placed at the pro-
cessor front end and executes instructions in order. The IXU functions as
a filter for the OXU. Fetched instructions are first fed to the IXU, and the
instructions are executed in order if they are ready to execute. The instruc-
tions executed in the IXU are removed from the instruction pipeline and are
not executed in the OXU. The IXU does not include dynamic scheduling
logic, and thus its energy consumption is low. Evaluation results show that
FXA can execute more than 50% of the instructions by using IXU, thereby
making it possible to shrink the energy-consuming OXU without incur-
ring performance degradation. As a result, FXA achieves both high perfor-
mance and low energy consumption. We evaluated FXA and compared it
with conventional out-of-order/in-order superscalar processors after ARM
big.LITTLE architecture. The results show that FXA achieves performance
improvements of 7.4% on geometric mean in SPECCPU INT 2006 bench-
mark suite relative to a conventional superscalar processor (big), while re-
ducing the energy consumption by 17% in the entire processor. The per-
formance/energy ratio (the inverse of the energy-delay product) of FXA is
25% higher than that of a conventional superscalar processor (big) and 27%
higher than that of a conventional in-order superscalar processor (LITTLE).
key words: superscalar processor, hybrid in-order/out-of-order core, en-
ergy efficiency

1. Introduction

Out-of-order superscalar processors have been widely
adopted in PCs and server systems for achieving high per-
formance [2], [3]. These days, high performance is consid-
ered to be important even for recent mobile devices, such as
smartphones and tablets, and major developers have recently
adopted out-of-order superscalar processors in these mobile
devices. For example, iPhone, iPad, and most of the popular

Manuscript received August 12, 2015.
Manuscript revised November 21, 2015.
Manuscript publicized January 6, 2016.
†The authors are with Graduate School of Engineering,

Nagoya University, Nagoya-shi, 464–8603 Japan.
††The author is with MegaChips Corporation, Osaka-shi, 532–

0003 Japan.
†††The author is with Information Systems Architecture Re-

search Division, National Institute of Informatics, Tokyo, 101–
8430 Japan.

∗This paper is an extended version of [1], containing a more
detailed description and analysis.

a) E-mail: shioya@nuee.nagoya-u.ac.jp
DOI: 10.1587/transinf.2015EDP7316

Android devices are equipped with out-of-order superscalar
processors, such as ARM Cortex A9 and its successors [4]–
[6].

Although out-of-order superscalar processors provide
high performance, they consume a large amount of energy.
This is because a large amount of energy is consumed by
hardware for dynamic instruction scheduling [7], [8], such
as an issue queue (IQ) and a load/store queue (LSQ), which
mainly include heavily multi-ported memories. The energy
consumption per access of a multi-ported memory is propor-
tional to its capacity and the number of its ports [9]. More-
over, the number of accesses increases with an increase in
the issue width, and corresponding energy consumption is
significantly large. As a result, out-of-order superscalar pro-
cessors consume a large amount of energy compared with
in-order superscalar processors, which do not have such
hardware for dynamic instruction scheduling.

We propose a front-end execution architecture (FXA)
for improving the energy efficiency of out-of-order super-
scalar processors. FXA has two execution units: an out-of-
order execution unit (OXU) and an in-order execution unit
(IXU). The OXU is the execution core of a common out-
of-order superscalar processor, which includes several com-
ponents, such as an IQ, LSQ and functional units (FUs).
In contrast, the IXU comprises FUs and a bypass network
only. The IXU does not include dynamic scheduling logic,
and thus, its energy consumption is low. The IXU is placed
at the processor front-end and executes instructions in or-
der. The IXU functions as a filter for the OXU. In the front-
end, source operands are read, and then instructions that are
ready to execute at this time are executed in the IXU and not
dispatched to the OXU.

The IXU can execute many instructions. This is be-
cause the IXU also executes instructions whose dependency
is dissolved in it, in addition to instructions that are ready
to execute while reading source operands. Moreover, we
propose a multiple-staging mechanism for the IXU, which
places FUs over multiple stages; this allows the IXU to ex-
ecute more instructions. The evaluation results presented in
Section 6 show that more than 50% of the instructions are
executed in the IXU.

FXA achieves both low energy consumption and high
performance. Since the IXU can execute many instructions,
it is possible to reduce the number of accesses to the OXU
and shrink the energy-consuming OXU without incurring
performance degradation. In addition, the instruction exe-

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



SHIOYA et al.: FXA: EXECUTING INSTRUCTIONS IN FRONT-END FOR ENERGY EFFICIENCY
1093

cution in the IXU improves performance. The IXU does
not have multi-ported structures, such as an IQ. Hence, IXU
can have many FUs without a large energy overhead being
incurred, which makes it possible to improve performance.

We evaluated FXA and compared it with conven-
tional out-of-order/in-order superscalar cores after ARM
big.LITTLE architecture [6], [10], [11]. The evaluation re-
sults show that FXA achieves IPC improvements of 5.7%
(and 7.4% with integer benchmarks only) in SPECCPU
2006 benchmark suite with respect to the big core, while
reducing the energy consumption by 17%. The perfor-
mance/energy ratio (the inverse of the energy-delay prod-
uct) of FXA is 25% higher than that of the big core, and
even 27% higher than that of the little core. We also evalu-
ated FXA with performance-centric superscalar cores after
Intel Haswell [3] or IBM POWER8 [2], and FXA achieves
IPC improvements of 5.0% while reducing the energy con-
sumption by 23%.

The rest of this paper is organized as follows: In Sec-
tion 2, the basic characteristics of FXA are described, and in
Section 3, its details and optimization. In Sects. 4 and 5, its
performance and energy consumption are given. In Sect. 6,
evaluation results are presented. In Sect. 7, the related work
is summarized.

2. Front-End Execution Architecture

We propose a front-end execution architecture (FXA). In this
section, we first describe the structure of FXA, and then, its
behavior and details.

2.1 Structure

We describe the structure of FXA by comparing it to that of
a conventional out-of-order superscalar processor. Figure 1
shows the block diagram of a conventional out-of-order su-
perscalar processor. This figure shows a physical register-
based architecture [3], [12]–[14]. Hereafter, the term “con-
ventional superscalar processor” refers to this architecture.
In contrast, Fig. 2 shows the the block diagram of FXA.
FXA has the following two execution units:

1. Out-of-order execution unit (OXU): This unit is the
execution core of a conventional superscalar processor,
which is shrunk compared with that of the conventional
SSP.

2. In-order execution unit (IXU): This unit is an execu-
tion structure that is unique to FXA. The main compo-
nents of an IXU are FUs and a bypass network. As
shown in Fig. 2, the IXU is placed after the rename
stage in the front-end. FXA has a register read stage
after the rename stage in addition to that in the OXU.
Source operand values read from the register read stage
in the front-end are fed to the IXU, and instructions are
executed in order by using these.

FXA has a datapath that accesses the PRF in the front-
end for supplying source operands to the IXU. The IXU and

Fig. 1 Conventional superscalar architecture.

Fig. 2 Front-end execution architecture. The area of the IQ is signifi-
cantly smaller than that in Fig. 1 because both the width and capacity are
decreased as described in Sect. 5.3. Although the PRF ports are added for
the IXU, the total number of ports is not different from that in Fig. 1, be-
cause the number of ports for the OXU is reduced.

OXU partially share the ports of the PRF. The IXU accesses
the shared ports only when the OXU does not access them.
Additionally, the scoreboard of the PRF is accessed in the
front-end for checking whether the values read from the PRF
are available. Each entry of the scoreboard is a 1-bit flag that
indicates whether a value in a corresponding entry of the
PRF is available. It should be noted that this scoreboard is a
module that a conventional superscalar processor originally
provides [12]†. Hereafter, the term “scoreboard” refers to
the PRF scoreboard.

2.2 Basic Behavior of FXA

The IXU functions as a filter for the OXU. That is, instruc-
tions executed in the IXU are removed from the instruction
pipeline and are not executed in the OXU. This section de-
scribes this behavior by comparing conventional superscalar
processors and FXA. It should be noted that, in this section,
instructions are assumed to be integer instructions with 1-
cycle latency. The execution of other types of instructions is
described in Sect. 2.4.

The behavior of FXA above a rename stage is the same
as that of conventional superscalar processors. FXA pro-
cesses instructions below the rename stage as follows:

1. Read from the PRF and the scoreboard at the register
read stage in the front-end.

2. Check whether instructions are ready. Hereafter, we
†Operands that are already written to the PRF are not woken

up, and consequently, they must be dispatched to the IQ as initially
ready. For detecting such initially ready operands, this scoreboard
is used [12].



1094
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Fig. 3 In-order execution unit.

use the term ready instruction to refer to an instruc-
tion that is ready to execute. Source operands can be
obtained through the following two paths, and if all
source operands are thus obtained, the instruction is
ready.

a. Read from the PRF.
b. Bypassed from the FUs in the IXU.

Whether values read from the PRF are available is
checked by reading the scoreboard.

