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PAPER

Using Reversed Sequences and Grapheme Generation Rules to
Extend the Feasibility of a Phoneme Transition Network-Based
Grapheme-to-Phoneme Conversion

Seng KHEANG†a), Nonmember, Kouichi KATSURADA†, Yurie IRIBE††, and Tsuneo NITTA†,†††, Members

SUMMARY The automatic transcription of out-of-vocabulary words
into their corresponding phoneme strings has been widely adopted for
speech synthesis and spoken-term detection systems. By combining var-
ious methods in order to meet the challenges of grapheme-to-phoneme
(G2P) conversion, this paper proposes a phoneme transition network
(PTN)-based architecture for G2P conversion. The proposed method first
builds a confusion network using multiple phoneme-sequence hypotheses
generated from several G2P methods. It then determines the best final-
output phoneme from each block of phonemes in the generated network.
Moreover, in order to extend the feasibility and improve the performance
of the proposed PTN-based model, we introduce a novel use of right-to-left
(reversed) grapheme-phoneme sequences along with grapheme-generation
rules. Both techniques are helpful not only for minimizing the number of
required methods or source models in the proposed architecture but also for
increasing the number of phoneme-sequence hypotheses, without increas-
ing the number of methods. Therefore, the techniques serve to minimize
the risk from combining accurate and inaccurate methods that can read-
ily decrease the performance of phoneme prediction. Evaluation results
using various pronunciation dictionaries show that the proposed model,
when trained using the reversed grapheme-phoneme sequences, often out-
performed conventional left-to-right grapheme-phoneme sequences. In ad-
dition, the evaluation demonstrates that the proposed PTN-based method
for G2P conversion is more accurate than all baseline approaches that were
tested.
key words: reversed sequences, grapheme generation rule (GGR),
Grapheme-to-Phoneme (G2P) conversion, combining multiple approaches,
phoneme transition network (PTN)

1. Introduction

Data-driven grapheme-to-phoneme (G2P) conversion is a
process used to predict the phoneme strings correspond-
ing to out-of-vocabulary (OOV) words. G2P conversions
are commonly implemented for speech synthesis, language-
learning software, and spoken-term detection systems.

Often, there is no strict correspondence between letters
and phonemes in spoken words, and this is especially true
for an orthographically irregular language like English [1].
Thus, researchers have proposed various data-driven meth-

Manuscript received August 31, 2015.
Manuscript revised November 23, 2015.
Manuscript publicized January 6, 2016.
†The authors are with Toyohashi University of Technology,

Toyohashi-shi, 441–8580 Japan.
††The author is with Aichi Prefectural University, Nagakute-shi,

480–1198 Japan.
†††The author is with Waseda University, Tokyo, 169–8050

Japan.
a) E-mail: kheang@vox.cs.tut.ac.jp

DOI: 10.1587/transinf.2015EDP7349

ods using many-to-many mapping techniques between
graphemes and phonemes. Methods have been proposed
based on hidden Markov models (HMMs) [2], [3], artificial
neural network (ANNs) [4], joint-sequences [5], margin-
infused relaxed algorithms (MIRAs) [6], [7], a weighted
finite-state transducer (WFST) [8], an adaptive regulariza-
tion of weight vectors (AROW) [9], a narrow adaptive regu-
larization of weight vectors (NAROW) [10], and structured
soft-margin confidence weighted learning (SSMCW) [11].
Most of these methods, and especially SSMCW-based G2P
conversion that is implemented in the Slearp toolkit∗, have
demonstrated significantly accurate results. However, each
of these methods has been designed using specific tech-
niques that address particular challenges faced by G2P con-
version. Therefore, any single approach will not suffice
when addressing all of the problems encountered by G2P
conversion [12]. Considering this, a combination of various
approaches using different methods is a reasonable strategy
for treating these problems in a flexible manner.

Combining various methods can both lend flexibil-
ity to the conversion and improve its predictive perfor-
mance. Thus, in this paper we present a Phoneme Tran-
sition Network (PTN)-based architecture for G2P conver-
sion. Basically, our proposed PTN-based method first
converts a target word into multiple phoneme strings us-
ing several data-driven methods. Then, it aligns the ob-
tained results—the phoneme-sequence hypotheses—using
a dynamic-programming (DP) algorithm, combining them
into a confusion network (hereafter referred to as the
“PTN”), and determining the best phoneme from each PTN
bin—a block of phonemes/transitions between two nodes in
the PTN—to represent the final output. The best phoneme
selection in this study is based on a voting strategy accord-
ing to the frequency and maximum confidence score of the
occurrences implemented in the Recognizer Output Voting
Error Reduction (ROVER) system [13].

