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PAPER

Learning Subspace Classification Using Subset Approximated
Kernel Principal Component Analysis

Yoshikazu WASHIZAWA†,††a), Member

SUMMARY We propose a kernel-based quadratic classification
method based on kernel principal component analysis (KPCA). Subspace
methods have been widely used for multiclass classification problems, and
they have been extended by the kernel trick. However, there are large com-
putational complexities for the subspace methods that use the kernel trick
because the problems are defined in the space spanned by all of the training
samples. To reduce the computational complexity of the subspace methods
for multiclass classification problems, we extend Oja’s averaged learning
subspace method and apply a subset approximation of KPCA. We also pro-
pose an efficient method for selecting the basis vectors for this. Due to
these extensions, for many problems, our classification method exhibits a
higher classification accuracy with fewer basis vectors than does the sup-
port vector machine (SVM) or conventional subspace methods.
key words: kernel PCA, learning subspace methods, support vector ma-
chines

1. Introduction

Subspace classification methods have been widely used, es-
pecially for multiclass or many-class classification prob-
lems. Class-feature information compression (CLAFIC)
and the multiple similarity method are the original subspace
methods [1], [2], and they have been extended in various
ways, such as to create the orthogonal subspace methods [3]
and the mutual subspace methods [4]–[7] and their kernel-
izations.

CLAFIC extracts features from the training samples
belonging to the target class and does not consider the differ-
ences between classes. On the other hand, learning subspace
methods (LSMs) obtain subspaces using samples from both
the target and nontarget class, and the features are extracted
with consideration of the differences between classes [3].
Therefore, in general, the classification performance of the
LSMs is higher than that of the simpler CLAFIC.

Subspace methods have also been extended by using
the kernel trick, which is based on kernel principal compo-
nent analysis (KPCA) [8]. CLAFIC has been extended to
kernel CLAFIC methods [9]–[11], and the mutual subspace
methods have also been extended [12]–[14]. These exten-
sions exhibited higher performance than original methods.
The kernel extension of LSM is expected to show higher
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Fig. 1 Subspace methods. ‘*Kernel ALSM’ is the scope of the paper.

performance than kernel CLAFIC because kernel LSM uti-
lizes samples from both the target and nontarget class, and
the features are extracted with consideration of the differ-
ences between classes as well as LSM. We focus on the
kernelization of LSM in this paper in order to improve the
classification accuracy, yet it inherits the advantages of the
subspace methods. Figure 1 shows the relation of subspace
methods.

In KPCA, all of the training samples are used for the
basis vectors. Therefore, the size of the eigenvalue decom-
position (EVD) will be equal to the number of the training
samples. This computational cost can be a drawback for
the subspace method, especially in big-data problems. For
example, it is difficult to perform EVD for a matrix on the
order of tens of thousands. Moreover, if the number of basis
vectors is large, the computational cost in the test stage is
also high. Therefore, it is difficult to apply the kernel trick
to LSM, since LSM uses samples both in the target and the
nontarget class.

Subset KPCA was proposed as a way to reduce the
number of basis vectors in KPCA [15]. Subset KPCA uses
a subset of the samples as the basis vectors, and all of the
training vectors are used for the optimization problem to ob-
tain the projection operator. In this case, the size of the EVD
is equal to the size of the subset, and this is tunable. How-
ever, the selection of the basis vectors is based on the ap-
proximation error of the KPCA, and conventional clustering
techniques are used. It is thus not suitable for classification
problems as we discuss in Sect. 3.2.

In this paper, we use the subset approximation of
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KPCA [15] to extend the average learning subspace method
(ALSM) [3]. By combining these two approaches, we are
able to obtain a classification method that has a limited num-
ber of basis vectors, yet it inherits the advantages of the sub-
space methods. Furthermore, we propose a new method for
selecting the basis vector that are used for the classification,
and we also propose an extension of the reweighting rule.
We compare their accuracy in an experiment and present the
results in Sect. 5.

The remainder of the paper is organized as follows.
We review the ALSM, KPCA, and the subset approxima-
tion of KPCA in Sect. 2. We describe the proposed methods
for classification and the selection of basis vectors selec-
tion method in Sect. 3. We compare the proposed method
with the other classification methods in Sect. 4. We explain
the experimental results of a handwritten-digit classification
problem and multiclass classification problems using open
benchmarks, in Sect. 5, and we present our conclusion in
Sect. 6.

2. Existing Methods

2.1 Average Learning Subspace Method

Let Xc = {xc
1, x

c
2, . . . , x

c
Nc
} be a set of training samples of

a class c (c = 1, . . . ,C), where Nc is the number of sam-
ples belonging to class c. Subspace methods including the
ALSM measure the similarity between a vector x and the
class c by using the projection norm onto a subspace of the
class c,

gc(x) =‖U�c x‖2, (1)

where the column vectors of Uc form an orthonormal basis
of the subspace. The sample x is classified into that class
whose projection norm gc(x) is maximum. Therefore, find-
ing the optimal subspaces, i.e., the optimal U1, . . . ,UC , for
classification is the objective of the learning. Note that Uc

is not a unique representation of the subspace; however, the
projection norm Eq. (1) does not depend on the selection of
Uc.

