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PAPER

Effects of Numerical Errors on Sample Mahalanobis Distances

Yasuyuki KOBAYASHI†a), Member

SUMMARY The numerical error of a sample Mahalanobis distance
(T 2 = y′S−1y) with sample covariance matrix S is investigated. It is found
that in order to suppress the numerical error of T 2, the following condi-
tions need to be satisfied. First, the reciprocal square root of the condition
number of S should be larger than the relative error of calculating floating-
point real-number variables. The second proposed condition is based on
the relative error of the observed sample vector y in T 2. If the relative er-
ror of y is larger than the relative error of the real-number variables, the
former governs the numerical error of T 2. Numerical experiments are con-
ducted to show that the numerical error of T 2 can be suppressed if the two
above-mentioned conditions are satisfied.
key words: sample Mahalanobis distance, numerical error, condition num-
ber, round-off error

1. Introduction

When the Mahalanobis distance is applied to statistical ma-
chine learning, Hotelling’s T 2 statistic is commonly used
to measure the sample Mahalanobis distance (sample MD)
between two populations. Let x1, · · · , xn and y be n learn-
ing sample vectors and an observed sample vector indepen-
dently following a p-variate normal distribution Np (µ,Σ)
with mean µ and covariance matrix Σ, and let the mean vec-
tor x̄ and the sample covariance matrix S be calculated from
x1, · · · , xn. Then, the sample MD for the observed sample
vector y is defined by T 2 = (y − x̄)′ S−1 (y − x̄).

The sample MD cannot avoid statistical fluctuation in
xi and y, given by variance V[T 2]. In addition, it cannot
avoid the effect of the computer-based numerical error ∆T 2.
To the best of my knowledge, no study has discussed the
effects of numerical errors on T 2 thus far, whereas their ef-
fects on the eigenvalues and eigenvectors of S have been dis-
cussed previously (see [1] and [2]). For example, rounding
errors can make the zero roots of Σ positive [3]. Round-
ing errors have a small influence on the eigenvectors of
S [4], [5], and this effect can be bounded by the eigenvalues
of Σ [4] (see [1] and [2]). The condition number cond (S),
i.e., the ratio of the maximum eigenvalue of S to the min-
imum eigenvalue of S, is said to be the index of ∆T 2 [6].
However, cond (S) is actually the index of only S, and not of
the sample MD, because the condition number is originally
derived from the formula for estimating the relative error of
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simultaneous linear equations. When a system of simulta-
neous linear equations Ax = f has the solution x, the upper
limit of an error ∆x in x is given by (1),

∥∆x∥
∥x∥ ≤

cond (A)

1 − ∥∆A∥
∥A∥ cond (A)

{
∥∆ f ∥
∥ f ∥ +

∥∆A∥
∥A∥

}
, (1)

which includes cond (A), where it is assumed that a vector

norm ∥ f ∥ is the quadratic norm given by ∥ f ∥ =
√∑p

i=1 f 2
i

and that the matrix norm ∥A∥ is the spectral norm given by
the maximum eigenvalue of A if A is a real square matrix,
or
√

A′A if A is not [7]. These norm definitions are applied
throughout this paper.

Furthermore, one of the reasons for the difficulty in
understanding the estimation of the fluctuation in the sam-
ple MD is the coexistence of the statistical fluctuation (i.e.,
V[T 2]) and the numerical fluctuation (i.e., ∆T 2). Only the
statistical fluctuation can be described by the F-distribution
that the sample MD follows. A previous study [2] proposed
a probability distribution that the absolute round-off error
of floating-point real-number type follows [8]. However,
the probability distribution of the round-off error shares a
complicated relationship with the distribution of the true
value [8]; therefore, it is difficult to describe the probabil-
ity distribution of the sample MD with both the above-
mentioned fluctuations. Therefore, sufficient computer pre-
cision is required to suppress ∆T 2. For example, it has been
reported that the effect of ∆T 2 is sufficiently small with a
computer precision of around 15 decimal digits of double-
precision real type when the ratio of the maximum eigen-
value to the minimum eigenvalue of the covariance matrix
Σ is at most 4 decimal digits [6]. However, in Ref. [6], the
above reason was not shown theoretically. As shown in this
paper theoretically, ∆T 2 can be suppressed even if cond (S)
is much larger than that in Ref. [6]. It is necessary to show
the conditions for suppressing ∆T 2 by theoretical investiga-
tion of the sample MD.