Selecting the set of methods used by the proposed ar-
chitecture is a crucial task. If accurate methods are com-
bined with inaccurate methods, this can considerably de-
grade the performance of the entire PTN-based G2P con-
version model. For example, Schlippe et al. merged five
phoneme-sequence hypotheses generated from five different
methods to enhance the generation of pronunciation in low-

∗Slearp: http://osdn.jp/projects/slearp/
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resource scenarios [14]. However, they could not demon-
strate any significant improvement using this combined ap-
proach without the addition of web-derived pronunciation
dictionaries. Even so, this improvement deteriorated as the
size of the training data increased, especially for a difficult
language like English. On the other hand, when the number
of phoneme-sequence hypotheses generated from inaccurate
models was more than the number of those generated from
accurate models, it was difficult to maintain and improve the
performance of the PTN-based model [15].

In order to mitigate this risk, we selected a minimum
number of methods.† We also present a novel use for right-
to-left (reversed) grapheme-phoneme (g-p) sequences and
grapheme generation rules (GGRs) [12]. In this study, both
techniques are especially helpful for extending the feasi-
bility and improving the performance of PTN-based G2P
conversion, because they increase the number of phoneme-
sequence hypotheses without increasing the number of
methods used. By reversing the conventional (left-to-right
reading direction) g-p sequence, we can provide context in-
formation that differs from conventional sequences during
the alignment. This allows each single method to train an
additional model, thus producing an additional phoneme-
sequence hypothesis. In addition, applying various GGRs††
to the words (that satisfy the rules) in the source corpus
will also generate additional grapheme-sequences and more
training samples. This increases the size of training data,
enabling a single trained model to produce more than one
phoneme-sequence hypothesis. Therefore, this paper pro-
poses two different versions of the PTN-based architecture
for G2P conversion. As a result of the reversed g-p se-
quences, the first architecture uses only three different meth-
ods, based on MIRA [7], WFST [8], and SSMCW [11], to
train six separated source models in order to generate six
phoneme-sequence hypotheses. To reduce the number of
methods as well as the number of trained models, we use
only a single GGR rule for the second architecture. Con-
sequently, this architecture requires only four models based
only on a single method (viz., an SSMCW-based method) to
generate the same number of hypotheses.

We evaluated our proposed models against the three
baseline methods mentioned in the previous paragraph using
multiple datasets and the K-fold cross-validation technique.
The results indicate an improvement in both phoneme and
word accuracy with respect to OOV words.

The remainder of this paper is organized as follows. In
Sect. 2, we describe the three data-driven methods for G2P
conversion selected for this study. We then present the PTN-

†In previous research, a method/approach has been used to
train a single model only, so the terms “method/approach” and
“model” might have a similar meaning. Otherwise, here, we dif-
ferentiate between them because a single selected method in this
paper can be used to train more than one model.
††In English, the interaction between vowels in a word strongly

affects its spelling. Thus, GGRs were originally proposed to add
extra-sensitive information to each vowel-grapheme appearing in a
word.

based G2P conversion and its compact version in Sects. 3
and 4, respectively. The evaluation results and discussion
are presented in Sects. 5 and 6, respectively. The conclusion
is given in Sect. 7.

2. Different Data-Driven Methods for G2P Conversion

Many data-driven approaches to G2P conversion have been
proposed, but the popular joint-sequence or n-gram model-
based methods for G2P conversion have been proven to be
the most powerful techniques for dealing with OOV words.
Because our proposed approach requires the combination of
at least three methods, we selected the three most powerful
statistical-based methods that differently encode the n-gram
model.

2.1 MIRA-Based Method for G2P Conversion
(DIRECTL+)

The best-known joint n-gram model-based method for G2P
conversion was first proposed in 2008 by Bisani and Ney [5],
and it was implemented as a generative system available
in the Sequitur toolkit.††† In this system, the model is
trained using the expectation-maximization algorithm, and
the phoneme sequence corresponding to a given word ϕ(g)
is predicted through a Bayes’ decision rule as follows:

ϕ(g) = argmaxϕ′P(g, ϕ
′
) (1)

Here, g represents a given grapheme sequence, where ϕ
′

is
the most likely pronunciation of the grapheme sequence g.

Soon after, Jiampojamarn et al. represented the joint
n-grams model for G2P conversion as an online discrimi-
native sequence-prediction model, which used a many-to-
many alignment between grapheme and phoneme sequences
and a feature vector consisting of n-grams context features,
HMM-like transition features, and linear-chain features [6].
For each training iteration, the feature weight vector was
updated using the MIRA algorithm; this system is called
DirecTL. The updated version of DirecTL is called the
DIRECTL+ toolkit,†††† implemented in 2010, in which the
joint n-gram features were integrated [7].