3. Depending on whether an instruction is ready, the in-
struction is processed as follows:

a. A ready instruction is executed in the IXU and
is not dispatched to the IQ. Its execution result
is written to the PRF after it exits the IXU. The
instruction is committed later as in conventional
superscalar processors†.

b. A not-ready instruction goes through the IXU as a
NOP. The instruction is dispatched to the IQ and
is executed in much the same way as it is executed
in conventional superscalar processors.

It should be noted that the behavior of the IXU for not-
ready instructions is different from that of in-order super-
scalar processors. When a not-ready instruction is decoded,
an in-order superscalar processor stalls its pipeline until its
readiness is resolved. In contrast, in FXA, not-ready instruc-
tions go through its pipeline as a NOP; thereby, its pipeline
is not stalled, and instructions keep flowing.

The IXU and the OXU are placed in series and not in
parallel as in a clustered architecture [13], [15]. This is be-
cause serial placement considerably reduces the complexity
of bypassing, wake-up, and steering, as described in Sects. 3
and 7.1. In contrast, parallel placement cannot reduce this
complexity and its merit is negligible; its branch mispre-
diction penalty is slightly reduced by the shortened pipeline
length.

2.3 Detailed Behavior of IXU

In this section, first, the structure and behavior of the IXU
†The entries of a reorder buffer are allocated for all instructions

for implementing a precise exception.

Fig. 4 Code executed in IXU.

are described, and then, its control.

2.3.1 Structure and Behavior of IXU

An IXU has FUs serially placed over 2-3 stages to increase
the number of instructions executed in the IXU. Figure 3 (a)
shows a datapath example of an IXU with the FUs of 2-
instruction width × 2 stages. In this figure, FU(y, x) denotes
an FU at the x-th position from the left and y-th position
from the top. The FUs are connected through the bypass
network that allows each FU to use each other’s execution
results. In Fig. 3 (a), it can be seen that source operands read
from the PRF are fed from the left side, and the execution
results are fed to the right-hand side and written to the PRF.

We describe the behavior of an IXU by using an exam-
ple where the code shown in Fig. 4 is executed on the IXU
shown in Fig. 3 (a). The code includes the serially dependent
instructions from I0 to I3. All the source operands, except
C, E, and G, shown in Fig. 4, have already been read from
the PRF. The behavior of each cycle is as follows:

• Cycle 1: Figure 3 (b) shows the state of the first cy-
cle. In this cycle, I0 and I1 are at the first stage of the
IXU. I0 on FU(0, 0) is executed because all its source
operands are ready, and the execution result C is out-
putted. An execution result is fed through the bypass
network and received by FUs, which use the execution
result in the next cycle. In this case, the execution re-
sult C is received by FU(1, 1), which uses it in the next
cycle. In contrast, I1 on FU(1, 0) is not executed, be-
cause its source operand C has not yet been executed,
and the other source operand D is fed to the next stage.

• Cycle 2: Figure 3 (c) shows the cycle that follows the
cycle shown in Fig. 3 (b). In Fig. 3 (c), I0 and I1 are
moved to the second stage, and I2 and I3 are fed to the
first stage. I0 on FU(0, 1) does nothing in this cycle



SHIOYA et al.: FXA: EXECUTING INSTRUCTIONS IN FRONT-END FOR ENERGY EFFICIENCY
1095

because it has already been executed in the previous
cycle. I1 on FU(1, 1) is executed in this cycle because
the source latch has the source operand C executed in
the previous cycle. The execution result E is received
by FU(0, 1), which uses it and executes I2 in the next
cycle. I2 on FU(0, 0) and I3 on FU(1, 0) are not exe-
cuted, because their source operands have not yet been
executed.

• Cycle 3: Figure 3 (d) shows the next cycle. I2 and
I3 are moved to the second stage. I2 on FU(0, 1) is
executed in this cycle and outputs the execution result
G. I3 on FU(1, 1) is not executed in the IXU, because
its source operand G has not yet been executed in this
cycle.

The IXU leverages FUs serially placed over multiple
stages and can execute dependent instructions, such as the
instructions from I0 to I2. In contrast, the IXU cannot ex-
ecute instructions after a long and consecutive chain of de-
pendent instructions, such as I3. However, an IXU can ex-
ecute instructions in a dependent chain when the length of
the chain is long but the chain is not consecutive. For exam-
ple, if there is an independent instruction between I2 and I3,
as shown in Fig. 4, the IXU can execute I3, because I3 can
use the execution result of I2 in the next cycle of the cycle
shown in Fig. 3 (d). In general, dependent instructions are
rarely placed in a long and consecutive chain†, and conse-
quently, an IXU can execute many instructions.

Note that, when the number of stages in an IXU is
larger than the width of the IXU, the IXU still cannot ex-
ecute all instructions. Stages that execute instructions in a
consecutive chain are moved downstream, and finally, de-
pendent instructions cannot be executed when there are no
remaining downstream stages. For example, I0 is executed
in the first stage, and then, I1 and I2 are executed in the sec-
ond stage. Finally, I3 cannot be executed, because there is
no third stage.

2.3.2 Control of IXU

The control of an IXU, that is, the decision as to which
FU executes an instruction and the control of operand-
bypassing, is determined by comparing register numbers in
the same way as operand-bypassing is conducted in conven-
tional superscalar processors. The control signals are gener-
ated in parallel with renaming and register read, because this
process uses logical register numbers, which can be used af-
ter decoding. The generated control signals and instructions
are fed to the IXU, and the fed signals control the FUs and
the bypass network. Consequently, the critical path is not
prolonged by the generation of the control signals.

2.4 Behavior When Executing Other Instruction Types

We described the behavior of FXA that executes integer in-
†Therefore, in-order superscalar processors have a higher per-

formance than do scalar processors.

structions. In this section, we describe its behavior when
executing other types of instructions.

2.4.1 Branch

In the same way as it executes integer instructions, the IXU
executes branch instructions. The FU in the IXU compares
a branch prediction result and a branch executed result, and
then, detects a branch misprediction. If a branch mispredic-
tion is detected, the pipeline is flushed and recovered at this
time.

2.4.2 Floating Point

The IXU does not have floating point (FP) units for avoid-
ing area overhead increase and performance degradation
due to a prolonged pipeline length. The latency of FP op-
erations generally constitutes multiple cycles, and hence,
the pipeline length is significantly prolonged if multiple FP
units are serially placed.

2.4.3 Load/Store

FXA assumes a scheme that issues loads/store instruc-
tions speculatively by using a dependency predictor [13],
[16], such as the store-set predictor [16]. In this scheme,
load/store instructions are issued not from the LSQ but from
the IQ. The following part briefly describes how this scheme
executes load/store instructions. 1) After a load instruction
is issued, this scheme searches the LSQ by using the address
of the load instruction. If a predecessor store instruction
with the same address is detected and has already been ex-
ecuted, its data is forwarded to the load instruction. At the
same time, its data address is written to the LSQ. 2) After
a store instruction is issued, this scheme searches the LSQ
by using the address of the store instruction. If a successor
load instruction with the same address is detected and has
already been executed, an order violation is detected. At the
same time, its data address and data are written to the LSQ.

The IXU executes load/store instructions according to
results of the arbitration of resources between the IXU and
the OXU††. These resources are the LSQ and the L1 data
cache. In this arbitration, instructions in the OXU have
higher priority than those in the IXU. If the arbiter deter-
mines that instructions cannot be executed in the IXU, they
are simply dispatched to the IQ. Therefore, the pipeline is
not stalled in this case, and the performance degradation is
small.

In FXA, the LSQ itself is not different from that of con-
ventional superscalar processors. The differences are that
the LSQ is accessed by both the IXU and the OXU and the
processes of the LSQ are partially omitted as follows:

††When the IXU executes store instructions, stored data are
written to the LSQ only, in much the same way as in conventional
superscalar processors, and then, stored data are written to the data
cache in the commit stages.



1096
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

1. Omitting Order Violation Detection: When a store in-
struction is executed in the IXU, there is no successor
load instruction that has already been executed. Con-
sequently, in this case, an order violation never occurs,
and the search in the LSQ can be omitted.

2. Omitting Load Instruction Writing: When a load in-
struction is executed in the IXU and all its predeces-
sor store instructions have already been executed, an
order violation caused by the load instruction never oc-
curs. This is because the predecessor store instructions
and the load instruction are executed in order. Conse-
quently, it is not necessary to detect an order violation
caused by the load instruction, and writing the load in-
struction to the LSQ can be omitted.

These omissions reduce the energy consumption of the
LSQ, as described in Sect. 5.4.

3. Detailed Design and Optimization

In this section, we describe the design of FXA in detail and
its optimization for mitigating complexity.

3.1 Operand Bypassing

In this section, we describe the design of the bypass network
in detail and discuss its complexity.

3.1.1 Bypassing between IXU and OXU

Between the IXU and the OXU, data are communicated only
through the PRF, and there is no other datapath between
them. The following description describes the reasons for
the absence of operand-bypassing between the IXU and the
OXU for each direction.