When a classifier is applied to statistical machine learn-
ing, the classification performance of the classifier is the
most important factor. Therefore, it is crucial to obtain the
conditions for suppressing the effect of ∆T 2 for classifica-
tion performance in statistical machine learning.

In short, this paper shows that the numerical error ∆T 2

of the sample MD is governed by cond (S) and the relative
errors of both the calculated floating-point real-number vari-
ables and the observed sample vector y; the latter is not men-
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tioned in Ref. [6]. Further, this paper presents the conditions
for suppressing the effect of ∆T 2. The availability of these
conditions is investigated through numerical experiments.

The remainder of this paper is organized as follows.
Section 2 describes formulae for estimating the effect of
both cond (S) and the computer precision (e.g., relative er-
ror of floating-point arithmetic). In addition, methods for
evaluating the numerical errors are discussed and the con-
dition for suppressing the effect of ∆T 2 in the sample MD
is proposed. Section 3 presents the results of numerical ex-
periments conducted to investigate the relationship between
∆T 2 and the classification performance of the sample MD.
Finally, Sect. 4 summarizes my findings and concludes the
paper.

2. Theoretical Investigation of Numerical Error and
Classification Performance of a Sample MD

2.1 Formula for Numerical Error of a Sample MD

First, the upper limit of the relative numerical error∣∣∣∆T 2
∣∣∣ /T 2 will be shown. Let x1, · · · , xn and y be n learn-

ing sample vectors and an observed sample vector indepen-
dently following a p-variate normal distribution Np (µ,Σ)
with mean µ and covariance matrix Σ. Let the mean vector
x̄ be calculated from x1, · · · , xn and define the data matrix
X ≡ (x1 − x̄, · · · , xn − x̄)′. Let the sample covariance ma-
trix S be S = X′X/ (n − 1) with maximum eigenvalue lmax

and minimum eigenvalue lmin. The upper limit of
∣∣∣∆T 2
∣∣∣ /T 2

is given by (2) (see the Appendix for details). Parameters
η1 and η2 in (2) are given by η1 =

√
lmax/lmin · εF and

η2 =
√

lmax/lmin · ε, where εF is the relative error of the
real variables of T 2 calculation, and ε = ∥∆y∥ / ∥y − x̄∥ de-
notes the relative numerical error of y, the observed sample
vector.∣∣∣∆T 2

∣∣∣
T 2

≤ 2

1 −
√

lmax

lmin
· εF


√

lmax

lmin
· εF +

√
lmax

lmin
· ε


=
2 (η1 + η2)

1 − η1
. (2)

In order to suppress the numerical error ∆T 2, i.e.,∣∣∣∆T 2
∣∣∣ /T 2 ≪ 1, the right-hand side of (2) should be much

smaller than 1; hence, η1 ≪ 1 and η2 ≪ 1. Here, η1 ≪ 1 is
given by (3) and η2 ≪ 1 is given by (4):√

lmin

lmax
≫ εF , (3)√

lmin

lmax
≫ ε. (4)

The next objective is to obtain conditions with a confidence
probability for suppressing ∆T 2. First, the existence of the
norm of

∣∣∣∆T 2
∣∣∣ should satisfy η1 < 1, and (3) becomes√

lmin

lmax
> εF . (5)

Second, if the upper limit of ∆T 2/T 2 in (2) is less than Rmax,
i.e., the upper limit of the ratio of the statistical fluctuation
of T 2, ∆T 2 is sufficiently small with a probability of 1 − α
in comparison with the statistical fluctuation of T 2:∣∣∣∆T 2

∣∣∣
T 2

≤ 2 (η1 + η2)
1 − η1

< Rmax, (6)

where Rmax is given by

Rmax =
T 2
α − E[T 2]

E[T 2]
, (7)

where T 2
α is the upper 100α% point of T 2 and E[T 2] is the

expectation of T 2. Here, the sample MD without the numer-
ical error ∆T 2 follows an F-distribution with p and n− p de-
grees of freedom [1]. This F-distribution is called a central
F-distribution, in contrast to a non-central F-distribution, as
mentioned later.