The ALSM iteratively obtains the subspace, and
CLAFIC, which is PCA without the centering for each
class is used as an initial subspace. PCA is obtained from
the EVD of the correlation matrix of the class c, Rc =∑Nc

i=1 xc
i (xc

i )�. Once the initial subspaces have been obtained,
we find the misclassified samples from the training sets,

Ec = {x|(x belongs the class c)

∩ (x is classified to the other class)} (2)

Sc = {x|(x does not belongs the class c)

∩ (x is classified to the class c)}. (3)

We call Ec the enhancement set and Sc the suppression set,
since the samples in Ec should be enhanced and the samples
in Sc should be suppressed. Thus, the subspace is obtained
from the modified correlation matrix,

Algorithm 1 Average learning subspace method (ALSM)
Require: Training set X1, . . . ,XC , Hyper-parameters, r: dimension of

subspaces, α, β: strength of enhancement and suppression, T : num-
ber of maximum iterations

Ensure: Basis of subspaces: U1, . . . ,UC , and functions gc(x), c=1, . . . ,C
1: # Obtain the initial subspace by CLAFIC
2: for c = 1 to C do
3: Obtain the correlation matrix Rc =

∑Nc
i=1 xc

i (xc
i )�

4: Perform EVD for Rc and obtain r-major eigenvectors uc
1, . . . ,u

c
r .

Let Uc = [uc
1, . . . ,u

c
r ].

5: end for
6: # main loop
7: for iter = 1 to T do
8: Classify all training samples, and obtain Ec and Sc for c = 1, . . . ,C
9: for c = 1 to C do

10: Update the correlation matrix Rc by using Eq. (4).
11: Perform EVD for Rc and update Uc.
12: end for
13: end for

Rc ← Rc + α
∑
x∈Ec

xx� − β
∑
x∈Sc

xx�, (4)

where α and β control the strength of the enhancement and
the suppression, respectively. After we update the sub-
spaces, we again update Ec and Sc. Finally, the optimal
subspaces are obtained. We summarize this procedure as
Algorithm 1.

It should be noted that the modified correlation matrix
Rc in Eq. (4) is obtained from all of the samples in class c,
with the addition of a small subset of samples that do not be-
long to class c. This reduces the computational complexity
when ALSM is extended to a kernel version. An extension
of SVM uses a similar approach to explicitly mine samples
that are difficult to classify [7]. On the other hand, a binary
classifier with the one-vs-all approach uses all of the training
samples and has a higher computational complexity.

2.2 KPCA and Subset Approximation

PCA finds the r-dimensional subspace that maximizes the
power of the transformed vectors;

max
U

N∑
i=1

‖U�xi‖2 = Trace[U�RU],

subject to U�U = Ir,

(5)

where Ir is the identity matrix of size r. In this section, we
omit the subscript c indicating the class label.

KPCA maximizes the power of the mapped vectors;

max
U

N∑
i=1

‖U∗φ(xi)‖2,
subject to U∗U = Ir,

(6)

where φ(·) is a mapping function from the input space to the
feature space. The asterisk ·∗ denotes the operator defined by
g∗ f = 〈 f , g〉, or 〈A f , g〉 = 〈 f , A∗g〉 for all f , g in the feature
space, where 〈·, ·〉 denotes the inner product. Note that since
U can be infinite, the transpose ·� is replaced by ·∗. Since
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the columns of U can be expressed by a linear combination
of φ(xi) (i = 1, . . . ,N), U can be parameterized as

U =ΦA, (7)

whereΦ = [φ(x1), . . . , φ(xN)] is a basis operator, A is an N×
r matrix, and A is obtained by the EVD of the Gram matrix
K = Φ∗Φ ∈ RN×N . The i, j-th element of K is given by
〈φ(xi), φ(x j)〉 = k(xi, x j), where k(·, ·) is a positive definite
kernel function.

Subset KPCA approximates U by using a limited basis
vectors Ψ = [φ(z1), . . . , φ(zM)], M ≤ N,

Ũ =ΨB, (8)

where B is an M× r matrix [15]. We assume that Ψ is given.
Then the problem (6) is reduced to

max
B

B�K�xzKxzB

subject to B�KBB = IM ,
(9)

where Kxz = Φ
∗Ψ and KB = Ψ∗Ψ, that is (Kxz)i, j = k(xi, z j)

and (KB)i, j = k(zi, z j). The problem (9) is solved by gen-
eralized EVD, K�xzKxzb = λKBb, where b is a column of
B.

The size of the generalized EVD is M, since K�xzKxz ∈
R

M×M . Compared to using standard KPCA using z1, . . . , zM

as the training samples (size of EVD is also M), the value
of the objective function (6) for the subset KPCA is always
greater than that of the standard KPCA. In [15], [16], the
basis vectors z1, . . . , zM are determined by K-means or ran-
dom sample consensus (RANSAC). This results in a smaller
approximation error than that obtained when using simple
KPCA with a limited number of training vectors. We will
discuss our efficient method for selecting basis vectors for
classification in Sect. 3.

The projection norm of an input vector x is given by

gc(x) = ‖U∗φ(x)‖2 = ‖B�kx‖2 (10)

kx = [k(z1, x), . . . , k(zM , x)]�. (11)

The number of evaluations of the kernel function is M, and
the total number of multiplications is r(M + 1).

3. Proposed Classification Method

In order to develop a kernel version of ALSM, we will ad-
dress the following three issues:

1. The updating rule in the feature space,
2. Selection of the basis vectors,
3. Extension of the reweighting rule.

3.1 The Updating Rule in the Feature Space

We extend the updating rule, Eq. (4) to a kernel version by
using the subset approximation. The updated modified cor-
relation matrix at the ith iteration, Ri

c, is expressed as

Ri
c = XcX�c + αXi

c,Ec
(Xi

c,Ec
)� − βXi

c,Sc
(Xi

c,Sc
)�, (12)

where the columns of Xi
c,Ec

and Xi
c,Sc

are cumulative vec-
tors in the enhancement set Ec and the suppression set Sc,
respectively.