• IXU→ OXU: It is not necessary to bypass data from
the IXU to the OXU. The IXU and the OXU have an or-
der relation, as instructions not executed in the IXU go
into the OXU, as shown in Fig. 2. Consequently, when
instructions are executed in the IXU, their consumers
are not in the OXU, and it is not necessary to pass the
execution results to the OXU.

• OXU → IXU: We omit the operand-bypassing from
the OXU to the IXU because the performance degrada-
tion caused by this omission is negligible. Between
the IXU and the OXU, there are the IQ and several
pipeline stages. Thus, instructions executed in the IXU
are distant from instructions executed in the OXU in a
program order, and the probability that they have de-
pendencies is low. Consequently, if execution results
cannot be passed directly from the OXU to the IXU,
the number of affected instructions is small, and thus,
performance degradation is not significant.

The operand-bypassing of the IXU and the OXU is sep-
arated, and its complexity and energy consumption are sim-
ilar to those of the bypass network in conventional super-
scalar processors, as described below.

Fig. 5 Bit-slice of the bypass network.

3.1.2 Optimization of IXU

When FUs are placed over multiple stages in the IXU, the
latency of its bypass network is increased, and operand-
bypassing and the operation of an FU may not be completed
in one cycle.

To mitigate its complexity, we decrease the number of
FUs in the backward stages in the IXU. The number of in-
structions executed in the backward stages in the IXU is rel-
atively small, and thus, decreasing the number of the FUs in
the backward stages does not significantly degrade perfor-
mance. The evaluation results presented in Sect. 6 show that
the performance of a configuration with 3ways × 1stage +
1way × 2stages = 5 FUs is almost the same as that of a
configuration with 3ways × 3stages = 9 FUs.

Additionally, we partially omit operand-bypassing in
the IXU. As described in Sect. 2.3, instructions that are mu-
tually distant are executed on FUs that are distant. Conse-
quently, operand-bypassing for FUs that are distant seldom
occurs. The evaluation results presented in Sect. 6 show
that performance degradation is negligible when operand-
bypassing between FUs that are more distant than two stages
is omitted.

3.1.3 Complexity of IXU

In this section, we discuss the complexity of the bypass net-
works in FXA. The bypass network in the IXU has a struc-
ture similar to that of the bypass network of conventional
superscalar processors. The main components of both by-
pass networks are result wires for broadcasting execution
results and multiplexers for selecting operands [15]. Fig-
ure 5 shows the layout of the bypass network [15], [17] that
we assume in this study. This figure shows a bit-slice of the
datapath. There are n FUs in the IXU, ranging from iFU0

to iFUn−1, and m FUs in the OXU, ranging from oFU0 to
oFUm−1. These FUs are placed on both sides across the
PRF. Each FU broadcasts its execution result over a result
wire, and the result is selected by multiplexers and received
by FUs that execute consumers. As described in Sect. 3.1.1,
operands are not bypassed between the IXU and the OXU,
and thus, the result wires of the IXU and the OXU are mu-
tually independent.

The latency of a bypass network is determined mainly
by the length of its result wires and the number of its mul-
tiplexer inputs. The length of result wires is proportional to
the number of FUs, when the layout is as illustrated in Fig. 5.
The maximum number of multiplexer inputs is the number



SHIOYA et al.: FXA: EXECUTING INSTRUCTIONS IN FRONT-END FOR ENERGY EFFICIENCY
1097

of result wires, and thus, it is proportional to the number
of FUs. The number of FUs is n = 5 in the configuration
used in the evaluations presented in Sect. 6. Consequently,
the latency of the bypass network in the IXU is not signif-
icantly different from that of the bypass network in 4-issue
conventional superscalar processors.

3.2 Physical Register File

In the layout presented in Fig. 5, the IXU and the OXU are
directly placed on both sides of the PRF, and thus, the IXU
and the OXU can access the PRF with a short latency. The
bitlines of the PRF are placed horizontally in this figure. For
the PRF ports shared by the IXU and the OXU, sense-amps
are placed on both ends of the bitlines; they supply values
to the IXU and the OXU. Consequently, the IXU and the
OXU can access the PRF with a latency that is similar to
that of the PRF of conventional superscalar processors, and
the shared ports do not increase its latency.

The additional sense-amp does not significantly in-
crease the latency of the PRF. A bitline is generally con-
nected to two transistors that a sense-amp consists of [9].
The parasitic capacitance of the two transistors is signifi-
cantly smaller than that of the bitline and the access tran-
sistors of RAM cells. Consequently, the additional parasitic
capacitance does not significantly increase the latency of the
PRF.

When the PRF is read in the front-end, invalid entries
that have not yet been written may be read, and these reads
increase its energy consumption. To mitigate this problem,
the scoreboard (Sect. 2.1) is read before the PRF is read, and
then, the PRF is read only when values in the PRF are avail-
able. This sequential access makes it possible to reduce the
energy consumed by invalid reading. Although the latency
of the scoreboard is very small, because its capacity is much
smaller than that of the PRF, this sequential access may pro-
long the critical path. For this reason, an additional stage is
added to the front-end in the evaluations presented in Sect. 6.

Note that, in this study, we assume that the ports of the
PRF are partially shared by the IXU and the OXU, but even
though the ports are not shared for avoiding arbitration, the
number of ports is not significantly increased. This is be-
cause the number of ports of the PRF required for the IXU is
increased, but that required for the OXU is decreased. More-
over, methods that reduce the complexity of the PRF, such
as a hierarchical PRF [18], [19], can mitigate the complexity
of the additional ports.

3.3 Scoreboard

FXA reads the scoreboard twice per instruction to provide
correct execution. The first reading is carried out before in-
structions go into the IXU (Sect. 2.2), and the second read-
ing is carried out in the dispatch stage (Sect. 2.1). These
two readings cannot be combined into one. This is because
there is a possibility that a not ready instruction that goes
through the IXU as NOPs becomes ready when the corre-

sponding producer is executed in the OXU at the same time.
If such instructions are dispatched to the IQ as not ready,
their operands are never woken up, and the processor can-
not continue execution correctly. The second reading from
the scoreboard makes it possible to dispatch such instruc-
tions as ready correctly.

4. Performance of FXA

In this section, we describe the instructions that can be exe-
cuted in IXU, and then, the performance of FXA.

4.1 Instructions Executed in IXU

As described in Sect. 2, instructions executed in the IXU are
categorized as follows:

(a) Instructions that are already ready when they are en-
tered into the IXU. All their source operands have al-
ready been obtained from the PRF.

(b) Instructions that become newly ready in the IXU.
They receive execution results executed in the IXU,
and all their source operands are complete in the IXU.

The number of (a), which comprise mainly instructions
dependent only on registers that have not been updated for a
long time, is small. Using the configuration used in the eval-
uation presented in Sect. 6, the ratio of the number of (a) to
the number of all executed instructions is 5.5% on average.
In contrast, the number of (b) is large, and instructions ex-
ecuted in the IXU comprise mainly (b). The evaluation re-
sults presented in Sect. 6 show that the IXU with one-stage
FUs can execute 35% of the instructions. Moreover, FXA
can execute more instructions by serially placing FUs over
multiple stages in the IXU, as described in Sect. 2.3. This
makes it possible to increase the number of (b) significantly.
The evaluation results presented in Sect. 6 show that an IXU
with three-stage FUs can execute 54% of the instructions.

4.2 Performance Improvement

FXA improves the performance as compared to conven-
tional superscalar processors. This improvement is achieved
as a result of the FUs added in the IXU and the reduced
branch misprediction penalty.

4.2.1 Effects of FUs in IXU

In FXA, the number of FUs is increased as compared to that
in conventional superscalar processors, because the IXU is
added. If the IXU executes many instructions, FXA can im-
prove performance in a manner similar to that used to widen
its issue width. For example, with the configurations used
in the evaluation presented in Sect. 6, the conventional su-
perscalar processor can execute up to four instructions per
cycle. In contrast, FXA can execute up to seven instructions
per cycle with an OXU of two-instruction issue width and
an IXU with five FUs.



1098
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Moreover, the instructions executed in the IXU are not
dispatched to the OXU, and thus, other instructions can
use IQ entries and the issue ports that are supposed to be
used by the instructions executed in the IXU. The OXU is
shrunken to the degree at which performance is not signifi-
cantly decreased in all applications, and consequently, FXA
improves performance in applications where the IXU can
execute many instructions.

In FP applications, integer instructions that are exe-
cuted in the IXU are not dispatched to the OXU, and thus,
FXA also improves performance, as shown in the evaluation
results presented in Sect. 6. This is because FP applications
still include many integer and load/store instructions†.

4.2.2 Reducing Branch Misprediction Penalty

FXA can execute branch instructions and detect branch
misprediction in the IXU (Sect. 2.4). If a misprediction
is detected in the IXU, the misprediction penalty is re-
duced, because the IXU is placed at the front-end. Re-
cent superscalar processors have pipelines with more than
10 stages [3], [6], [14], and thus, their branch misprediction
penalty is also more than 10 cycles. In FXA, if a mispre-
diction is detected in the IXU, its misprediction penalty is
reduced by approximately half.