T 2 = (y − x̄)′ S−1 (y − x̄) =
(n − 1) p

n − p
F (p, n − p) . (8)

From (8), the expectation E[T 2] is obtained as E[T 2] =
(n − 1) p/ (n − p − 2), and (7) is expressed as Rmax =

(n − p − 2) / (n − p) · Fα (p, n − p) − 1, where Fα is the up-
per 100α% point of the F-distribution. Therefore, (6) is ex-
pressed as

2 (η1 + η2)
1 − η1

< Rmax =
n − p−2

n − p
Fα (p, n − p) − 1. (9)

If η1 ≪ 1, the upper limit of (2) can be approximated by
2 (η1 + η2)/ (1 − η1) � 2η2, and (6) with a probability of 1 −
α is simplified as

2η2 = 2ε

√
lmax

lmin

< Rmax =
n − p−2

n − p
Fα (p, n − p) − 1. (10)

Therefore, satisfying (5) and (9) is the realistic condition
for suppressing ∆T 2. For example, under the condition
of the numerical experiment in this paper, where p = 7
and n = 15, Rmax � 1.63 when α = 5% and (10) be-
comes η2 < 0.91. Thus, η1 < 1 and the upper limit of
∆T 2/

∣∣∣T 2
∣∣∣: 2 (η1 + η2)/ (1 − η1) < Rmax � 1.63, or η1 ≪ 1

and η2 < 0.91 need to be satisfied for ∆T 2 to be sufficiently
smaller than the statistical fluctuation with a probability of
1 − α = 95%.

2.2 Relationship between Classification Performance and
Variance of Probability Distribution

To investigate the classification performance of the sample
MD affected by numerical error, the relationship between
the classification performance of the sample MD and the
variance from the probability density function is considered
as follows.

The classification performance can be estimated by
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both the distribution of the learning samples (normal dis-
tribution) and a distribution that is definitely different from
that of the learning samples (abnormal distribution). Let n
learning samples follow a p-variate normal distribution with
mean µ and covariance matrix Σ,Np (µ,Σ). Without any nu-
merical error, the sample MD of the learning samples fol-
lows (8), i.e., a central F-distribution. However, it is difficult
to depict an abnormal distribution because the population
covariance matrix Σ′ of an abnormal distribution is gener-
ally different from Σ of a normal distribution. If Σ′ = Σ,
the sample MD of an abnormal distribution follows a non-
central F-distribution and is given by

T
′2 = (u − x̄)′ S′−1 (u − x̄)

=
(n − 1) p

n − p
F (p, n − p; δ) , (11)

where a test sample of the abnormal distribution follows
u ∼ Np (µ + m,Σ), x̄ is the sample mean of the learning
samples, and the non-centrality δ = m′Σ−1m. However, a
non-central F-distribution cannot be described by simple ex-
pressions because its probability density function is given by
a hypergeometric function that is an infinite series. In this
study, numerical calculation of a non-central F-distribution
was executed using Mathematica.

The case of Σ′ = Σ corresponds to linear discriminant
analysis (LDA). LDA can improve the classification perfor-
mance by estimating the pooled covariance matrix among
the classes [9]. This paper considers only Σ′ = Σ (not
Σ′ , Σ) to analyze the classification performance of the sam-
ple MD as theoretically as possible.

In Fig. 1, the central F-distribution represents the nor-
mal distribution to which the learning samples belong, and
the non-central F-distribution represents the abnormal dis-
tribution. For a selected threshold Θ below which a sam-
ple belongs to the normal distribution, the probability of the
normal distribution α = Pc (X ≥ Θ) is called the type I error
probability, and the probability of the abnormal distribution
β = Pn (X ≤ Θ) is called the type II error probability. The
classification performance of the sample MD corresponds to
(α + β)min with the threshold Θminimizing α+β (misclassi-
fication probability). In Fig. 1, the threshold Θ is the MD

Fig. 1 Relationship between minimum misclassification probability α+β
and probability distribution.

value located at the intersection point of two single-peak
distributions [10]. Therefore, using both the normal distri-
bution and the abnormal distribution with non-centrality δ,
the classification performance (α + β)min and the threshold
Θ are obtained.