Let Φc, Φc
E, and Φc

S be operators that arrange the
mapped vectors in Xc, Ec, and Sc, respectively, and let

Kc
XB = Φ

∗
cΨ (13)

Kc
EB = (Φc

E)∗Ψ (14)

Kc
SB = (Φc

S)∗Ψ (15)

Kc = (Kc
XB)�Kc

XB + α(Kc
EB)�Kc

EB − β(Kc
SB)�Kc

SB, (16)

where Ψ is the basis of the subset KPCA, and we assume Ψ
is given. Then the subspace parameterized by Bc ∈ RM×r

(Uc = ΨBc) is obtained from the optimization problem,

max
Bc

Trace[B�c KcBc]

subject to B�c KBBc = Ir.
(17)

3.2 Selection of Basis Vectors

We have thus far assumed that the basis vectors z1, . . . , zM ,
and the mapped set Ψ = [φ(z1), . . . , φ(zM)] are given. In
[15], [16], the selection of basis vectors is discussed in terms
of the approximation error of KPCA. However, since the
purpose of the proposed method is classification, the crite-
rion should be based on classification error. For example, in
the case of SVM, the hinge loss that represents classification
error is used, but l2 or l1-error that represents approxima-
tion error was not used. In the case of the relevance vector
machine (RVM) classifier, the logistic function (measures
classification error) is used, but Gaussian function (mea-
sures approximation, it is used in RVM regression) is not
used. In the case of ALSM and CLAFIC, CLAFIC uses to-
tal approximation error whereas ALSM uses classification
error. These precedents imply that the approximation error
is not an optimal criterion for classification. From a prac-
tical viewpoint, roughly speaking, minimizing total approx-
imation error fits the most probable patterns that are easy
to be classified, whereas the classification error fits to sam-
ples that are easily misclassified. We thus propose a sample
selection method based on the classification error.

In kernel ALSM, the subspace is determined by the ma-
trix B and the basis Ψ (Eq. (8)). B is determined by the ker-
nel version of ALSM criterion (17). In order to determine
the basis Ψ, we use the same criterion because it provides
the optimal subspace for classification. Since it is difficult
to solve the optimization problem forΨ directly, we propose
a greedy algorithm for sequentially selecting the basis sam-
ples. As in ALSM, the proposed method initially obtains
subspaces by using subset KPCA with a limited number of
basis vectors. These basis vectors can be obtained by using
clustering methods, such as the K-means method.

Suppose the subset KPCA U = ΨB is given by the
current basis set {z1, . . . , zm}, (Ψ = [φ(z1, . . . , φ(zm))]). We
find the next optimal basis vector to maximize the criterion
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(17),

max
z

Trace[B�c K̃cBc] (18)

where K̃c is the updated kernel matrix of Eq. (16) calculated
by the updated basis Ψ̃ = [Ψ|φ(z)]. However, when we
update the basis vectors (i.e. when we update Ψ), we have
to recompute the generalized eigenvector B for each of the
candidate vectors. This is also computationally expensive.

In PCA, vectors can be approximated by a linear com-
bination of a limited number of eigenvectors, because a
small number of the eigenvalues of the correlation matrix
have large values, and the remaining eigenvalues are small.
In other words, we can obtain a good approximation to the
entire input space by using the space spanned by a limited
number of eigenvectors. In the case of (subset) KPCA, the
space spanned by the mapped basis vectors (i.e., the range of
Ψ) can also be approximated well by the space spanned by
U. Therefore, we approximate the projection onto span(U)
by the projection onto span(Ψ) [17]. By introducing this ap-
proximation, we can reduce the computational complexity
for the selection basis vector.

The projector onto span(Ψ) is given by

PΨ = Ψ(KB)−1Ψ∗. (19)

If the projection norm ‖PΨφ(x)‖ of a vector x in Ec or Sc is
small, the current basis will not provide a good approxima-
tion for it. Thus, we add the vector to the basis set. Conse-
quently, the sample selection rule is to add a vector z such
that

min
z∈Ec∪Sc

‖PΨφ(z)‖2
‖φ(z)‖2 = 〈kz, K−1

B kz〉/k(z, z), (20)

where kz is a vector given by Eq. (11).
Suppose that we find a new basis vector z∗ by Eq. (20),

and we have the Cholesky decomposition of the current
Gram matrix KB = LL�, where L is a lower triangular ma-
trix. Then the updated kernel matrix K̃B and its Cholesky
decomposition L̃ are given by

K̃B =
[
KB kz∗

k�z∗k(z∗, z∗)

]
= L̃L̃� (21)

L̃ =
[

L 0
(L−1 kz∗ )�q

]
(22)

q =
√

k(z∗, z∗) − ‖L−1 kz∗ ‖2. (23)

Note that inverse operation on the lower triangular matrix
L−1 kz∗ requires only M(M + 1)/2 multiplications which is
the same computational complexity as Lkz∗ . Moreover, as
we show next, we do not need to calculate this inverse oper-
ation during the updating process.

The numerator of the right-hand side of Eq. (20) is

〈kz, K−1
B kz〉 = ‖L−1 kz‖2. (24)

We store vectors lz = L−1 kz for all z ∈ Ec ∪ Sc. Then, from

Algorithm 2 Basis selection algorithm (the class index c is
omitted)
Require: Enhance set: E, Suppression Set: S, initial basis z1, . . . , zm, ker-

nel function: k(·, ·), Basis size: M
Ensure: Basis vectors z1, . . . , zM

1: if |E ∪ S| ≤ M − m then
2: Set all vectors in E ∪ S to the basis vectors
3: else
4: Let Ψ = [φ(z1), . . . , φ(zm)]
5: Calculate kernel matrix KB = Ψ∗Ψ and its Cholesky decomposition

L (this procedure can be done outside of the main loop of Algo-
rithm 3 )

6: Obtain kernel vectors for initial basis vectors, kz and lz = L−1 kz
for all z ∈ E ∪ S

7: for i = m + 1 to M do
8: Find the sample z∗ to be added by the criterion (20),

z∗ = argmin
z∈E∪S

‖lz‖2/k(z, z)

9: Set zi = z∗ and update lz by Eq. (25) for all z ∈ E ∪ S
10: end for
11: end if

a property of the inverse of the partitioned matrix [18], we
obtain the updated vector from

l̃z = L̃−1 k̃z =

[
lz

1
q (k(z, z∗) − l�z∗ lz)

]
(25)

lz∗ = L−1 kz∗ .