2.2 Rapid WFST-Based G2P Conversion (Phonetisaurus)

A WFST-based method for G2P conversion proposed by
Novak et al. [8] has been implemented to develop a rapid
and high-quality joint-sequence model-based G2P conver-
sion. First, the training words and their phoneme sequences
are provided, and these are aligned using an expectation-
maximization training procedure based on the many-to-
many aligning technique [5]. The joint-sequence corpus is
given as an input for n-gram counting (in which the order or
length of the n-grams to count is provided), and then a stan-

†††http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.
html
††††https://code.google.com/p/directl-p/
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dard joint n-gram model is trained using the MITLM tookit†
or the OpenGrm NGram library,†† and smoothed by Kneser-
Ney discounting with interpolation. Then, the trained n-
gram model is converted to a WFST-based model, which
predicts the phoneme sequences of unknown words using
the following decoding function:

Phseqbest = shortestPath(Pro jecto(W o M)) (2)

where “Phseqbest” refers to the most likely phoneme se-
quence given the input word “W” under the FSA representa-
tion and the n-gram model “M” encoded as FST, “o” refers
to the weighted composition, “Pro jecto(.)” is a projection
onto the output symbols, and “shortestPath(.)” indicates the
shortest-path algorithm.

2.3 SSMCW-Based G2P Conversion (Slearp)

Structured online discriminative learning methods, such as
structured AROW [9] and NAROW [10], have been success-
ful at improving performance in G2P conversion. Recently,
an SSMCW-based method [11] has been proposed for ex-
tending multi-class confidence-weighted learning to struc-
tured learning, which softens the marginal errors for hy-
pothesis and update parameters using the N-best hypotheses
simultaneously and interdependently for robustness against
over-fitting.

The general formulation of a G2P conversion model
using a structured learning method is as follows:

ŷ = argmaxyω
TΦ(x, y) (3)

where the parameters x and y represent a given grapheme
sequence and its corresponding phoneme sequence, respec-
tively, ω indicates the weight vector for the classifier, and
Φ(x, y) is a feature vector that consists of the frequencies of
joint n-gram features on x and y. The predicted phoneme
sequence ŷ is obtained using a dynamic-programming algo-
rithm. For a detailed discussion of how the parameters in
Eq. (3) are determined, please refer to [11].

3. PTN-Based Architecture for G2P Conversion

In this section, we first introduce a novel use of reversed g-
p sequences and explain how PTN sequences are generated
from multiple phoneme sequences. Then, we describe how
to determine the best output phoneme sequence from the
PTN sequence using voting techniques.

3.1 Reversed g-p Sequences

To predict a phoneme sequence corresponding to an in-
put grapheme sequence, most existing approaches use an
n-gram model to calculate the likelihood probability that
a phoneme (sequence) accurately corresponds to a particu-
lar grapheme (sequence) [2], [5], [7]–[11]. This means that

†https://code.google.com/p/mitlm/
††http://www.openfst.org/twiki/bin/view/GRM/NGramLibrary

only the context from left to right is seen by the model.
Thus, the trained model can only learn or cover the relation-
ship between graphemes and phonemes in a single direction.

According to [16], Sutskever et al. reversed the order
of input words in all source sentences, but not in the target
sentences, and this was done in order to train a machine-
translation model using a multi-layered Long Short-Term
Memory Recurrent Neural Network (LSTM-RNN). This
cross-mapping technique is possible owing to Connection-
ist Temporal Classification (CTC) [17], which allows the
RNNs to be trained without requiring any prior alignment
between the source and target sequences. Sutskever et al.
demonstrated that this reversed-word model (slightly) out-
performed models based on conventional word sequences.

However, this cross-mapping technique is inadequate
for statistical-based methods where a prior alignment be-
tween input and output sequences is required [2], [5], [7]–
[9], [11].††† Therefore, in this paper we introduce a new
way to use the reversing technique for G2P conversion, such
that it avoids alignment problems. Rather than reversing
only the input grapheme sequence, we reverse both the in-
put grapheme and the output phoneme sequences, as demon-
strated in the following example:

• Conventional g-p sequences: “LURIE”→/L UH R IY/
• Reversed g-p sequences: “EIRUL”→/IY R UH L/

3.2 PTN Generation Using Multiple Phoneme Sequences

Over the last few years, it has proven considerably difficult
to improve the performance of a G2P conversion model for
OOV words, because each method or approach is uniquely
designed using different techniques to address particular
challenges. It is seemingly impossible to utilize any sin-
gle method to deal comprehensively with the host of prob-
lems encountered by G2P conversion [12]. Therefore, we
designed a PTN-based architecture for G2P conversion that
allows many different methods to be applied together, in or-
der to deal broadly with the various problems.

The number of methods used by the PTN-based G2P
conversion model, as well as the methods themselves, must
be carefully selected, owing to the risk of combining ac-
curate methods with inaccurate ones such that the perfor-
mance of the entire model is degraded. In order to minimize
this risk, only a few accurate methods should be used. By
contrast, combining only a minimum number of phoneme-
sequence hypotheses will not improve the PTN-based G2P
conversion [15].