Here, the relationship among the upper limit of
(α + β)min and the variances of the two distributions will be
investigated. For the central distribution with expectation
µc < Θ and variance Vc in Fig. 1, the Markov inequality
Pc (|X| ≥ Θ) ≤ E[X2]/Θ2 is obtained and α = Pc (X ≥ Θ) ≤(
µ2

c + Vc

)
/Θ2 because the central distribution is defined by

x > 0. For the non-central distribution with expectation
µn > Θ and variance Vn in Fig. 1, the Chebyshev inequal-
ity Pn (|X − µn| ≥ |µn − Θ|) ≤ Vn/ (µn − Θ)2 is obtained and
β = Pn (X ≤ Θ) ≤ Vn/

{
2 (µn − Θ)2

}
because the right tail

area of the non-central distribution is larger than the left tail
area. Therefore, the upper limit of (α + β)min in Fig. 1 is
given by

(α + β)min ≤
µ2

c + Vc

Θ2
+

Vn

2 (µn − Θ)2
. (12)

If Vc and Vn increase because of numerical error, (α + β)min
may increase and the classification performance may deteri-
orate.

3. Numerical Experiments

3.1 Procedure

The numerical experiments in this study were conducted
using Microsoft Excel 2010 with a source code written
in Excel VBA. The algorithm of the source code follows
steps 1–9 as described below. Real variables in Excel VBA
have around 15 decimal digits of double-precision real type
(IEEE 64-bit); hence, the relative error εF is given by εF �
10−16. Table 1 lists the common parameters used in all the
experiments.

1) λ1 > · · · > λp, i.e., the eigenvalues of the p-variate
population covariance matrix Σ, are initially defined.
Each

√
λi has a value given by a geometric sequence

between the first term
√
λmax =

√
λ1 and the last term√

λmin =
√
λp.

2) To estimate the dependence of (α + β)min on the non-
centrality parameter, δ is increased from 5 to 30 in in-
crements of 5, and steps 3–9 are executed at each δ
value.

3) The population eigenvectors ϕ1, · · · , ϕp of Σ are gen-
erated by random numbers. A non-centrality vector

Table 1 Common parameters.
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∆ =
(
δ1, · · · , δp

)
is generated by random numbers to

satisfy δ = δ21 + · · · + δ2p.
4) Central learning samples xi and non-central learning

samples x̃i (i = 1, · · · , n) are generated by p-variate nor-
mal random numbers, xi, x̃i = Np (0,Σ). The sam-
ple eigenvalues and eigenvectors li, vi (i = 1, · · · , p)
are obtained by the sample covariance matrix S of xi.
The other sample eigenvalues and eigenvectors l̃i, ṽi

(i = 1, · · · , p) are obtained by the sample covariance
matrix of x̃i.

5) The maximum numerical error εA of the eigenvalues is

calculated as εA = max
i=1,···,p

∥∥∥∥S1/2vi −
√

livi

∥∥∥∥. After the

numerical experiments, the relative error of the real
variables εF � 10−16 and the value of

√
λmax satisfies

εA �
√

lmax · εF (see the Appendix for details).
6) Central test samples yi and non-central test samples

ỹi (i = 1, · · · ,m) are generated by yi = Np (0,Σ) and
ỹi = Np (∆,Σ).

7) In order to control the relative error of y artificially,
each element of the test sample vectors yi and ỹi is op-
erated by editing its mantissa as the relative error limit
of the element εe is selected from among 10−6, 10−10,
and, 10−16 (� εF), i.e., the default value of the real vari-
able. If εe > εF , lower values of the mantissa corre-
sponding to values lower than εe are changed to 0 by
rounding them off. The real variable of each element
of yi and ỹi having relative error εF becomes the ef-
fective relative error of the element εe. According to
Ref. [4], let the round-off errors have the common as-
sumption that they are uniformly distributed, indepen-
dent of each other, and independent of the unrounded
value. Then, the expectation of the relative error of
E
[∥∆y∥ / ∥y∥] = √p/3 · εe. Under the above range of
εe, ∥∆y∥ / ∥y∥ � ∥∆y∥ / ∥y − x̄∥.

8) For the central test sample yi and the non-central
test sample ỹi, Mahalanobis distances are calcu-
lated and normalized by the dimensionality as
CSMDi =

∑p
j=1 {(yi − x̄) · vi}2 /

(
l j · p
)

and NSMDi =∑p
j=1

{(
ỹi − ¯̃x

) · ṽi
}2
/
(
l̃ j · p
)
.