Thus, the main computations required for selecting the basis
vectors are l�z∗ lz and ‖lz‖2 for all z ∈ Ec∪Sc. We summarize
the basis selection algorithm as Algorithm 2.

Since ‖lz‖2 and l�z∗ lz require i multiplications, the total
number of multiplications in the for-loop is n

∑M
i=m+1 2i + 1,

where n = |E ∪ S|. In addition, there are (n + 1)(M − m)
evaluations of the kernel function and (M − m) square-root
operations.

3.3 Extension of the Reweighting Rule

The ALSM algorithm finds the samples that are not classi-
fied correctly and enhances or suppresses them in the next
iteration. In the high-dimensional feature space of kernel
machines, the number of degrees of freedom is higher than
it is in the Euclidean input space. Therefore, the learning
can easily over-fit the training samples. In other words, dur-
ing the learning procedure, almost all of the training samples
are correctly classified, and there is no improvement of the
generalization performance.

To solve this problem, we introduce the idea of relative
similarity of the training samples,

h(xc
i ) = gc(xc

i )/max
k�c
gk(xc

i ). (26)

If h(xc
i ) < 1, xc

i is considered to be misclassified and is
added to the enhancement set Ec and the suppression set Sc

in the original ALSM algorithm. We tighten this condition,
and add to Ec and Sc samples that are correctly classified by
a narrow margin,
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Algorithm 3 Proposed kernel learning subspace method
Require: Labeled training set: X1, . . . ,XC , Hyper-parameters, α, β:

Strength of enhancement and suppression, θ: Threshold, T : Number of
maximum iterations, r: Dimension of subspaces, k(·, ·): Kernel func-
tion, M: Maximum number of basis vectors

Ensure: Pair of matrix Bc and basis set Bc

1: # Obtain the initial subspace by Kernel CLAFIC
2: for c = 1 to C do
3: Obtain the initial basis Bc

0 from Xc by clustering
4: Perform subset KPCA using training samples Xc and the basis Bc

0,
and obtain Bc.

5: end for
6: # Main loop
7: for iter = 1 to T do
8: Classify all training samples and obtain the relative similarity hc(x)

for all classes c and training samples by using Eq. (26).
9: for c = 1 to C do

10: Add samples to Ec and Sc by Eqs. (27) and (28)
11: Obtain basis vectors Bc by Algorithm 2
12: Obtain Kc from Eqs. (13)-(16)
13: Perform subset KPCA and obtain Bc

14: end for
15: Quit the iteration if the sum of h(xc

i ) is converge, or no vectors are
added to Ec and Sc.

16: end for

Ec = {xc
i |h(xc

i ) < 1 + θ} (27)

Sc = {xk
i (k ∈ {1, . . . ,C}\c)|

(h(xk
i ) < 1 + θ) and (c = argmax

k′�k
gk′ (xk

i ))} (28)

where θ ≥ 0 is a parameter that controls the margin. When
θ = 0, this is equivalent to the original ALSM.

We summarize the algorithm of the proposed classifi-
cation method as Algorithm 3. When the dimension of the
subspace, r is larger than the current (or initial) basis size
|Bc|, the solution of the problem (9) is not unique. In such
case, we simply use the |Bc|-dimensional subspace spanned
by the current (or initial) basis vectors.

4. Computational Efficiency

The decision function of a kernel subspace method is a
quadratic model,

f (x) = 〈φ(x), Aφ(x)〉, (29)

A = ΦBΦ∗ =
M∑

i=1

M∑
j=1

βi jφ(zi)φ(z j)
∗. (30)

On the other hand, the decision function of sparse kernel
machines such as SVMs, RVMs, and multiple kernel learn-
ing algorithms (MKL), is a linear model [19]–[21],

f (x) = 〈w, φ(x)〉 (31)

w = Φα =
M∑

i=1

αiφ(zi), (32)

where α = [α1, . . . , αM]� is a weight vector whose ith ele-
ment αi is associated with the basis vector xi. The weight
of a sparse kernel machine is supported by a limited num-
ber of training vectors, the so-called support vectors. These

Table 1 Comparison of computational efficiency, L: no. of classes, n:
total number of samples in E,S and the target class, M: no. of basis vectors
(support vectors), r: rank (no. of dimension), N: no of samples in one class

Classifier Training Test
Proposed O(LnM2) O(rLM)
one-vs-the-rest SVM O(L3N2) O(LM)
one-vs-one SVM O(L2N2) O(L2 M)
Kernel CLAFIC O(rLN2) O(rN)

sparse kernel machines are binary classifiers, and hence,
when applying them to multiclass problems, a one-vs-the-
rest or one-vs-one approach is required [22]. If the number
of classes is large, the computational cost will be high.

In the feature space, the quadratic model (29) has more
degrees of freedom than does the linear model (31). There-
fore, it is expected that the smaller number of basis vectors
used in the proposed method will perform the classification
as accuracy as does the linear model (31).