Therefore, in this study, we propose a novel PTN-
based architecture using the three most accurate methods
for G2P conversion: the SSMCW-based method (available
in the Slearp toolkit), the WFST-based method (available
in the Phonetisaurus toolkit), and the MIRA-based method
(available in the DIRECTL+ toolkit). As depicted in Fig. 1,
†††We also conducted tests for G2P conversion, but the results

were completely unsuitable, because the grapheme in a left-to-right
direction must be aligned to the phoneme in the reversed direction.
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Fig. 1 Architecture for the first proposed PTN-based G2P conversion using six models based on three
different methods. (LR→LR) and (RL→RL) represent the models trained using the conventional and
reversed g-p sequences, respectively.

by using the conventional g-p sequences as training data,
we can generate three phoneme-sequence hypotheses from
three source models: Slearp, Phonetisaurus (Phon.), and
DIRECTL+. Furthermore, the reversed g-p sequences al-
low these three methods to produce three additional mod-
els: Slearp.reverse, Phonetisaurus.reverse (Phon.reverse),
and DIRECTL+.reverse. In total, six phoneme-sequence hy-
potheses are generated from six models implemented using
only three methods.

The ROVER system [13] allows us to align these
phoneme sequences using a DP algorithm, and to merge
them together in a single confusion network (or PTN), as
shown in Fig. 1. In this context, when there is any insertion
or deletion problems during the alignment, a null phoneme
/@/ is used by the PTN to represent a null transition.

3.3 Determining the Best Output Phoneme

Theoretically, many phoneme sequences can be generated
from a PTN, but only a single sequence is needed to repre-
sent the best output of the model. In order to determine the
best output sequence, we adopted a voting strategy, accord-
ing to the frequency and maximum confidence score of the
occurrences. This voting scheme is provided in the ROVER
system [13]. The phoneme-selection function for each PTN
bin is based on the following scoring formula:

score(ph) = α(N(ph, i)/n) + (1 − α)C(ph, i) (4)

C(ph, i) = MAX(con f1(ph, i), . . . , con fn(ph, i)) (5)

where N(ph, i) is the number of occurrences of the phoneme
ph in the ith PTN bin, and n denotes the number of phoneme-
sequence hypotheses. Furthermore, C(ph, i) represents the
confidence score for the phoneme ph in the ith PTN bin,
where con f1(ph, i), . . . , con fn(ph, i) is the set of confidence
scores for ph in the ith PTN bin that correspond to the var-
ious sequence hypotheses. The real value α = [0 . . . 1] rep-
resents a trade-off between the phoneme frequency and the
confidence score in Eq. (5).

Table 1 Examples of GGRr rules.

GGR0
gi ⇒ gi (like unigram = default)

Ex: “OKEECHOBEE” ⇒ O K E E C H O B E E

GGR1
gi ⇒ gigi+1 (like bigram)

Ex: “OKEECHOBEE” ⇒ OK KE EE EC CH HO OB BE EE E

GGR2
If (n > 1) v1 . . . vncn+1 ⇒ v1v2 v2v3 . . . vn−1vn vn cn+1

If (n = 1) gi ⇒ gi

Ex: “OKEECHOBEE” ⇒ O K EE E C H O B EE E

Here, gi = {ci, vi}: grapheme at index i;
ci, vi: consonant and vowel graphemes at index i;
n: number of connecting vowels in a given word.

4. Reducing the Number of Required Source Models

Even if the reversed g-p sequences can make a comple-
mentary model that can generate an additional phoneme-
sequence hypothesis for each source method, the risk from
combining different methods nevertheless remains. Hence,
we introduce a novel use of grapheme generation rules
(GGRs) [12] to minimize this risk. This allows us to use
only a single method for implementing a PTN-based G2P
conversion model.

4.1 Grapheme Generation Rules (GGRs)

Textual information does not supply a sufficient amount of
information relating to the phonological interaction [18]. In
orthographically complex languages such as English, the in-
teraction between vowels in a word significantly affects the
spelling. Hence, a technique for generating new grapheme
sequences from the same input text (known as GGRs) has
been proposed for adding extra-sensitive information to
each vowel-grapheme appearing in a word [12]. Suppose
that a grapheme sequence g = g1g2 . . . gn is provided as an
input. The new grapheme sequence ĝr = ḡ1�ḡ2� . . . �ḡn, in
which an empty space is used as a separator, can be gen-
erated with respect to a rule GGRr, formulated as follows:

ĝr = GGRr(g) (6)

A list of few rules, which is selected from [12] and de-
signed to tackle the connecting vowels in the English lan-
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Table 2 Example of a newly generated dataset when various GGRr rules
are applied. Here, the g-p sequences in the source dataset are selected from
the CMUDict noisy corpus.