9) Steps 2–8 are repeated k times and a total of k · m =
10,000,000 CSMDi and NSMDi samples are obtained.
By using these samples, the following estimates are
calculated.

• The expectation and variance of CSMDi and
NSMDi.
• From the histograms of CSMDi and NSMDi sam-

ples, Q-Q plots are obtained. A Q-Q plot is
drawn as follows. (i) The empirical cumulative
distribution function F (x) is generated by the MD
histogram from all the MD samples. (ii) The
cumulative distribution function G (y) is calcu-
lated by the theoretical expression for comparison
with (n − 1) / (n − p) · F (p, n − p) for CSMDi or
(n − 1) / (n − p) · F (p, n − p; δ) for NSMDi. (iii)
All the MD samples obtained by the numerical

experiment are plotted. The x-axis value of each
point is the MD value x obtained by all the MD
samples and the corresponding y-axis value is
given by y = F−1 (G (x)). (iv) If all the points
are on the line y = x, the MD samples follow the
theoretical probability distribution used for com-
parison.
• In order to quantify the discrepancy of the points

on the Q-Q plot from the line y = x, the slope
of the regression line intersecting the origin for
the points on the Q-Q plot with CSMDi < 5 or
NSMDi < 5 is calculated. The ranges correspond
with 99.999% of the left tail probability of all the
MD samples.
• The minimum misclassification probability (α +
β)min is calculated using the histograms of both
CSMDi and of NSMDi.

3.2 Results

This subsection discusses the results of the numerical exper-
iments described in the previous subsection.

First, the phenomenon whereby the numerical error of
the sample Mahalanobis distance T 2 affects the probability
distribution and increases the variance of T 2 was investi-
gated. Table 2 summarizes the calculated numerical error
parameters concerning the upper limit of

∣∣∣∆T 2
∣∣∣ /T 2 in (2)

under three typical cases. Note that η1 and η2 are calcu-
lated using the population eigenvalues λ because the sam-
ple eigenvalues l fluctuate in each trial of the numerical ex-
periment and the expectation E [l] is affected by numerical
errors. For example, the minimum sample eigenvalue lmin

is lower than the minimum population eigenvalue λmin [11]
without any numerical error; however, owing to numerical
errors, E [lmin] is larger than λmin in Case B, in contrast to

Table 2 Typical cases and relative numerical error parameters.
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Ref. [11]. This is because the matrix calculation is affected
by the numerical error under

√
λmin < εF � 10−16. There-

fore, η1 and η2 are calculated using
√
λ (not

√
E [l]).

As discussed in Sect. 2.1, the suppression condi-
tion that η1 < 1 and the upper limit of ∆T 2/

∣∣∣T 2
∣∣∣:

2 (η1 + η2)/ (1 − η1) < Rmax � 1.63, or η1 ≪ 1 and η2 <
0.91 need to be satisfied for the numerical error ∆T 2 to be
sufficiently smaller than the statistical fluctuation with the
probability of 1 − α = 95%. In Case A, which satisfies
(5) and (9), the numerical error will be negligible because
η1 ≪ 1 and 2 (η1 + η2)/ (1 − η1) ≪ 1. However, in Case
B, which does not satisfy (5) and (9), the numerical error
will not be negligible because η1 ≫ 1. Further, in Case C,
which satisfies (5) but not (9), the numerical error will not
be negligible because η1 ≪ 1 and 2 (η1 + η2)/ (1 − η1) ≫ 1.
Therefore, the probability distribution of the sample MD in
only Case A can be shown by the central F-distribution or
non-central F-distribution theoretically.

In Fig. 2, each tail of the central and non-central dis-
tributions in Cases B and C is broader than that in Case A;
hence, the variances of Cases B and C are larger than that
of Case A. Furthermore, in Fig. 3, each Q-Q plot of the cen-
tral and non-central distributions in Case A nearly coincides
with the line y = x; hence, both the distributions follow
the theoretical distributions. However, both the Q-Q plots
of central and non-central distributions in Cases B and C
are distinct from the line y = x; hence, the distributions in

Fig. 2 Dependence of probability density distributions of sample MDs
on numerical errors.

Fig. 3 Dependence of Q-Q plots of sample MDs on numerical errors.