The classification methods for multiclass classification
problems can be categorized as follows [22];

1. one-vs-one approach using binary classifiers
2. one-vs-the-rest (one-vs-all, one-vs-others) approach

using binary classifiers
3. multiclass classifier
4. one-class classifier (density estimation)

The one-vs-one approach makes classifiers for all possible
combinations, i.e., L(L−1)/2 classifiers for an L-class classi-
fication problem. Thus, the computational cost and memory
are large if L is rather large.

The one-vs-the-rest approach requires L classifiers.
However, the computational cost to obtain one classifier
is higher than it is with the one-vs-one approach since all
training samples are used for each classifier. For example,
suppose N is the number of samples per class and L is the
number of classes. Since the computational cost of train-
ing SVM is roughly quadratic in N [23], the one-vs-one ap-
proach costs (L(L − 1)/2 classifiers) × (2N)2, i.e., O(L2N2)
plus lower-order terms. On the other hand, the computa-
tional cost of the one-vs-the-rest approach is (L classifiers)
× (LN)2, i.e., O(L3N2) plus lower-order terms.

A multiclass classifier obtains one classifier for a mul-
ticlass problem; e.g., multiclass SVM [24] and multilayer
perceptrons [25]. They also use all of the training samples
in order to obtain the classifier. If the number of classes L
and the number of training samples are large, the computa-
tional cost is large.

A one-class classifier is a classifier whose decision
function is learned from samples of one class. The k-nearest
neighbor rule, the Bayesian decision rule, the single-class
SVM [26], and the subspace classifier [9] are examples of
one-class classifiers. Since a one-class classifier does not
take into account the difference in features between classes,
the accuracy, in general, is not as high as it is in other clas-
sifiers.

The proposed method takes into account the samples
that are misclassified. Therefore, a limited number of sam-
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ples are used to obtain the eigenvectors, and the computa-
tional complexity is realistic even when the quadratic de-
cision function is used. We will give actual computational
times for several datasets in Sect. 5.

The computational complexity of the proposed method
primarily depends on the EVD for subset KPCA and the
updating process. The computational complexity of subset
KPCA is the generalized EVD for an M × M matrix. For
self-evaluation, NM kernel evaluations and M2 multiplica-
tions are required. After the self-evaluation, suppose that n
is the total number of samples in E, S, and the target class.
Then nM +M2 kernel evaluations, and nM(M + 1)/2 multi-
plications are required. It should be noted that M is tunable
in our method.

For the evaluation stage, the linear sparse kernel ma-
chine, Eq. (31) requires M kernel evaluations and M mul-
tiplications. On the other hand, the quadratic sparse ker-
nel machine, Eq. (29) requires M kernel evaluations and
M(M + 1)/2 + M multiplications. In our case, since B in
Eq. (29) is rank reduced, the number of multiplications is
(M + 1)r, where r is the dimension of the subspace. The
required memory to store basis vectors is the same for both
Eqs. (31) and (29).

5. Experiments

We show three experimental results. In Sect. 5.1, USPS
handwritten-digits dataset is used to detailed comparison us-
ing various parameter selection. In Sect. 5.2, UCI datasets
are used to compare the performance over various datasets.
In Sect. 5.3, MNIST dataset is used to compare the compu-
tational efficiency for the large data.

5.1 USPS Handwritten-Digits Dataset

We used a US Postal Service (USPS) handwritten-digits
dataset [27]. The dataset has 7291 images for training and
2007 images for the test. The images are grayscale, and
each image comprises 16×16 pixels. For preprocessing, we
normalized a 256-dimensional vector to a unit norm. To ob-
serve the statistical behavior, we mixed the original training
and test samples, and randomly split all of the 9298 samples
into a training set (1860 samples, 20% of total) and a test set
(7438 samples, 80% of total). We obtained 20 realizations
using random splitting.

The hyperparameters were obtained from a ten fold
cross-validation for each realization, using the training sam-
ples. Thus, each realization could result in different estima-
tions of the hyperparameters.

We compared the following classification methods;

1. proposed classification method (PRO)
2. proposed classification method without basis selec-

tion(PRO2)
3. k-nearest neighbor (KNN)
4. one-vs-the-rest SVM (SVM1)
5. one-vs-one SVM (SVM2)

Table 2 Results of USPS handwritten digit recognition; mean test error
and standard deviations over 20 realizations

Method Test error[%]

PROl 3.807± 0.258
PROp 3.660± 0.187
PROr 3.764± 0.172
PRO2l 3.937± 0.291
PRO2p 3.649± 0.248
PRO2r 3.679± 0.186
KNN 6.304± 0.293

SVM1l 7.456± 0.330
SVM1p 3.905± 0.229
SVM1r 3.957± 0.218
SVM2l 5.654± 0.345
SVM2p 3.941± 0.269
SVM2r 4.026± 0.315
SMKL 4.347± 0.283

CLAFIC 5.098± 1.299
ALSM 4.818± 0.369
KCLAl 4.450± 0.239
KCLAp 4.068± 0.233
KCLAr 4.091± 0.237

6. simple MKL [28] (SMKL)
7. CLAFIC [1] (CLA)
8. ALSM [3] (ALSM)
9. Kernel CLAFIC [9], [10] (KCLA)

We denote the kernel functions by l, p, and r, which respec-
tively mean

• linear kernel: k(x1, x2) = 〈x1, x2〉,
• polynomial kernel: k(x1, x2) = (〈x1, x2〉 + 1)n,
• radial basis function (RBF) kernel (Gaussian kernel),

k(x1, x2) = exp(−γ‖x1 − x2‖2).