Grapheme sequence→Phoneme sequence GGRr

So
ur

ce

(S
) NEWLY →N UW L IY

CREATIVE →K R IY EY T IH V
IDEA →AY D IY AH

G
G

R
0
(S

)

(Ŝ
0
) N E W L Y →N UW L IY GGR0

C R E A T I V E →K R IY EY T IH V GGR0

I D E A →AY D IY AH GGR0

G
G

R
2
(S

)

(Ŝ
2
) N E W L Y →N UW L IY GGR2

C R EA A T I V E →K R IY EY T IH V GGR2

I D EA A →AY D IY AH GGR2

Ŝ
0
∪

Ŝ
2

(Ŝ
)

N E W L Y →N UW L IY GGR0 or GGR2

C R E A T I V E →K R IY EY T IH V GGR0

C R EA A T I V E →K R IY EY T IH V GGR2 (+)
I D E A →AY D IY AH GGR0

I D EA A →AY D IY AH GGR2 (+)

guage, is provided in Table 1. In this study, we selected only
the rules GGR0 and GGR2 for our first-time experiments be-
cause we wanted to investigate the difference between the
baseline rule GGR0 and the best rule GGR2 from [12] when
used within the PTN-based G2P conversion. The rule GGR0

is equivalent to the conventional grapheme sequence (where
the space is ignored), but GGR2 can distinguish the sepa-
rated vowel v in the cvc pattern from the connecting vowels
v1, v2, . . . , vn−1 in the v1v2 . . . vn pattern.

4.2 PTN-Based G2P Conversion Using Only One Method

According to Fig. 1, after using the reversed g-p sequences,
only three different methods are required for generating six
phoneme-sequence hypotheses used in the PTN-based G2P
conversion. However, the source/trained models remain the
same six models. Hence, the integration of GGRs into the
source models is especially helpful.

Rather than using only the original word-pronunciation
pairs from the source corpus, we applied several GGRs
to all the words, in order to generate additional g-p se-
quences. These were then added to the dataset; the re-
dundant g-p sequences were omitted. According to the ex-
ample in Table 2, we suppose that a source dataset (i.e.,
S = {(g, p)1, (g, p)2, . . . , (g, p)N} = ⋃N

k=1(g, p)k) consists of
N pairs of g-p sequences. Then, a set of R rules is applied,
and the newly generated dataset Ŝ is formulated as follows:

Ŝ =
R⋃

r=1

Ŝ r =

R⋃
r=1

GGRr(S ) =
R⋃

r=1

N⋃
k=1

(GGRr(g), p)k

⇒ Ŝ =
R⋃

r=1

N⋃
k=1

(ĝr, p)k

(7)

As a result, for each input word (refers to the conven-
tional grapheme sequence g), Fig. 2 shows that it is pos-
sible to generate more than one phoneme sequence from
a trained model in which the newly generated dataset Ŝ
is used (e.g., Slearp.GGR0+2), given the different repre-
sentations of its grapheme sequence (e.g., the generated

Fig. 2 Architecture for the second proposed PTN-based G2P conversion
using four models based on only a single method from the Slearp toolkit.

grapheme sequences ĝ0 = GGR0(g) and ĝ2 = GGR2(g) seen
in Table 2). By using both reversed g-p sequences and vari-
ous GGRs, the number of generated hypotheses Nbhyps can
be calculated using the following formula:

Nbhyps =

{
2 ∗ NbGGRs, if the reversed seqs are used
NbGGRs, otherwise

(8)

where NbGGRs indicates the number of applied rules.
The novel use of GGRs in G2P conversion allows us to

use only one method to train one or several models com-
bined at the PTN level. In this study, we compared the
performance among the models using GGRs with those us-
ing conventional and reversed g-p sequences. Therefore,
as seen in Fig. 2, the second proposed PTN-based architec-
ture for G2P conversion combines six hypotheses generated
from four models implemented using only a single method
(i.e., the most accurate SSMCW-based method for G2P con-
version available in the Slearp toolkit). The Slearp and
Slearp.reverse models are trained using the original dataset
S, and thus producing only two phoneme-sequence hypothe-
ses. The Slearp.GGR0+2 and Slearp.GGR0+2.reverse mod-
els are trained using the newly generated dataset Ŝ, and
thus possibly generating four phoneme-sequence hypothe-
ses. Although the input grapheme sequences g and ĝ0

are equivalent, two different phoneme-sequence hypotheses
might be produced owing to the different source models.

5. Evaluation

In this section, we describe the data-preparation process and
the experimental setup. Subsequently, we report the experi-
mental results.

5.1 Data Preparation

The performance of our two proposed approaches was eval-
uated relative the baseline models discussed in Sect. 2. We
conducted experiments using four different pronunciation
dictionaries (three in English and one in French), as listed
in Table 3. The NETtalk, Brulex and CMUdict datasets
were obtained from the Pascal Letter-to-Phoneme Conver-
sion Challenge website†. A noisy CMUdict dataset (CMU-

†http://pascallin.ecs.soton.ac.uk /Challenges/PRONALSYL/
Datasets
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Table 4 Phoneme (PAcc) and word accuracy (WAcc) for all baseline and PTN-based G2P conversion
models. The italicized text indicates the highest accuracy among the baseline models. The text is
bold where a PTN provided a better result than all the baselines, and the background is gray when the
PTN(1+. . .+6) outperformed both PTN(1+2+3) and PTN(4+5+6).