In contrast, if a misprediction is detected in the OXU,
the misprediction penalty is increased by the number of
stages of the IXU, which is usually four or five, because its
pipeline length is prolonged. However, more than 50% of
the instructions are executed in the IXU (Sect. 6), and thus,
the total penalty is reduced.

5. Reducing Energy Consumption

In this section, we describe how FXA reduces energy con-
sumption. The energy consumption reduction of FXA is
based on the following: 1) the IXU does not significantly
increase energy consumption; and 2) the energy consump-
tion of the IQ and the LSQ is reduced.

5.1 IXU

The energy consumption of the IXU comprises mainly that
of the FUs and the bypass network. This section describes
the energy consumption of these components.

5.1.1 Functional Units

The dynamic energy consumption of the FUs is determined
by 1) the dynamic energy consumption of each FU per ac-
cess, and 2) the number of its accesses. 1) The dynamic
energy consumption of each FU per access in FXA and con-
ventional superscalar processors is the same, because their

†Using the configuration used in the evaluation presented in
Sect. 6, in SPECCPU FP 2006 applications, the average ratio of FP
instructions in all executed instructions is 30.8% and the maximum
is 52.0%.

Fig. 6 Functional unit in IXU.

FUs are exactly the same. 2) The numbers of accesses to the
FUs in FXA and conventional superscalar processors are not
significantly different, because all instructions using FUs are
executed once on any FU. The total dynamic energy con-
sumption is calculated from the product of 1) and 2), and
consequently, the total dynamic energy consumption of the
FUs in FXA is not significantly different from that of the
FUs in conventional superscalar processors.

It should be noted that FUs do not consume dynamic
energy when instructions go through on the FUs in the IXU
as NOPs. Figure 6 shows a block diagram of the FUs in
the IXU. The FU in this figure has a structure where the
outputs of several units, such as the adder and the shifter,
are selected by the multiplexer [17]. When source operands
or execution results are sent to the next stage in the IXU, the
path for passing through on the right-hand side of the figure
is used and data are selected by the multiplexer. In this case,
the source latches of the FU are controlled such that they are
not updated, and thus, switching does not occur in the FU,
and the FU does not consume dynamic energy.

The static energy consumption is increased by the ad-
ditional FUs in the IXU, but this increase is relatively small
and does not cause a serious problem. The static energy
consumption is proportional to the number of transistors in
a circuit, and transistors in fast circuits such as FUs con-
sume a relatively large amount of static energy. However,
the number of the transistors in the integer FUs for the IXU
is much smaller than that of transistors of other circuits, and
thus, its static energy is relatively small. For example, in-
teger adder, which occupies most of the circuit area of an
integer FU, consists of 4k–6k transistors [20], [21]. In con-
trast, an FP multiplier and an FP adder, which require fast
transistors as integer FUs, consists of more than 200k tran-
sistors [21], which is several tens of times the number of
transistors in integer adders. Consequently, the static energy
consumed by the few integer FUs for the IXU is negligible.

5.1.2 Bypass Network

The energy consumption of the bypass network in FXA is
not significantly different from that in conventional super-
scalar processors. This is because the energy consumption is
increased by the bypass network in the IXU, but the energy
consumption of the bypass network in the OXU is reduced.

As described in Sect. 3.1, the bypass networks in the
IXU and the OXU comprise mainly result wires and mul-



SHIOYA et al.: FXA: EXECUTING INSTRUCTIONS IN FRONT-END FOR ENERGY EFFICIENCY
1099

tiplexers††. In the bypass networks, energy is consumed
mainly for driving the result wires. Each FU executes an
instruction and drives its own result wire. At this time, en-
ergy is consumed proportionally to the parasitic capacitance
of the result wire; the parasitic capacitance is proportional
to the length of the result wire. The length of the result wire
is proportional to the number of FUs in the layout shown
in Fig. 5. Consequently, the energy consumption is propor-
tional to the number of FUs.

On the basis of this assumption, we compare the energy
consumption of the bypass networks. When the configura-
tions used in the evaluation presented in Sect. 6 are used, in
FXA, the IXU has n = 5 FUs and the OXU has m = 4 FUs.
In this configuration, more than 50% of the instructions are
executed in the IXU, and thus, the energy consumption of
the bypass network in the IXU is proportional to the aver-
age of n = 5 and n = 4, which is n = 4.5. Consequently,
the energy consumption per bypassing in the IXU does not
increase significantly as compared to that of conventional
superscalar processors (m = 4)†.

It should be noted that some result wires in the IXU
are short, because it is not necessary for each instruction to
send its execution result to its predecessor according to the
program order. Moreover, as described in Sect. 3.1.2, the
operand-bypassing in the IXU is partially omitted, and this
makes it possible to reduce the length of the result wires.
Consequently, the actual energy consumption of the bypass
network is smaller than that assumed in the above discus-
sion.

5.2 Physical Register File

The energy consumption of the PRF is determined by 1)
the energy consumption of each PRF per access, and 2) the
number of its accesses.

1) The energy consumption of each PRF per access in
FXA and conventional superscalar processors is not signifi-
cantly different, because the areas of their PRFs are almost
the same. This is because the number of ports of the PRF
required for the IXU is increased, but that required for the
OXU is decreased. For example, both the PRFs of the con-
ventional superscalar processor in Fig. 1 and FXA in Fig. 2
have nine ports. Moreover, the ports of the PRF are partially
shared by the IXU and the OXU, and the IXU accesses the
shared ports only when the OXU does not access them, as
described in Sect. 2.1. As a result, the number of ports of
the PRF in FXA is not different from that in conventional
superscalar processors.

2) The numbers of accesses to the PRF in FXA and
conventional superscalar processors are not significantly dif-
ferent, because all instructions access the PRFs once.

The total energy consumption is calculated from the
product of 1) and 2), and consequently, the total energy con-
sumption of the PRFs of FXA and that of conventional su-
††The result wires of the IXU and the OXU are separated

(Sect. 3.1).
†All these FUs are integer FUs.

perscalar processors are not significantly different.
The capacity of the scoreboard is significantly smaller

(1/64) than that of the PRF, and consequently, the energy
consumption of the scoreboard is negligible.

5.3 Issue Queue

In FXA, the energy consumption of the IQ is significantly
reduced as compared to that of a conventional superscalar
processor. FXA reduces the capacity and the issue width
of the IQ without performance degradation being incurred,
because the IXU can execute many instructions.

The IQ comprises mainly CAMs and RAMs, with the
number of ports being proportional to the issue width. Their
energy consumption (and area) is proportional to the number
of their ports and their capacities [9]. Consequently, the re-
duction in the capacity and issue width significantly reduces
the energy consumption of the IQ per access. Moreover, the
number of accesses is also significantly reduced, because
instructions executed in the IXU are not dispatched to the
OXU. The evaluation results presented in Sect. 6 show that
the energy consumption of the IQ is reduced to 14% of that
of the IQ of a conventional superscalar processor.

5.4 Load/Store Queue

The LSQ also comprises mainly CAMs and RAMs, and
it consumes a large amount of energy. As described in
Sect. 2.4.3, FXA partially omits processing in its LSQ. The
LSQ in FXA is not different from that in conventional su-
perscalar processors, but the number of accesses is reduced
by omitting the processing. Consequently, the energy con-
sumption of the LSQ is reduced.

6. Evaluation

We evaluated FXA and other processor architectures.

6.1 Evaluation Environment

We evaluated IPCs by using an in-house cycle-accurate pro-
cessor simulator. We used all the programs from the SPEC
CPU 2006 benchmark suites [22] with ref datasets. The pro-
grams were compiled using gcc 4.5.3 with the “-O3” option.
We skipped the first 4G instructions and evaluated the next
100M instructions. We evaluated energy consumption and
chip areas by using the McPAT simulator [23] with the pa-
rameters shown in Table 2.

6.2 Evaluation Models

We evaluated the following models whose configurations
are based on those used in most ARM big.LITTLE archi-
tecture, which consists of ARM Cortex-A57 [6] and Cortex-
A53 [10]. Table 1 shows the detailed parameters of the eval-
uated models.

• BIG: BIG is the baseline model of this evaluation. It is



1100
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Fig. 7 IPC relative to BIG.

Table 1 Processor configurations.

BIG HALF LITTLE
type out-of-order ← in-order
fetch width 3 inst. ← 2
issue width 4 inst. 2 inst. 2
issue queue 64 entries 32 entries N/A
FU (int, mem, fp) 2, 2, 2 ← 2, 1, 1
ROB 128 entries ← N/A
int/fp PRF 128/96 entries ← N/A
ld/st queue 32/32 entries ← N/A
branch pred. g-share, 4K PHT, ← ←

512 entries BTB
br. mispred. penalty 11 cycles ← 8 cycles
L1C (I) 48 KB, 12 way, ← ←

64 B/line, 2 cycles
L1C (D) 32 KB, 8 way, ← ←

64 B/line, 2 cycles
L2C 512 KB, 8 way, ← ←

64 B/line, 12 cycles
main mem. 200 cycles ← ←
ISA Alpha ← ←

an out-of-order superscalar processor. Its major micro-
architectural parameters are the same as those of ARM
Cortex-A57, which include parameters such as fetch
width, issue width, the size of an instruction window,
the number of FUs, cache sizes, and branch predictors.