For example, (PROp) stands for the proposed method with
the polynomial kernel. For PRO2, all training vectors in the
class, enhancement, and suppression sets are used for the
basis vectors. LibSVM was used for SVM1 and SVM2 [29].
The RBF kernels with γ = 10−3, 10−2.5, 10−2.0, . . . , 103 were
used for SMKL. For the proposed method, the number of
iterations was set to ten, the initial basis size was fixed to
ten, and M = 200. A comparison of these parameters will
be presented below in this section. The other parameters
were obtained from cross-validation.

The mean test errors and standard deviations over 20
realizations are shown in Table 2. For all three kernel func-
tions, the proposed methods exhibited significantly lower
error rates than did SVM1 and SVM2, as determined by a
pair-wise one-sided t-test (p ≤ 0.01).

For the linear kernel case, SVM1l exhibited a larger er-
ror than did the other classification methods. This is due to
the problem that linear classifiers perform poorly with mul-
ticlass problems. It should also be noted that PROl exhibited
a lower error rate than those of either SVM1p or SVM2p, al-
though the models of SVMs with the second-order polyno-
mial kernel includes the model of PROl. Since either the lin-
ear SVM or the second-order polynomial SVM can be cal-
culated in an input space with no kernel functions, they are
used in applications that are required to be fast and light, in
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Table 3 Results of USPS handwritten-digit recognition; number of ba-
sis vectors averaged for twenty realizations, and their standard deviations.
nBV1: total number of basis vectors for all classes. nBV2: number of basis
vectors eliminating duplications for classes.

Method nBV1 nBV2

PROl 1623± 437 856± 253
PROp 1720± 380 979± 238
PROr 1821± 271 1042± 175

SVM1l 1424± 165 868± 74
SVM1p 3470± 1002 1188± 92
SVM1r 3182± 584 1179± 83
SVM2l 2143± 280 719± 51
SVM2p 4669± 1025 988± 81
SVM2r 4543± 1220 983± 103
KCLA 1860± 0 1860± 0

particular, for higher-dimensional classification problems.
Therefore, the proposed method can be an alternative clas-
sifier for such applications.

For the polynomial and RBF kernel case, we choose
the kernel parameters n and γ by cross-validation. The mean
values of optimal degree n were n = 2.4 for PROp, n = 9.12
for SVM1p, and n = 6.75 for SVM2p. The mean values of
optimal γ were γ = 0.521 for PROr, γ = 2.141 for SVM1r,
and γ = 1.622 for SVM2r. Even in the feature space, the
proposed method, which has a quadratic similarity func-
tion, tends to make selections that have fewer degrees of
freedom (smaller kernel parameters). Since the proposed
method does not require much nonlinear mapping by the
kernel function, it can prevent over-fitting, unlike that which
occurs with the linear classification methods in the feature
space.

In order to see the effect of the basis selection al-
gorithm, we also conducted experiments of the proposed
method using random basis selection and K-means basis
selection proposed in [16]. In the random selection case,
we randomly extract basis vectors from the initial basis set,
the enhancement and suppression sets. The test errors and
standard deviations were PROp: 3.87 ± 0.22% and PROr:
3.91 ± 0.22%. They are significantly higher than the case of
the proposed basis selection method (paired t-test α = 0.01).
In the K-means selection case, the test errors and standard
deviations were l: 4.31 ± 0.35%, p: 3.85 ± 0.24%, and r:
3.84±0.26% (‘l’ and ‘p’ show statistical significance by the
paired t-test α = 0.01). These results show that the proposed
basis selection method is useful for classification problems.

In the case that the reweighting rule in Sect. 3.3 is not
used, the test error rates and standard deviations were PROl:
5.01±0.34%, PROp: 5.03±0.32%, and PROr: 5.03±0.33%.
The kernelization does not solely improve the classification
performance of ALSM, but the combination with the pro-
posed reweighting rule do. The reason is that almost all
training samples were classified correctly in the early stage
due to higher degree of freedom of kernel methods. In other
words, the classifier fits to the training samples, and the em-
pirical error to be minimized is already minimized in the
early stage.

Table 3 lists the number of basis vectors (support vec-

Table 4 Comparison of runtimes. Runtimes for cross-validation and
data loading were excluded.

Methods Training [s] Test [s]

PROl 2.91± 0.98 0.33± 0.08
PROp 3.37± 0.96 0.39± 0.09
PROr 4.02± 0.74 0.56± 0.08
PRO2l 5.53± 3.23 0.55± 0.15
PRO2p 5.03± 2.63 0.58± 0.14
PRO2r 6.45± 2.62 0.86± 0.15
SVM1l 1.26± 0.07 0.02± 0.00
SVM1p 2.53± 0.69 0.89± 0.27
SVM1r 2.42± 0.41 1.21± 0.25
SVM2l 0.36± 0.03 0.08± 0.00
SVM2p 0.69± 0.17 1.22± 0.24
SVM2r 0.71± 0.20 1.77± 0.41
SMKL 121.07± 5.95 33.63± 4.37