NETtalk Brulex CMUdict CMUdict noisy
PAcc WAcc PAcc WAcc PAcc WAcc PAcc WAcc

1 Slearp 93.66% 70.99% 99.15% 95.65% 93.60% 73.12% 93.83% 73.55%
2 Phon. 92.89% 68.56% 98.95% 94.52% 93.25% 72.39% 93.48% 72.71%
3 DirecTL+ 93.75% 71.31% 98.20% 92.54% 92.61% 70.91% 92.37% 70.11%
4 Slearp.reverse 93.79% 71.93% 99.14% 95.55% 93.74% 73.91% 93.84% 73.96%
5 Phon.reverse 93.07% 69.15% 98.93% 94.43% 93.30% 72.53% 93.54% 73.10%
6 DirecTL+.reverse 93.65% 70.89% 98.20% 92.55% 92.19% 69.88% 91.91% 68.92%
PTN(1+2+3) 94.10% 72.73% 99.20% 95.89% 93.11% 73.87% 94.28% 75.20%
PTN(4+5+6) 94.16% 73.14% 99.20% 95.82% 94.06% 74.96% 94.23% 75.25%
PTN(1+2+3+4+5+6) 94.23% 73.45% 99.22% 95.98% 94.13% 75.17% 94.28% 75.30%

Table 3 Datasets or corpora used in the experiments.

Dataset Vocabulary size (words)
Train Dev. Test K-fold

NETalk (English) 17,508 1,000 1,500 10
Brulex (French) 23,955 1,000 2,500 10

CMUdict (English) 95,286 6,000 11,000 8
CMUdict noisy (English) 107,438 5,939 11,998 1

CMUdict noisy GGR0+2 (Ŝ ) 130,533 7,787 15,372 1

dict noisy) containing words with multiple pronunciations
(i.e., heteronyms) is available in the Phonetisaurus package.
In this study, we used the NETtalk corpus to tune the param-
eters for each method and the ROVER system.

We subdivided each corpus into training, development,
and testing datasets. The NETtalk, Brulex, and CMUdict
datasets each originally consisted of ten separated folds.
Thus, for each trial of cross-validation, one fold was used
as the testing data, some data in another fold was randomly
selected for the development data, and the eight remaining
folds, along with the leftover data from the fold used for the
development data, were extracted and combined for use as
training data. By contrast, the source of the CMUdict noisy
dataset originally consisted of only two parts (training and
testing datasets). Thus, development data was randomly ex-
tracted from the training dataset. In order to conduct a fair
evaluation, when the same word appeared multiple times
with different phoneme sequences in the development or
testing dataset, we retained only a single pair.

Owing to the fact that the GGRs in this paper were
designed exclusively for English words and the CMU-
dict noisy corpus were used in many previous studies [5],
[7], [8], we used only this corpus to evaluate our sec-
ond PTN-based G2P conversion (see Sect. 4). Equation (7)
was applied to increase the size of the training, develop-
ment, and testing datasets, after GGR0 and GGR2 were ap-
plied, the details for which are provided in Tables 2 and 3.
Here, GGR0 was used to convert the format of the origi-
nal grapheme sequence by adding a space between two con-
nected graphemes.

5.2 Experimental Setup

5.2.1 Proposed Test Sets

In our experiments, we employed the three original models
using the conventional g-p sequences as baseline models—
viz., Slearp (1 Slearp in Table 4), Phonetisaurus (2 Phon.),
and DIRECTL+ (3 DIRECTL+), presented in Sect. 2.

To see the advantages of using the reversed g-
p sequences for G2P conversion, we proposed three
additional models (4 Slearp.reverse, 5 Phon.reverse and
6 DIRECTL+.reverse) in which the reversed g-p sequences
were used in place of the conventional sequences.

As listed in Table 4, in order to compare the perfor-
mance between G2P conversion based on a single model
with G2P conversion based on multiple models, we pro-
posed three PTN-based G2P conversion models. In this
case, all six separated models mentioned in the previous
paragraph (labeled 1, 2, 3, 4, 5 and 6 in the PTN notation)
were considered baseline models. For three-model com-
binations, we proposed PTN(1+2+3) and PTN(4+5+6) for
comparing the performance between the PTN-based model
with only the conventional g-p sequences and the one with
only reversed g-p sequences. PTN(1+. . .+6) was proposed
both to evaluate the performance of the PTN-based model
with all six baseline models and also to observe the ef-
fect and risk from combining accurate and inaccurate source
models.

On the other hand, in the evaluation of our sec-
ond PTN-based architecture (see Sect. 4), we implemented
four baseline models (viz., 1 Slearp, 2 Slearp.GGR0+2,
3 Slearp.reverse, and 4 Slearp.GGR0+2.reverse), as seen
in Fig. 2 and Table 5. The first and third models were
trained using the training and development datasets from
the original corpus, CMUdict noisy, whereas the second and
fourth models were trained using datasets from the newly
generated corpus CMUdict noisy GGR0+2. For each in-
put word, two different representations of a grapheme se-
quence can be encoded using GGR0 and GGR2. Thus,
two phoneme-sequence hypotheses must be generated from
each of the models using GGRs (i.e., 2 Slearp.GGR0+2 or
4 Slearp.GGR0+2.reverse). In our evaluation, we considered



1188
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Table 5 Performance of the compact PTN-based G2P conversion using
only the Slearp toolkit, GGRs, and reversed g-p sequences. The bold text
and gray background in this table are used in the same manner as Table 4.