• HALF: This model has an IQ whose issue width and
capacity are half of those in BIG. Its other parameters
are the same as those of BIG.

• LITTLE: This is a model of an in-order processor. Like
BIG, its major micro-architectural parameters are the
same as those of ARM Cortex-A53.

• HALF+FX: This is a model of FXA. The other el-
ements of an IXU are basically the same as those of
HALF, but the number of ports of the PRF is the same
as that of BIG. The ports of the PRF shared by the IXU
and the OXU are accessed as described in Sect. 3.2.
The IXU has three stages and five FUs (the first stage
has three FUs, and the second and third stage each have
one FU). As described in Sect. 3.1.2, operand bypass-
ing from the third stage to the first stage in the IXU is
omitted. This configuration of the IXU has the high-
est performance among configurations whose bypass
network complexity is similar to that of the bypass net-
work in BIG. The bypass network complexity is con-

sidered on the basis of the discussion on complexity in
Sect. 3.1.

• BIG+FX: This is a model of FXA. It has an IQ
whose issue width and capacity are the same as those
of BIG. Its other parameters are the same as those of
HALF+FX.

Through the evaluation of these models, we show that
HALF+FX achieves both a higher performance and lower
energy consumption than BIG.

6.3 IPC

Figure 7 shows the IPCs for each model relative to BIG.
HALF+FX improves the IPC of BIG by 5.7% on geomet-
ric mean. The IPC improvement of HALF+FX in the INT
benchmark programs is significant; the maximum improve-
ment is 67% for libquantum and the geometric mean is
7.4%. The IPC of HALF+FX in FP benchmark programs
is also improved: it is 4.5% on geometric mean. These IPC
improvements are achieved because many instructions are
executed in the IXU. The rates of instructions executed in
the IXU are 61%, 51%, and 54% in the INT benchmark
group, FP benchmark group, and all benchmark programs,
respectively.

In libquantum and gromacs, HALF+FX significantly
improves the IPC compared with BIG. This is because
HALF+FX can execute more INT operations compared with
BIG in a single cycle. In this case, the term “INT operations”
includes logical, add/sub, shift, and branch instructions and
does not include load/store instructions. In BIG, the maxi-
mum number of INT operations executed in a single cycle
is two because the number of INT FUs is two. In contrast,
HALF+FX can execute up to seven INT operations in a sin-
gle cycle†. libquantum and gromacs include significantly
more INT operations (more than 80%) than the other appli-
cations include (50% on average). Consequently, HALF+FX
with high INT-operation-throughput significantly improves
performance in the programs††.

The IPC degradation of HALF as compared to BIG is
significant: 16% on geometric mean. This is because the

†It can execute five operations steadily in a single cycle.
††This high INT-operation-throughput is achieved by the IXU

without increasing the width of the IQ (Sect. 4.2.1).



SHIOYA et al.: FXA: EXECUTING INSTRUCTIONS IN FRONT-END FOR ENERGY EFFICIENCY
1101

width and size of IQ in HALF are half of those in BIG.
HALF+FX improves the IPC as compared to HALF

by 27% on geometric mean, which is significant, although
HALF+FX has the same IQ as HALF. HALF+FX can be con-
sidered to be a combination of HALF and an additional IXU.
This shows that the addition of the IXU significantly im-
proves the IPC, as described in Sect. 4.2.

The improvement of the IPC by BIG+FX as compared
to HALF+FX is slight: 1.8% on geometric mean. This is
because the IXU executes a sufficient number of instructions
and the number of instructions fed to the OXU is small. As
a result, the increase in the width/size of the IQ does not
significantly improve the IPC.

LITTLE significantly degrades the IPC as compared to
the other models, because LITTLE is an in-order superscalar
processor. The IPC degradation of LITTLE as compared to
BIG is 40% on geometric mean.

6.4 Energy Consumption

Figure 8 (a) shows the energy consumption for each model
relative to BIG. This energy consumption is the sum of static
and dynamic energy consumption. In the graph, “FUs” de-
notes the energy consumption of the FUs and the bypass
network in the OXU. Similarly, “IXU” denotes the energy
consumption of the FUs and the bypass network in the IXU.
“OTHERS” represents the energy consumption of the other
units, such as TLBs, fetch queues, and branch predictors.

HALF+FX reduces the energy consumption as com-
pared to BIG and HALF by 17% and 3.3%, respectively.
This is mainly because the energy consumption of the IQ
and the LSQ is reduced, as described in Sect. 5. In particular,
the energy consumption of the IQ is significantly reduced.
The energy consumption of the IQ in HALF+FX is reduced
to 14% and 42% of that in BIG and HALF, respectively.
The energy consumption of the IQ in HALF+FX is also re-
duced as compared to that in HALF, although HALF+FX and
HALF have the same IQ, whose width/size is half of that in
BIG. This is because the number of instructions dispatched
to the IQ is reduced by the execution of instructions in the
IXU. The energy consumption of the LSQ in HALF+FX
is reduced to 77% of that in BIG, and its effect is small
compared with the case of the IQ. This is because all pro-
cesses of the LSQ are not omitted when load/store instruc-
tions are executed in the IXU, as described in Sect. 2.4.3.
The energy consumption of the FUs and the bypass network
in HALF+FX is increased by 9.3% as compared with that
in BIG, but this increase in energy consumption is smaller
than the energy consumption decrease effected by the IQ
and the other parts. This detailed energy consumption of
the FUs and the bypass network is discussed in Sect. 6.5.
The energy consumption of the other parts in HALF+FX is
slightly smaller than those in BIG, because HALF+FX im-
proves its performance, and thus, static energy consumption
is reduced.

BIG+FX reduces the energy consumption as compared
to BIG by 8.7%. Although BIG+FX has the same OXU as

Fig. 8 Energy consumption relative to BIG.

Table 2 Device configurations.

technology 22 nm, Fin-FET [24]
temperature 320 K
VDD 0.8 V
device type (core) high performance (I off: 127 nA/µm)
device type (L2) low standby power (I off: 0.0968 nA/µm)

BIG, the energy consumption is reduced. This is because the
number of instructions fed to the OXU is reduced as com-
pared to BIG.

The energy consumption of LITTLE is much smaller
than that of the other models: 60% and 71% of that of BIG
and HALF+FX, respectively.

It should be noted that the energy consumption of the
L2 cache is very small in all the models because we use
Fin-FET technology and low-standby-power transistors for
the L2 caches, as shown in Table 2. Fin-FET technology
significantly reduces leakage current [25]. Furthermore, the
leakage current of low-standby-power transistors used in
L2 caches is considerably small compared to that of high-
performance transistors used in the cores, as shown in Ta-
ble 2. Thus, the static energy consumption of the L2 caches
is very small. The dynamic energy consumption of the L2
caches is also small, because the hit rates of L1 data caches
are more than 95% on average in all the models, and thus,
the number of accesses to the L2 caches is small.

6.5 Energy Consumption of FUs and Bypass Networks

Figure 8 (b) shows the energy consumption of the FUs and
the bypass network for each model relative to BIG. In the
graph, “dy.” and “st.” are the dynamic and static energy
consumption of each module, respectively. In HALF+FX,
the energy consumption of the FUs and the bypass network
in the OXU is reduced as compared to that in BIG and HALF,
but the energy consumption of the IXU is increased. This
increase is due mainly to the static energy consumption of
the FUs in the IXU. As a result, the energy consumption of
the FUs and the bypass network in HALF+FX is increased
by 9.4% as compared to that in BIG, but this does not cause
a serious overall problem as described above.

The static energy consumption of the IXU is small, be-
cause the area of the IXU is small and the number of the
transistors that the IXU comprises is small, as described in



1102
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Fig. 9 Circuit area relative to BIG.

Sects. 5.1.1 and 6.6.
In LITTLE, the energy consumption of the FUs and the

bypass network is smaller than that of the other models. This
is because LITTLE does not perform out-of-order execution,
and thus, the number of instructions uselessly executed and
flushed on branch misprediction is significantly smaller than
that of the other models. The energy consumption of the
FUs and the bypass network in HALF is reduced to 92% of
that in BIG, for the same reason as in LITTLE. The number
of instructions speculatively executed in HALF is smaller
than that in BIG because the IQ is shrunk.

6.6 Circuit Area

We evaluated the circuit areas of the models. Figure 9 (a)
shows the areas of the entire processor for the other mod-
els relative to that of BIG. The labels in this figure are
the same as in Fig. 8 (a). The areas of the several units
shown in the upper part of Fig. 9 (a) are not clear to see,
and thus, Fig. 9 (b) shows the areas of these units†. The area
of HALF+FX is increased by the addition of the IXU, as
shown in Fig. 9 (b). However, the area of the IXU is signifi-
cantly smaller than that of the entire processor, as shown in
Fig. 9 (a), and consequently, the area of HALF+FX is slightly
bigger than that of BIG; the area growth is 2.7%. These re-
sults support that the number of transistors in the IXU is
small compared to that of transistors in the entire processor
(Sect. 5.1.1), and thus, the static energy consumption of the
IXU is small, as described above. In all the models, an L2
cache and FP units occupy a large area. In HALF+FX, the
areas of the L2 cache and FP units are 44% and 24% of the
entire area, respectively. These units are basically the same
in all the evaluated models except LITTLE††, and thus, their
areas are the same.