CLAFIC 0.13± 0.00 0.09± 0.06
ALSM 1.78± 0.04 0.07± 0.01
KCLAl 0.08± 0.00 0.37± 0.01
KCLAp 0.10± 0.00 0.46± 0.06
KCLAr 0.11± 0.00 0.61± 0.03

tors for SVM). nBV1 is the total number of the basis vec-
tors for all classes. nBV2 is the number of the basis vectors
eliminated duplications. Since M is the maximum basis size
for each class, (10 classes) × (M = 200) = 2000 is the up-
per limit of nBV1. If some classes meet the condition in
the first line of Algorithm 2 (|E ∪ S| ≤ M − m), nBV1 is
smaller than 2000. The computational complexity for the
inner product part or the quadratic form (M in Eqs. (32) and
(30)) depends on nBV1. The required memory and compu-
tational complexity for kernel evaluation depends on nBV2.
The numbers of total basis vectors, nBV1 for the proposed
method are much less than those for SVM1 and SVM2,
while the classification errors of the proposed methods are
lower. Note that for the proposed method, the maximum
number of basis vectors is fixed. In other words, we can
tune the size of the basis. The size of the basis has a trade-
off between classification accuracy and computational com-
plexity. However, as we will discuss below, when M = 200,
classification accuracy is almost saturated, and even if we
increase the basis size, the classification accuracy is not im-
proved. Since there are ten classes, the average nBV1 for
the proposed method for one class is about 100 to 200. In
this case, the size of the generalized EVD is less than that of
the EVD in the original ALSM, for which the input dimen-
sion was 256. Even PROl and PROr exhibit kernel tricks;
the size of the main problem was smaller than that of the
original ALSM.

Table 4 compares the runtimes. We conducted the ex-
periment on a PC with an Intel Core-i5 3550 (3.30 GHz)
CPU and 16GB of RAM. The proposed method was im-
plemented and executed on a GNU Octave 3.6.1 with the
Intel Math Kernel Library (MKL). Single process was used
for all cases. The runtime for data loading was excluded.
For the training stage, the computational complexity of the
proposed method was about 1.3 to 2.3 times that of SVM1.
For the test stage, the proposed method was faster than
both SVM1 and SVM2, even though it has a quadratic dis-
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Fig. 2 Test error and the number of iterations

criminant function. Note that, for a fair comparison, the
classifications of SVM1 and SVM2 (Eq. (32)), the test pro-
grams were implemented on a GNU Octave that uses an In-
tel MKL. The Intel MKL is much faster than the implemen-
tation of LibSVM.

Compared to kernel CLAFIC, the proposed method
exhibited higher classification performance using smaller
number of nBV1 because kernel CLAFIC learns from only
the target class samples whereas the proposed method learns
from the target and non-target class samples. Since nBV1 of
the proposed method is fewer than that of kernel CLAFIC,
the computational cost of the proposed method in the test
stage is smaller than that of kernel CLAFIC. However, in the
training stage, kernel CLAFIC performs only one EVD for
each target class whereas the proposed method requires sev-
eral EVDs. Thus, even if the size of EVD is smaller in the
proposed method, total computational cost of the proposed
method in the training stage is larger than that of kernel
CLAFIC. In many practical problems, a classifier is trained
once, and then it tests many times. Therefore, the computa-
tional complexity in the test stage is important. Since Ker-
nel CLAFIC is trained from samples belonging to the target
class, its computational cost in the test stage is not so large
although kernel CLAFIC does not use the basis reduction.

When we do not use the proposed basis selection
method in Sect. 3.2 (PRO2), the computational cost of PRO2
is larger than that of PRO since the number of basis is larger.
Moreover, for larger dataset, the difference will be larger.

Figure 2 shows the relation between the test error of
PROr and number of iterations. The parameters were fixed
to the optimal values obtained by cross-validation. The so-
lution was stable after ten iterations.

Figure 3 shows the relation between the test error of
PROr and the number of basis vectors M. The results of the
proposed method (maximum size of basis M is 200), shown
in Table 2 had a sufficiently large basis.

Figures 4 and 5 show the relation between α and β, re-
spectively, and the test error of PROr. The proposed method
had the lowest error rates at larger value of α and β than did
ALSM. This is due to the larger number of degrees of the

Fig. 3 Test error and maximum number of basis vectors

Fig. 4 Test error and α

Fig. 5 Test error and β

freedom in the proposed method. Even when α was larger
than the optimal value, the performance was still better than
it was for α = 0. For β, the optimal value shows slightly
better performance than the case β = 0, and too large β may
corrupt the accurate classification.

Since the proposed method uses K-means to select the
initial basis vectors, the result may depend on the initial set-
ting of K-means. In order to investigate this, we conducted
experiment for the different random seed of K-means 100
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Table 5 Multiclass classification problems of UCI datasets

No. of No. of No. of
No. Name classes instances dimensions
1 Balance Scale 3 625 4
2 Ecoli 5 327 7
3 Glass Identification 6 214 9
4 Iris 3 150 4
5 Letter Recognition 26 20000 16
6 Thyroid (new-thyroid) 3 215 5
7 Optical Recognition 10 5620 64
8 Pen-Based Recognition 10 10992 16
9 Teaching Assistant Eval. 3 151 5
10 Wine 3 178 13

Table 6 Classification error rates and standard deviations of UCI bench-
mark datasets; ‘*’ denotes it was significantly better (p < 0.05) between
Proposed and SVM.

No. Proposed SVM1 ALSM KCLA
1 2.30± 3.02 1.35± 2.01 70.71± 10.42 1.35± 1.65
2 15.30± 6.56 13.94± 6.98 39.09± 9.17 15.00± 6.77
3 33.18± 10.44 33.86± 8.53 55.00± 9.99 35.68± 7.84
4 4.33± 4.97 4.33± 4.97 48.67± 11.87 5.33± 5.56
5 *11.32± 0.44 11.71± 0.51 40.62± 1.86 11.52± 0.53
6 4.32± 5.41 3.18± 5.34 39.77± 11.02 4.77± 4.77
7 1.04± 0.39 1.06± 0.49 5.35± 0.90 1.49± 0.55
8 1.43± 0.31 *1.06± 0.49 12.78± 1.91 1.71± 0.26
9 *33.75± 9.60 45.63± 10.56 57.19± 10.78 36.25± 9.20
10 1.11± 2.90 1.67± 3.17 30.83± 12.42 0.83± 2.04

times for each realization, and obtained the standard devia-
tion of the error rates. The averaged standard deviations over
the 20 realizations are PROl: 0.0667%, PROp: 0.0632%,
and PROr: 0.0626%.