Phoneme-sequence hyp. CMUdict Noisy
Trained model Model name for evaluation PAcc WAcc
1 Slearp A-Slearp 93.83% 73.55%

2 Slearp.GGR0+2
B-Slearp.GGR0 93.93% 74.16%
C-Slearp.GGR2 93.96% 74.21%

3 Slearp.reverse D-Slearp.reverse 93.84% 73.96%
4 Slearp.GGR0+2.

reverse
E-Slearp.GGR0.reverse 94.08% 74.99%
F-Slearp.GGR2.reverse 94.08% 75.08%

compactPTN(A+B+C) 93.97% 74.28%
compactPTN(D+E+F) 94.11% 75.09%

compactPTN(A+B+C+D+E+F) 94.29% 75.56%

these hypotheses as belonging to two separated models. The
evaluation results from all the baseline models (A, B, C, D,
E and F) in Table 5 were obtained using the same test data—
i.e., the same input words—but with different graphemic
representations. In order to compare the performance be-
tween G2P conversion based on a single model with G2P
conversed based on a compact PTN, we proposed the same
three PTN models with respect to the evaluation of our first
architecture.

5.2.2 Experiment Configurations

According to the results of the preliminary experiments us-
ing the NETtalk corpus, the necessary parameters for the
three selected methods for G2P conversion were tuned as
follows:

• In the DIRECTL+ toolkit, the size of the n-gram context
features and joint n-gram features was set to 7 and 3, re-
spectively. Data alignment was based on the mpaligner
software [19], and the association between graphemes
and phonemes was set to 2-3.
• In the Phonetisaurus toolkit, the number of discounting

(bins) and the maximum length of n-grams to count
(order) were set to 3 and 8, respectively.
• In the Slearp toolkit, the size of the n-gram context and

chain features was set to 5, while the joint n-gram fea-
ture size was set to 7. Pre-alignment was also based on
the mpaligner software with m-m association.
• For both Slearp and DIRECTL+, the minimum number

of iterations before ending the training process and the
maximum number of iterations after a degradation in
the performance of the development data were both set
to 10. The best iteration was selected based on both
phoneme and word accuracy, and this was measured
with the development dataset.

In order to improve the performance of the most
accurate source models in the PTN-based G2P conver-
sion, a set of confidence scores in Eq. (5) should be as-
signed with respect to the rank of model accuracies. If
{a, b, c, d, e, f } is a set of scores for our six baseline mod-
els sorted by its accuracy, then each phoneme of the se-
quence hypothesis generated from the model with highest

accuracy was assigned the highest score a and the one gen-
erated from the model with lowest accuracy was assigned
the lowest score f . Based on our experiments, for both
PTN(1+. . .+6) and compactPTN(A+. . .+F), the best results
were obtained when the values of a, b, c, d, e and f were as-
signed to 1.0, 0.7, 0.6, 0.5, 0.4 and 0.2, respectively; for
the ROVER system, the value of α and the confidence score
of NULL phoneme /@/ (noted as Ncon f ) in Eq. (4) and
Eq. (5) should be equal to 0.7 and 0.8, respectively. On
the other hand, we used only a set of three scores {a, b, c}
for PTN(1+2+3), PTN(4+5+6), compactPTN(A+B+C) and
compactPTN(D+E+F); in this case, the best results were ob-
tained when the values of a, b and c were assigned to 1.0,
0.7, and 0.6, respectively.

To conduct our experiments, we simultaneously exe-
cuted multiple programs on a shared server (CentOS 6.6,
Intel(R) 12-Core(TM) i7-4930K CPU 3.40 GHz, RAM
64 GB, HDD 630 GB) in our laboratory.

5.2.3 Performance Metrics

We evaluated the models’ performance in terms of phoneme
accuracy (PAcc) and word accuracy (WAcc), using the NIST
SCLITE scoring toolkit.† In this paper, we report only the re-
sults concerning the OOV words in the testing dataset. We
also measured the statistical significance (i.e., p-values) us-
ing McNemar’s test.

5.3 Experimental Results

All of the evaluation results for the baseline models and
the G2P conversion models based on our first (Fig. 1) and
second (Fig. 2) PTN-based architectures are described here-
after.

According to Table 4, and with the exception of the
NETtalk corpus, Slearp generally performed best among the
three baselines (i.e., 1 Slearp, 2 Phon. and 3 DIRECTL+)
in which the conventional g-p sequences were used. For
instance, in terms of the WAcc, Slearp achieved 95.65%,
73.12%, and 73.55% for the Brulex, CMUdict and CMU-
dict noisy corpora, respectively.