6.7 Performance/Energy Ratio

In this section, we show the performance/energy ratio (PER)
of each model, which is equal to the inverse of the energy-
delay product (EDP). Figure 10 shows the PER of each
model relative to that of BIG. In the figure, it can be seen

†The area of the IQ in HALF and HALF+FX is significantly
smaller than that in BIG because both the width and capacity are
decreased (Sect. 5.3).
††LITTLE has fewer FP units than the other models.

Fig. 10 Performance/energy ratio.

Fig. 11 IPC versus IXU configurations.

that HALF+FX improves the PER as compared to BIG and
LITTLE by 25% and 27%, respectively. This high PER is
achieved because HALF+FX improves both the IPC and en-
ergy consumption.

6.8 Sensitivity

In this section, we describe the sensitivity of HALF+FX to
variations in the IXU.

6.8.1 Optimization of IXU

We evaluated the effect of the optimization of the IXU
described in Sect. 3.1.2. Figure 11 shows the IPCs of
HALF+FX compared to that of the HALF+FX with nine FUs
over three stages and the full bypass network. The “full” line
shows the results of HALF+FX with the full bypass network,
and the “opt” line shows those with the bypass network that
omits operand-bypassing between FUs that are more distant
than two stages. The horizontal axis shows the number of
the FUs in each stage of the IXU. For example, “[3,1,1]”
shows that the first stage has three FUs, and the second and
third stage each has one FU. The performance degradation
of the model with [3,1,1] and opt, which is used in the other
evaluations, is only 0.5% as compared to the model with
nine FUs and the full bypass network. These results show
that the performance degradation caused by the optimization
described in Sect. 3.1.2 is negligible.

6.8.2 Function Units Stages in IXU

We evaluated HALF+FX while varying the depth of FUs



SHIOYA et al.: FXA: EXECUTING INSTRUCTIONS IN FRONT-END FOR ENERGY EFFICIENCY
1103

Fig. 12 Executed instructions rate in IXU.

Fig. 13 IPC versus IXU stages.

in the IXU from 1 to 6. It should be noted that the op-
timization of the IXU described in Sect. 3.1.2 is not ap-
plied to HALF+FX in this section. Figure 12 shows the
rate of instructions executed in the IXU relative to all the
executed instructions (hereafter, in this section, “execution
rate” refers to this rate). Each line in Fig. 12 shows the ex-
ecution rate of the geometric mean of the INT benchmark
group, FP benchmark group, and all benchmark programs.
Figure 12 shows that the execution rate increases with an in-
crease in the depth. The figure shows that HALF+FX can ex-
ecute many instructions, and HALF+FX with the one-stage
IXU executes 35% of the instructions on geometric mean.
HALF+FX with the three-stage IXU executes more than half
of instructions; the execution rate is 54%. The execution
rate in the INT benchmark group is significantly higher than
that in the FP benchmark group. The execution rates for the
INT and FP benchmark groups in HALF+FX with the three-
stage IXU are 61% and 51%, respectively. This difference
is attributed to the lack of FP units in IXU, as described in
Sect. 2.4.

Similarly, Fig. 13 shows the IPC of HALF+FX relative
to that of BIG when the FUs’ depth is varied. This figure
shows that the IPC increases with an increase in the depth.
When the depth constitutes more than three stages, the IPC
increase per depth is less than 1%. This is because of the
fact that if the issue width of the OXU is sufficient, the effect
of an IXU, similar to the effect of widening the issue width
(Sect. 4.2.1), does not improve performance.

6.9 Evaluation on Performance-Centric Cores

Thus far we have evaluated models based on ARM

Table 3 Processor configurations (Performance-centric).

BIG HALF
fetch width 4 inst. ←
issue width 8 inst. 3 inst.
issue queue 80 entries 40 entries
FU (int, mem, fp) 4, 2, 2 ←
ROB 180 entries ←
int/fp PRF 160/160 entries ←
ld/st queue 40/40 entries ←
L2C 2MB, 8 way, ←

64 B/line, 12 cycles

big.LITTLE, and in this section, we show the evaluation re-
sults of FXA on performance-centric cores. The big cores
in ARM big.LITTLE are designed for mobile devices, and
thus, the maximum width of instruction execution is lim-
ited to four instructions for reducing energy consumption.
In contrast, PCs and server systems are usually equipped
with performance-centric cores such as Intel Haswell [3]
and IBM POWER8 [2], which can execute eight or more
instructions in a cycle and are much bigger than those in
ARM big.LITTLE. In this section, we show how the perfor-
mance and energy consumption of FXA are changed in such
performance-centric cores. For simplicity, we refer to the
big cores in ARM big.LITTLE as efficiency-centric cores in
this section.

We evaluated the models presented in Sect. 6.2 except
LITTLE, because the performance improvement is gener-
ally negligible when the size of an in-order superscalar pro-
cessor is increased. Table 3 shows the detailed parame-
ters of the evaluated models whose configurations are based
on performance-centric cores such as Intel Haswell [3] and
IBM POWER8 [2]. Other parameters such as an L1D cache
configuration are not different from those listed in Table 1.

The FXA models have an IXU with a [4,1,1] con-
figuration. This configuration differs from that in the
efficiency-centric cores ([3,1,1]), because the fetch width
is widened, and thus, optimal configuration changes. In
the performance-centric cores, the fetch width is widened
from three to four instructions compared with the efficiency-
centric cores, and consequently, the available maximum
width of the IXU is also widened to four. The [4,1,1] IXU
has the highest performance among configurations whose
bypass network complexity is similar to that of the bypass
network of BIG in performance-centric cores†. The bypass
network complexity is considered on the basis of the dis-
cussion on complexity in Sect. 3.1 in the same way as the
efficiency-centric cores. The detailed sensitivity of the IXU
configurations is described in Sect. 6.9.2.

6.9.1 IPC and Energy Consumption

FXA based on performance-centric cores shows the same
tendency of the results of the efficiency-centric cores in

†The bypass network of BIG in performance-centric cores is
more complex than that of BIG in the efficiency-centric cores, be-
cause the number of functional units connected through the bypass
network is increased.



1104
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Fig. 15 Sensitivity of IXU configurations on performance centric cores.

Fig. 14 IPC/energy consumption relative to BIG on performance centric
cores.

terms of performance and energy consumption. Fig-
ure 14 (a) shows the IPCs for each model relative to BIG.
The IPC improvement of HALF+FX is 5.0% while the im-
provement is 5.7% in the efficiency-centric cores, and this
shows that FXA can also function well with performance-
centric cores. Figure 14 (b) shows the energy consumption
for each model relative to BIG. The labels in this figure
are the same as in Fig. 8 (a). HALF+FX reduces the en-
ergy consumption as compared to BIG by 24%, while the
reduction is 17% in the efficiency-centric cores. This is be-
cause the configurations of the L1 caches are not changed,
but hardware for dynamic instruction scheduling is rela-
tively enlarged. FXA can reduce the energy consumption
of such hardware; consequently FXA functions better in the
performance-centric cores.

6.9.2 Sensitivity of IXU Configurations

In this section, we describe the sensitivity of the IXU con-
figurations on the performance-centric cores. Figure 15 (a)
shows the IPCs of HALF+FX compared to that of the
HALF+FX with a [4,4,4] IXU configuration. The labels and
lines in this figure are the same as in Fig. 11. This figure
shows the IPCs of HALF+FX with the bypass network that
omits operand-bypassing between FUs that are more distant
than two stages, as described in Sect. 3.1.2. The IPC degra-
dation of [4,1,1] as compared to [4,4,4] is slight (0.7%), but
the IPC degradation of [3,1,1] as compared to [4,1,1] is not
negligible (2.9%). Consequently, we use the [4,1,1] config-
uration in the evaluations of the performance-centric cores.

In addition, we evaluated HALF+FX on the perfor-
mance-centric cores while varying the depth of FUs in the
IXU from 1 to 7. It should be noted that the optimization of
the IXU described in Sect. 3.1.2 is not applied to HALF+FX
in this evaluation. Figure 15 (b) shows the rate of instruc-
tions executed in the IXU relative to all the executed instruc-
tions. Figure 15 (c) shows the IPC of HALF+FX relative
to that of BIG when the FUs’ depth is varied. The labels
and lines in these figure are the same as in Figs. 12 and 13.
Although these results show the same tendency of the re-
sults on the efficiency-centric cores, the executed rates and
IPC improvements are smaller than those on the efficiency-
centric cores. This is because the fetch width is widened
compared to the efficiency-centric cores. When the fetch
width is widened, it increases the probability that dependent
instructions are in the same fetch group. These dependent
instructions cannot be executed in the same stage of the IXU
as described in Sect. 2.3, and consequently, the number of
the executed instructions in the IXU is decreased. However,
this degradation is not significant, and the IXU with three
stages, which is used for the evaluations on the performance-
centric cores, still can execute 45% instructions, while the
executed rate is 54% in the efficiency-centric cores.