Cases B and C do not follow the theoretical distributions.
Therefore, as estimated in Table 2, the probability distribu-
tions of the sample MD in Cases B and C are affected by the
numerical error.

Second, the minimum misclassification probability
(α + β)min of the sample MD was investigated. As the non-
centrality δ is increases, (α + β)min decreases monotonically.
The dependence of (α + β)min on numerical errors needs to
be estimated by the curves of (α + β)min. In Fig. 4(a), the
curves of (α + β)min in Cases B and C are beyond that in
Case A. Therefore, (α + β)min of the sample MD deterio-
rates if the numerical error is not negligible. In Fig. 4(b), the
threshold of the sample MD corresponding to (α + β)min in
Case C is larger than those in Cases A and B.

Finally, the dependence on various
√
λmax,

√
λmin, and

ε, where the common condition is p = 7 and n = 15, is sum-
marized in Fig. 5. Under each horizontal axis in Fig. 5, all
the cases of

√
λmax,

√
λmin, and ε are enumerated and tabu-

lated. In Fig. 5(a), η1, η2, and the upper limit of the relative
error

∣∣∣∆T 2
∣∣∣ /T 2: 2 (η1 + η2)/ (1 − η1) are shown. To observe

the difference between the cases η1 � η2 and η1 < η2, the
values of ε are modified as follows. As η1 =

√
lmax/lmin · εF

and η2 =
√

lmax/lmin · ε, if ε = 10−16 (� εF), then η1 � η2; if
ε = 10−10 or 10−6 (≫ εF), then η1 < η2. As in the case of the
previous results, the numerical error is supposed to be neg-
ligible under the suppression condition that η1 < 1 and the
upper limit of ∆T 2/T 2: 2 (η1 + η2)/ (1 − η1) < Rmax � 1.63,
or η2 < 0.91 and η1 ≪ 1 when p = 7 and n = 15 for

Fig. 4 Dependence of minimum misclassification probability (α + β)min
of sample MDs on numerical errors.
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Fig. 5 Effects of numerical errors on sample MDs.

∆T 2 to be sufficiently smaller than the statistical fluctuation
with the probability of 1 − α = 95%. If η1 < 1, the upper
limit of

∣∣∣∆T 2
∣∣∣ /T 2 exists and can be calculated. In Fig. 5(b),

the variances of normalized sample MDs T 2/p (central dis-
tributions) are shown. If ∆T 2 is negligible, the variance
V[T 2/p] � 5.06 from (8). Further, V[T 2/p] � 5 under
the suppression condition; otherwise, V[T 2/p] ≫ 5. This
is because the numerical error ∆T 2 affects the sample MD.
In Fig. 5(c), the coefficients of variation (C.V.) of the nor-
malized sample MDs T 2/p (central distributions) are shown.
If ∆T 2 is negligible, the C.V.

√
V
[
T 2/p

]
/E
[
T 2/p

]
� 0.96

from (8). The C.V. shows a similar tendency as the vari-
ances in Fig. 5(b). In Fig. 5(d), the slope values of the Q-Q
plots for the sample MDs T 2/p (central distributions) are

shown. If ∆T 2 is negligible, T 2/p follows an F-distribution,
F (p, n − p) · (n − 1) / (n − p). The slope values are nearly
1 and the Q-Q plots nearly coincide with the line y = x,
which means that the sample MD follows the F-distribution
under the suppression condition. Otherwise, the slope val-
ues are approximately below 0.8 and the sample MD does
not follow the F-distribution. In Fig. 5(e), the minimum mis-
classification probabilities (α + β)min of the sample MDs at
non-centrality δ = 20 are shown. Here, (α + β)min are the
smallest and the sample MDs show the best classification
performance under the suppression condition.

As a result of the numerical experiments, the parame-
ters η1 and η2, which consist of the maximum and minimum
eigenvalues of the covariance matrix and the relative error of
the observed sample vector, are smaller than the upper lim-
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its given by (5) and (9) with the probability of 1−α. Hence,
the numerical error ∆T 2 of the sample MD T 2 is suppressed
and the classification performance of T 2 is not degraded.