5.2 UCI Benchmark Datasets

The second experiment involved ten multiclass classifica-
tion problems from The University of California, Irvine
(UCI) machine learning repository. The datasets we used
are listed in Table 5. For the Ecoli dataset, we removed
three-classes omL, imL, and imS, because each of these had
too few samples.

For preprocessing, we normalized the feature vectors
to a unit norm. In a manner similar to the previous experi-
ments, 90% of the samples were used for training, and the
remaining 10% were used for testing; exceptions were the
Letter and Pen-Based Recognition sets. This separation was
random, and we tested 20 realizations. For the Letter and
Pen-Based Recognition sets, since the number of samples
was rather large, we used 10% of the samples for training,
and the remaining 90% were used for testing.

The Gaussian kernel was used for all methods. The
optimal parameters, such as the soft-margin parameter and
the kernel parameter γ, were obtained from ten fold cross-
validations. There were ten iterations, and the maximum
basis size was fixed to be M = 200.

The classification error rates and standard deviations
are listed in Table 6. The proposed method showed the best
classification accuracy in four of the problems. The aver-
aged numbers of basis (support) vectors are listed in Table 7.

Table 7 Average number of basis (support) vectors. nBV1 (nSV1): to-
tal number of the basis (support) vectors, nBV2 (nSV2): number of basis
(support) vectors eliminating duplication

Proposed SVM1
Dataset nBV1 nBV2 nSV1 nSV2

1 461 260 178 113
2 635 286 255 166
3 345 169 520 154
4 64 46 93 49
5 3026 1461 4890 1633
6 351 165 80 44
7 1772 1156 4128 2019
8 936 503 1420 456
9 320 120 261 93

10 349 179 227 114

Table 8 Result of MNIST dataset: P200 and P500 denote the proposed
method with M = 200 and M = 500 respectively.

P200 P500 SVM1 KCLA ALSM
Training runtime [s] 160 372 3822 150 95

Test runtime [s] 1.85 4.58 22.9 58.0 0.21
No. of BV1 (SV) 2000 5000 27142 60000 –

The proposed method was compared with KCLA by
the Wilcoxon signed-ranks test. The averaged ranks for 10
(datasets) × 20 (resampling) were R+ = 7697 (Proposed)
and R− = 12403 (KCLA), and the proposed method showed
significantly lower error than KCLA (p < 0.01).

5.3 MNIST Dataset

In order to show the performance with a big dataset, we
used MNIST (Mixed National Institute of Standards and
Technology) handwritten dataset. The dataset consists of
60,000 training images and 10,000 test images. Each image
is grayscale and contains 28 × 28 pixels. We vectorized and
normalized to a unit norm. It should be noted that for this
dataset, the optimal parameters were chosen by using test
samples, and so the accuracy of the classification may not
be used to evaluate the performance. However, it is worth
comparing the computational complexity and required num-
ber of support vectors.

We compared the proposed method with M = 200,
M = 500 (i.e. maximum nBV1 is 2000 or 5000), SVM1,
and KCLA. The Gaussian kernel function was used for all
methods. The results are shown in Table 8. The classifica-
tion performance of the proposed method is comparable to
that of SVM1, while the proposed method trains ten times
faster than SVM1, and tests five times faster. The computa-
tional cost of KCLA is large compared to the other datasets
because EVD costs O(rN2) in the training stage. In the test
stage, for the proposed method and KCLA, the computa-
tional cost is proportional to N. If we do not use the basis se-
lection method for the proposed method, the computational
complexity of the proposed method will be more than ten
times that of KCLA in the case of the number of iteration is
ten.
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6. Conclusion

We proposed a quadratic kernel learning subspace clas-
sification method that is based on ALSM [3] and subset
KPCA [15], [16]. We (i) derived a learning algorithm, (ii)
proposed a method for selecting basis vectors for the classi-
fier, (iii) proposed a new rule to add enhancement and sup-
pression sets, and (iv) explained the results of experiments
conducted to demonstrate the effectiveness of the proposed
method.

Compared to other kernel classification methods, such
as the SVM, MKL, and RVM, the proposed method has the
following advantages;

1. For each class, all samples in the class and a subset
of samples that are not in the class are used for EVD.
Therefore, even if the number of classes is large, the
computational cost of the proposed method is relatively
low compared to the one-vs-the-rest and one-vs-one
approaches.

2. In the USPS dataset, the proposed method achieved a
lower classification error while using fewer basis vec-
tors. This is due to the quadratic decision function,
Eq. (29). This reduces both the memory requirements
and the computational complexity during the testing
stage. Although there are many methods for reducing
the number of support vectors [30]–[32], their classifi-
cations are not as accurate as that of the original SVM.

3. The limit on the maximum number of basis vectors is a
tunable parameter. We can choose a suitable basis size
depending on the problem. However, this can also be
disadvantageous, since we must determine the optimal
hyperparameters using cross-validation.

4. The main computations in the proposed method are a
generalized EVD and the selection of the basis vec-
tors. These are more easily implemented than con-
vex quadratic optimization, which is used in SVM.
Furthermore, estimation of the computational cost is
easier than it is with convex quadratic optimization.
In the MNIST experiment in Sect. 5.3, the proposed
method trained ten times faster than SVM1 and tested
five times faster.

On the other hand, there is a drawback to the proposed
method in that it requires more hyperparameters than do the
other methods. Most of them have to be tuned by cross-
validations. This problem will be addressed in our future
work.
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