7. Related Work

We describe works related to the proposed method in this
section.

7.1 Clustered Architecture

Both FXA and clustered architecture (CA), such as Alpha
21264 [13], have multiple execution units. The major differ-
ence between them is that the clusters in CA do not have an
order relation, but the IXU and the OXU in FXA have an or-
der relation as instructions not executed in the IXU go into
the OXU. Consequently, FXA is simpler than CA in terms
of the following:

• Operand Bypassing and Wakeup: It is necessary to
bypass operands and wakeup instructions between the
clusters in CA [13], and they require additional datap-
ath and wakeup ports. These operand-bypassing and
wakeup operations are performed across the clusters,



SHIOYA et al.: FXA: EXECUTING INSTRUCTIONS IN FRONT-END FOR ENERGY EFFICIENCY
1105

and thus, additional latencies are required. In contrast,
it is not necessary to bypass operands and wakeup in-
structions between the IXU and the OXU, because they
have an order relation, as described in Sect. 3.1.1.

• Instruction Steering: For mitigating additional la-
tencies for communication between the clusters, it is
important for CA that instructions are appropriately
steered to the clusters [15]. If there is a CA with in-
order/out-of-order clusters and instructions that remain
not executed for a long time are steered to the in-order
cluster, then its performance is significantly decreased.
Consequently, more careful instruction steering and a
complex logic are required. In contrast, the IXU and
the OXU in FXA have an order relation, and thus, in-
struction steering is not necessary.

As described above, FXA is simpler than CA; more-
over, FXA has more FUs than CA. As a result, FXA has
a higher performance and lower energy consumption than
does CA.

7.2 Heterogeneous Multicore

A heterogeneous multicore architecture improves energy ef-
ficiency with a hybrid system of out-of-order/in-order cores.
One example of a heterogeneous multicore architecture is
ARM big.LITTLE [6], [10], [11]. ARM big.LITTLE con-
sists of big and little cores. Big cores have a higher per-
formance than little cores, but big cores consume a larger
amount of energy than little cores do. ARM big.LITTLE
reduces the energy consumption by executing instructions
with little cores when processing speed is not important
(e.g., receiving e-mails in the background). It makes it pos-
sible to improve energy efficiency without compromising
user experience.

Our goal is not to replace both the big and little cores
by FXA cores but rather to replace only the big core by an
FXA core. FXA has better PER than both the big and lit-
tle cores, but the FXA core cannot replace both of the big
and little cores. This is because the energy consumption of
the little core for processing a single instruction is always
smaller than that of the FXA and the big cores. For pro-
cessing a single instruction, the little core consumes energy
for steps such as fetch, decode, register access, and execute.
In contrast, the FXA and big cores consume energy for ad-
ditional steps such as rename and scheduling in addition to
the energy consumed in the little core; consequently, the en-
ergy consumption of the FXA and big cores is always bigger
than that of the little core. Thus, the little core is still useful
when the smallness of energy consumption is important and
high performance is not important. Therefore our goal is to
replace only the big core by an FXA core. In this way, en-
joying the energy optimization of big.LITTLE, application
programs that require the high performance of big cores can
be executed with lower energy consumption.

7.3 Processing Instructions in Front-End

RENO (which stands for RENaming Optimizer) [26] re-
duces the complexity of an execution core by removing ir-
relevant instructions on register renaming. It dynamically
performs optimization, such as move elimination and com-
mon subexpression elimination. Both RENO and FXA re-
duce the number of instructions dispatched to the execution
core by processing instructions in the front-end. The major
difference between RENO and FXA is that RENO reduces
the number of executed instructions itself by optimization in
the front-end, and FXA actually executes instructions in the
front-end. Optimization in RENO is implemented by modi-
fying the renaming logic, and thus, this optimization can be
implemented in FXA, and improved results can be achieved
by combining them.

7.4 Array Processor

Researchers proposed array processors, which improve per-
formance and energy efficiency by leveraging FUs placed as
an array [27]–[30]. The array processors have a structure
similar to that of the IXU in that functional units are serially
placed over multiple stages.

The major difference between array processors and the
IXU is whether instructions are statically assigned to FUs or
dynamically flow over FUs.

Array processors generally target loop iterations, and
instructions in iterations are statically assigned to FUs by
compilers; that is, each FU always executes the same static
institution. Consequently, when the length of an FU array
is longer than that of a loop, the loop cannot be executed in
the array processor. Moreover, when a loop includes a com-
plex control flow graph with branches, a compiler cannot
effectively map instructions to each FU.

In contrast, in the IXU, instructions flow over the FUs,
as described in Sect. 2, and it does not statically map instruc-
tions to each FU. Thus, the IXU does not have the limitation
of array processors assuming loop iterations, and it can flex-
ibly execute a wide range of instructions in programs includ-
ing a complex control flow without any compiler support.

7.5 Reducing Issue Queue Complexity

For directly reducing the complexity of an IQ, Forward-
flow [8] was proposed. In Forwardflow, instructions are di-
rectly woken up through pointers, and thus, it omits CAMs
or dependency matrices, and its energy consumption is
therefore reduced.

As an approach that focuses on the number of source
operands, Half Price Architecture [31] was proposed. Half
Price Architecture focuses on the fact that many instructions
have fewer than two source operands, and reduces the num-
ber of ports of the wakeup logic and the register file.

Both the approaches proposed in these related stud-
ies and FXA reduce the complexity of the IQs. The ma-



1106
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

jor difference between them is that FXA reduces its energy
consumption by executing instructions in the IXU and re-
ducing the number of instructions dispatched to the issue
queue. Moreover, these approaches can be applied to the IQ
in FXA, and energy consumption is reduced further if they
are combined.

8. Conclusion

Smartphones and tablets have recently become widespread
and dominant in the computer market, and major developers
have adopted out-of-order superscalar processors for these
mobile devices. However, out-of-order superscalar proces-
sors consume much more energy than in-order superscalar
processors. In this paper, we proposed FXA, which has two
execution units, the IXU and OXU. The simple IXU oper-
ates as a filter for the complex OXU by executing instruc-
tions in the front-end. The IXU executes many instructions
and reduces the number of instructions dispatched to the
OXU. This makes it possible for FXA to achieve both high
performance and low energy consumption. In a compari-
son with the models based on ARM big.LITTLE architec-
ture, the evaluation results show that FXA achieves a 5.7%
higher performance, 17% lower energy consumption, and
25% higher performance/energy ratio (the inverse of energy-
delay product) than does a conventional superscalar proces-
sor, and a 27% higher performance/energy ratio than a con-
ventional in-order superscalar processor. We also evaluated
FXA with performance-centric superscalar cores after Intel
Haswell [3] or IBM POWER8 [2], and FXA achieved IPC
improvements of 5.0% while reducing the energy consump-
tion by 24%.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 24680005. We would like to thank Haruka Hirai, Kazuo
Horio, and Yasuhiro Watari for support.

References

[1] R. Shioya, M. Goshima, and H. Ando, “A Front-end Execution Ar-
chitecture for High Energy Efficiency,” Proceedings of the Inter-
national Symposium on Microarchitecture (MICRO), pp.419–431,
2014.

[2] B. Sinharoy, J.A. Van Norstrand, R.J. Eickemeyer, H.Q. Le, J.
Leenstra, D.Q. Nguyen, B. Konigsburg, K. Ward, M.D. Brown,
J.E. Moreira, D. Levitan, S. Tung, D. Hrusecky, J.W. Bishop, M.
Gschwind, M. Boersma, M. Kroener, M. Kaltenbach, T. Karkhanis,
and K.M. Fernsler, “IBM POWER8 Processor Core Microarchitec-
ture,” IBM J. Res. & Dev., vol.59, no.1, pp.2:1–2:21, 2015.

[3] K. Krewell, “Intel’s Haswell Cuts Core Power,” Microprocessor Re-
port 9/24/12, pp.1–5, Sept. 2012.

[4] ARM, “The ARM Cortex-A9 Processors,” ARM White Paper, 2007.
[5] L. Gwennap, “How Cortex-A15 Measures Up,” Microprocessor Re-

port 5/27/13-1, pp.1–7, 2013.
[6] J. Bolaria, “Cortex-A57 Extends ARM’s Reach,” Microprocessor

Report 11/5/12-1, pp.1–5, 2012.
[7] D. Folegnani and A. González, “Energy-Effective Issue Logic,” Pro-

ceedings of the International Symposium on Computer Architecture

(ISCA), pp.230–239, June 2001.
[8] D. Gibson and D.A. Wood, “Forwardflow: A Scalable Core for

Power-Constrained CMPs,” Proceedings of the International Sym-
posium on Computer Architecture (ISCA), pp.14–25, 2010.