4. Conclusion

Thus far, the sample Mahalanobis distance T 2 = y′S−1y with
sample covariance matrix S and observed sample vector y
has not been investigated theoretically in terms of the effect
of the numerical error ∆T 2 on T 2. To clarify the upper limit
of the ratio of ∆T 2 to T 2, the property of ∆T 2 was investi-
gated not by specific case studies but by general theoretical
analysis and numerical experiments. As a result, the theo-
retical conditions for suppressing the effect of ∆T 2 on T 2

were obtained and confirmed for the first time. The theo-
retical analysis showed that the effect of the numerical error
is given not only by the condition number of S and εF (the
relative error of calculating floating-point real-number vari-
ables) but also by the relative error of y. The analysis also
showed that as the numerical error increases, the upper limit
of the variance of T 2 and the upper limit of the misclassifica-
tion probability both increase. Thus, if the numerical error
∆T 2 is larger than the statistical variance of T 2 following the
F-distribution without the numerical error, T 2 has a broader
distribution than the F-distribution and the classification per-
formance of T 2 is degraded. Furthermore, the conditions for
suppressing ∆T 2 were proposed as follows. Let the maxi-
mum and minimum eigenvalues of S be lmax and lmin, and
let the numerical error of the observed sample vector y be
ε. First,

√
lmin/lmax > εF needs to be satisfied. Second, the

upper limit of
∣∣∣∆T 2
∣∣∣ /T 2, which consists of

√
lmin/lmax, εF ,

and ε, needs to be smaller than Rmax, determined by a tol-
erance probability α with the F-distribution. In particular, if√

lmin/lmax ≫ εF , the second condition can be approximated
by
√

lmin/lmax > ε · 2/Rmax. Thus, ε (the relative error of the
observed sample vector y) governs the numerical error of a
sample Mahalanobis distance T 2 if ε is larger than εF .

If the above conditions are not satisfied, T 2 has a large
numerical error. For example, one way to suppress the error
is to regularize S by S + λI, where I is the unit matrix and
the constant λ (the maximum and minimum eigenvalues of
S + λI are lmax+λ and lmin+λ, respectively) satisfies C ≫ εF

and C > ε · 2/Rmax, where C =
√

(lmin + λ) / (lmax + λ).
The above upper limit of

∣∣∣∆T 2
∣∣∣ /T 2 clarifies one as-

pect of ∆T 2 and the conditions for suppressing ∆T 2. How-
ever, the stochastic property of ∆T 2, e.g., its probability den-
sity function, has not been elucidated thus far. To study
the stochastic property, distributions of some elements in-
cluded by T 2 must be considered, e.g., distributions of sam-
ple eigenvalues li and the corresponding sample eigenvec-
tors, as well as those of both numerical errors εF and ε.
However, it is difficult to obtain these distributions. There-
fore, elucidating the stochastic property of ∆T 2 theoretically
seems to be much more difficult than studying the upper
limit of

∣∣∣∆T 2
∣∣∣ /T 2.
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Appendix:

The upper limit of the relative numerical error
∣∣∣∆T 2
∣∣∣ /T 2 can

be shown as follows.
Let the mean vector x̄ be calculated from x1, · · · , xn

and define the data matrix X ≡ (x1 − x̄, · · · , xn − x̄)′. Let the
sample covariance matrix S be S =X′X/ (n − 1) with max-
imum eigenvalue lmax and minimum eigenvalue lmin. Ap-
plying z ≡ S−1/2 (y − x̄) to the sample MD for the observed
sample vector T 2 = (y − x̄)′ S−1 (y − x̄), T 2 is expressed as
T 2 = z′z = ∥z∥2. Consider a matrix A, given by A ≡S1/2,
where the eigenvalues of A are equal to the singular values
of the data matrix X (square roots of the eigenvalues of S).
The norms of A and A−1 are given by

∥A∥ =
√

lmax,
∥∥∥A−1

∥∥∥ = 1/
√

lmin. (A· 1)

Let the numerical errors of A, y, and z be ∆A, ∆y, and ∆z
respectively. Substituting y − x̄ = Az into (y − x̄) + ∆y =
(A + ∆A) (z + ∆z), ∆z is given by

∆z =
(
I + A−1∆A

)−1
A−1 {− (∆A) z + ∆y} . (A· 2)

Supposing that z ≫ ∆z and applying (A· 2) to ∆T 2 =

∥z + ∆z∥2 − ∥z∥2 � 2z′∆z, ∆T 2 is given by

∆T 2 = 2z′
(
I + A−1∆A

)−1
A−1 {− (∆A) z+∆y} . (A· 3)

The norms of both sides of (A· 3) satisfy (A· 4).
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∣∣∣∆T 2
∣∣∣ ≤ 2 ∥z∥

∥∥∥∥(I + A−1∆A
)−1
∥∥∥∥ ∥∥∥A−1

∥∥∥
{∥∆A∥ ∥z∥ + ∥∆y∥} . (A· 4)

Supposing that ∥∆A∥
∥∥∥A−1

∥∥∥ = ∥∆A∥ /
√

lmin < 1 for the norm

of
∥∥∥∥(I + A−1∆A

)−1
∥∥∥∥ of (A· 4) to exist,

∣∣∣∆T 2
∣∣∣ ≤ 2 ∥z∥

∥∥∥A−1
∥∥∥

1 −
∥∥∥A−1

∥∥∥ ∥∆A∥
{∥∆A∥ ∥z∥ + ∥∆y∥} . (A· 5)

Dividing both sides of (A· 5) by T 2 = ∥z∥2,∣∣∣∆T 2
∣∣∣

T 2
≤

2
∥∥∥A−1

∥∥∥
1 −
∥∥∥A−1

∥∥∥ ∥∆A∥

{
∥∆A∥ + ∥∆y∥

∥z∥

}
. (A· 6)

Applying ∥y − x̄∥ ≤ ∥A∥ ∥z∥ to the second term of the right-
hand side of (A· 6),

2
∥∥∥A−1

∥∥∥
1 −
∥∥∥A−1

∥∥∥ ∥∆A∥
· ∥∆y∥
∥z∥ =

2
∥∥∥A−1

∥∥∥ ∥A∥
1 −
∥∥∥A−1

∥∥∥ ∥∆A∥
· ∥∆y∥
∥A∥ ∥z∥

≤
2
∥∥∥A−1

∥∥∥ ∥A∥
1 −
∥∥∥A−1

∥∥∥ ∥∆A∥
· ∥∆y∥
∥y − x̄∥ . (A· 7)

Substituting (A· 1) and (A· 7) into (A· 6),∣∣∣∆T 2
∣∣∣

T 2
≤ 2

1 − ∥∆A∥
√

lmin

 ∥∆A∥
√

lmin

+

√
lmax

lmin
· ε
 , (A· 8)

where ε = ∥∆y∥ / ∥y − x̄∥ denotes the relative numerical er-
ror of y, the observed sample vector.

Here, the meaning and the calculation method of ∥∆A∥
are explained. Since ∆A is the matrix of numerical error
elements of A ≡ S1/2, ∥∆A∥ is the maximum numerical error
of the eigenvalues of S1/2. For a symmetric matrix M with
true eigenvalues λi (i = 1, · · · , p), if there exists a vector x ,
0 for arbitrary ϵ > 0 that satisfies the sufficient condition of
(A· 9), the necessary condition of (A· 9) holds.

∥Mx − σx∥ ≤ ϵ ∥x∥ → min
j

∣∣∣λ j − σ
∣∣∣ ≤ ϵ. (A· 9)

From the eigenvalue σ and the eigenvector v with numeri-
cal errors, the approximate difference from the true eigen-
value λ j can be obtained using (A· 9). Therefore, the value
of ∥∆A∥, εA, is calculated using (A· 10) with l j and v j, the
eigenvalue and eigenvector of A. Furthermore, εA can be
obtained from (A· 11) according to Ref. [12], where εF is
the relative error of the real variables of T 2 calculation.

εA � max
j

∥∥∥Av j − l jv j

∥∥∥∥∥∥v j

∥∥∥ , (A· 10)

εA �
√

lmax · εF . (A· 11)

Thus, the upper limit of the relative numerical error∣∣∣∆T 2
∣∣∣ /T 2 of the sample MD T 2 is given by (A· 12), where

η1 = εA/
√

lmin �
√

lmax/lmin · εF and η2 =
√

lmax/lmin · ε.

∣∣∣∆T 2
∣∣∣

T 2
≤ 2

1 − εA√
lmin

 εA√
lmin

+

√
lmax

lmin
· ε


=
2 (η1 + η2)

1 − η1
. (A· 12)
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