[9] N.H.E. Weste and D.M. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective 4th Edition, Pearson/Addison-Wesley, 2011.

[10] K. Krewell, “Cortex-A53 Is ARM’s Next Little Thing,” Micropro-
cessor Report 11/5/12-2, pp.1–4, 2012.

[11] P. Greenhalgh, “Big.LITTLE Processing with ARM Cortex-A15 and
Cortex-A7,” ARM White Paper, 2011.

[12] K.C. Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, vol.16, no.2, pp.28–41, 1996.

[13] R.E. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
vol.19, no.2, pp.24–36, 1999.

[14] B. Sinharoy, R. Kalla, W.J. Starke, H.Q. Le, R. Cargnoni, J.A. Van
Norstrand, B.J. Ronchetti, J. Stuecheli, J. Leenstra, G.L. Guthrie,
D.Q. Nguyen, B. Blaner, C.F. Marino, E. Retter, and P. Williams,
“IBM POWER7 Multicore Server Processor,” IBM J. Res. Dev.,
vol.55, no.3, pp.191–219, 2011.

[15] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Quantifying the Com-
plexity of Superscalar Processors,” Technical Report, University of
Wisconsin-Madison, 1996.

[16] G.Z. Chrysos and J.S. Emer, “Memory Dependence Prediction Us-
ing Store Sets,” Proceedings of the International Symposium on
Computer Architecture (ISCA), vol.26, no.3, pp.142 –153, 1998.

[17] S.B. Wijeratne, N. Siddaiah, S.K. Mathew, M.A. Anders, R.K.
Krishnamurthy, J. Anderson, M. Ernest, and M. Nardin, “A 9-GHz
65-nm Intel Pentium 4 Processor Integer Execution Unit,” IEEE J.
Solid-State Circuits, vol.42, no.1, pp.26–37, 2007.

[18] J.-L. Cruz, A. González, M. Valero, and N.P. Topham, “Multi-
ple-Banked Register File Architecture,” Proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA), pp.316–325,
2000.

[19] R. Shioya, K. Horio, M. Goshima, and S. Sakai, “Register
Cache System Not for Latency Reduction Purpose,” Proceedings
of the International Symposium on Microarchitecture (MICRO),
pp.301–312, 2010.

[20] S. Kao, R. Zlatanovici, and B. Nikolic, “A 240ps 64b Carry-Looka-
head Adder in 90nm CMOS,” Proceedings of the International
Solid-State Circuits Conference (ISSCC), pp.1735–1744, 2006.

[21] S.R. Vangal, Y.V. Hoskote, N.Y. Borkar, and A. Alvandpour,
“A 6.2-GFlops Floating-Point Multiply-Accumulator with Condi-
tional Normalization,” Journal of Solid-State Circuits, vol.41, no.10,
pp.2314–2323, 2006.

[22] The Standard Performance Evaluation Corporation, SPEC CPU2006
Suite.

[23] S. Li, J.H. Ahn, J.B. Brockman, and N.P. Jouppi, “McPAT 1.0: An
Integrated Power, Area, and Timing Modeling Framework for Multi-
core Architecture,” technical report hpl-2009-206, HP Laboratories,
2009.

[24] Semiconductor Industries Association, Model for Assessment of
CMOS Technologies and Roadmaps (MASTAR) http://www.itrs.
net/models.html, 2007.

[25] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost,
M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W.
Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks,
D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S.
Joshi, C. Kenyon, H. Liu, R. McFadden, B. McIntyre, J. Neirynck,
C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T.
Reynolds, J. Roesler, J. Sandford, J. Seiple, P. Smith, C. Thomas,
D. Towner, T. Troeger, C. Weber, P. Yashar, K. Zawadzki, and K.
Mistry, “A 22nm High Performance and Low-power CMOS Tech-
nology Featuring Fully-depleted Tri-gate Transistors, Self-aligned
Contacts and High density MIM Capacitors,” Symposium on VLSI
Technology (VLSIT), pp.131–132, 2012.

[26] V. Petric, T. Sha, and A. Roth, “Reno: A Rename-Based Instruction
Optimizer,” Proceedings of the International Symposium on Com-

http://dx.doi.org/10.1109/micro.2014.35
http://dx.doi.org/10.1147/jrd.2014.2376112
http://dx.doi.org/10.1145/379240.379266
http://dx.doi.org/10.1145/379240.379266
http://dx.doi.org/10.1145/1815961.1815966
http://dx.doi.org/10.1109/40.491460
http://dx.doi.org/10.1109/40.755465
http://dx.doi.org/10.1147/jrd.2011.2127330
http://dx.doi.org/10.1145/279361.279378
http://dx.doi.org/10.1109/jssc.2006.885055
http://dx.doi.org/10.1145/339647.339708
http://dx.doi.org/10.1109/micro.2010.43
http://dx.doi.org/10.1109/isscc.2006.1696230
http://dx.doi.org/10.1109/jssc.2006.881557
http://dx.doi.org/10.1109/vlsit.2012.6242496
http://dx.doi.org/10.1109/isca.2005.43


SHIOYA et al.: FXA: EXECUTING INSTRUCTIONS IN FRONT-END FOR ENERGY EFFICIENCY
1107

puter Architecture (ISCA), pp.98–109, 2005.
[27] B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins, “Design

Methodology for a Tightly Coupled VLIW/Reconfigurable Matrix
Architecture: A Case Study,” Proceedings of the Design, Automa-
tion and Test in Europe Conference and Exhibition, pp.1224–1229
vol.2, 2004.

[28] F. Bouwens, M. Berekovic, B. De Sutter, and G. Gaydadjiev, “Ar-
chitecture Enhancements for the ADRES Coarse-Grained Recon-
figurable Array,” High Performance Embedded Architectures and
Compilers, pp.66–81, 2008.

[29] N. Devisetti, T. Iwakami, K. Yoshimura, T. Nakada, J. Yao, and
Y. Nakashima, “LAPP: A Low Power Array Accelerator with Bi-
nary Compatibility,” Proceedings of the International Symposium
on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), pp.854–862, 2011.

[30] J. Yao, Y. Nakashima, N. Devisetti, K. Yoshimura, and T. Nakada,
“A Tightly Coupled General Purpose Reconfigurable Accelerator
LAPP and Its Power States for HotSpot-Based Energy Reduction,”
vol.E97-D, no.12, pp.3092–3100, 2014.

[31] I. Kim and M.H. Lipasti, “Half-Price Architecture,” Proceedings
of the International Symposium on Computer Architecture (ISCA),
pp.28–38, 2003.

Ryota Shioya was born in 1981. He re-
ceived his M.E. and Ph.D. in Information and
Communication Engineering from the Univer-
sity of Tokyo in 2008 and 2011, respectively. He
was a research fellow of the Japan Society for
the Promotion of Science from 2009 to 2011.
Since 2011, he is an assistant professor at the
Graduate School of Engineering, Nagoya Uni-
versity. He is a member of IEICE, IPSJ, and
IEEE.

Ryo Takami received his B.E. degree from
Nagoya Institute of Technology, Nagoya, Japan,
in 2012. He received his M.E. degree from Na-
goya University, Nagoya, Japan, in 2014. Since
then, he has been with MegaChips Corporation.

Masahiro Goshima was born in 1968. He
received his M.E. in Engineering and Ph.D. in
Informatics from Kyoto University in 1994 and
2004, respectively. He was a research fellow of
the Japan Society for the Promotion of Science
from 1994. From 1996, he was an assistant pro-
fessor in Kyoto University. From 2005, he was
an associate professor in the University of To-
kyo. Since 2014, he has been a professor in
National Institute of Informatics. He has been
engaging in the research area of computer archi-

tecture. He received IPSJ Yamashita SIG research award and IPSJ best
paper award in 2001 and 2002, respectively. He wrote a book titled “Digi-
tal Circuits.” He is a member of IPSJ and IEEE.

Hideki Ando received his B.S. and M.S.
degrees in Electronic Engineering from Osaka
University, Suita, Japan, in 1981 and 1983,
respectively. He received his Ph.D. degree
in Information Science from Kyoto University,
Kyoto, Japan, in 1996. From 1983 to 1997, he
was with Mitsubishi Electric Corporation, Itami,
Japan. From 1991 to 1992, he was a visit-
ing scholar at Stanford University. In 1997 he
joined the faculty of Nagoya University, Na-
goya, Japan, where he is currently a professor

in the Department of Electrical Engineering and Computer Science. He re-
ceived IPSJ best paper awards in 1998 and 2002, and a best paper award
at the Symposium on Advanced Computing Systems and Infrastructures in
2013. His research interests include computer architecture and compilers.

http://dx.doi.org/10.1109/isca.2005.43
http://dx.doi.org/10.1109/date.2004.1269063
http://dx.doi.org/10.1007/978-3-540-77560-7_6
http://dx.doi.org/10.1109/ipdps.2011.223
http://dx.doi.org/10.1587/transinf.2014pap0025
http://dx.doi.org/10.1145/859618.859623