Surprisingly, when using reversed g-p sequences rather
than conventional sequences, there was a slight improve-
ment (0.4 ∼ 1% for 4 Slearp.reverse and 0.2 ∼ 0.5% for
5 Phon.reverse), with the exception of the DIRECTL+ mod-
els (i.e., 6 DIRECTL+.reverse) and the Brulex corpus.

When the three models based on the selected meth-
ods (viz., SSMCW-, WFST- and MIRA-based methods)
were combined, the evaluation results in Table 4 further re-
veal that our first proposed PTN-based architecture can im-
prove the performance of G2P conversion. PTN(4+5+6),
the model with reversed g-p sequences, typically outper-
formed PTN(1+2+3), the same model but with conven-
tional g-p sequences. Owing to the fact that reversed g-p
sequences allow each single model to train an additional

†http://www.itl.nist.gov/iad/mig/tools/
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Table 6 Percentage of input words where one model (ModelA) provides the correct phoneme-
sequence hypotheses while another model (ModelB) provides an incorrect-sequence hypotheses.
The results in this table are based on Fig. 1. When comparing the result of two models trained
using the same method, the result in bold font indicates the model with higher percentage of
correct phoneme-sequence hypotheses. For example, in the result for the NETtalk corpus, one
cell [ModelA(Slearp.reverse), ModelB(Slearp)] has a higher percentage than its comparative cell
[ModelA(Slearp), ModelB(Slearp.reverse)].

ModelA = correct
and

ModelB = incorrect

ModelB

1 Slearp 2 Phon. 3 DirecTL+
4 Slearp
.reverse

5 Phon
.reverse

6 DirecTL+
.reverse

M
od

el
A

1 Slearp 0 9.03% 6.75% 4.25% 8.66% 6.99%

N
E

T
talk

2 Phon. 6.55% 0 7.75% 6.37% 2.69% 8.00%
3 DirecTL+ 7.05% 10.52% 0 6.65% 10.11% 3.02%
4 Slearp.reverse 5.20% 9.79% 7.31% 0 9.46% 7.62%
5 Phon.reverse 6.70% 3.21% 7.85% 6.55% 0 8.03%
6 DirecTL+.reverse 6.88% 10.37% 2.62% 6.57% 9.89% 0

M
od

el
A

1 Slearp 0 2.68% 4.35% 0.73% 2.67% 4.41%

B
rulex

2 Phon. 1.52% 0 4.53% 1.52% 0.84% 14.54%
3 DirecTL+ 1.33% 2.68% 0 1.42% 2.71% 0.56%
4 Slearp.reverse 0.66% 2.61% 4.36% 0 2.61% 4.42%
5 Phon.reverse 1.45% 0.78% 4.50% 1.46% 0 4.53%
6 DirecTL+.reverse 1.35% 2.64% 0.51% 1.43% 2.69% 0

M
od

el
A

1 Slearp 0 6.74% 8.84% 4.35% 6.60% 8.91%

C
M

U
dict

2 Phon. 6.00% 0 9.23% 5.57% 2.09% 9.30%
3 DirecTL+ 5.64% 6.77% 0 5.03% 6.64% 2.38%
4 Slearp.reverse 5.14% 7.10% 9.03% 0 6.95% 9.12%
5 Phon.reverse 6.01% 2.23% 9.24% 5.56% 0 9.31%
6 DirecTL+.reverse 5.66% 6.79% 2.33% 5.09% 6.66% 0

M
od

el
A

1 Slearp 0 6.83% 9.89% 4.32% 6.54% 10.07% C
M

U
dict

noisy

2 Phon. 5.99% 0 10.57% 5.67% 2.53% 10.54%
3 DirecTL+ 5.38% 6.88% 0 5.23% 6.76% 2.26%
4 Slearp.reverse 4.73% 6.92% 10.17% 0 6.86% 10.34%
5 Phon.reverse 6.10% 2.93% 10.84% 6.00% 0 10.84%
6 DirecTL+.reverse 5.44% 6.75% 2.15% 5.29% 6.66% 0

and superior model, the number of models and phoneme-
sequence hypotheses for PTN-based G2P conversion dou-
bles. Thus, the entire model performance improves. For
example, PTN(1+. . .+6) improved the WAcc of the best
baseline models for NETtalk, Brulex, CMUdict, and CMU-
dict noisy from 71.93% to 73.45%, 95.65% to 95.98%,
73.91% to 75.17% and 73.96% to 75.30%, respectively.

As explained in Sect. 4, the compact PTN-based archi-
tecture for G2P conversion has been proposed in order to
minimize the risk from combining inaccurate and accurate
methods. Because the size of the training data increases
after using GGRs, and despite using the same representa-
tion of the grapheme sequence, the results from both (B-
Slearp.GGR0 versus A-Slearp) and (E-Slearp.GGR0.reverse
versus D-Slearp.reverse) in Table 5 demonstrate another
method for increasing the performance of the baseline
models other than the use of the reversed g-p sequence.
By applying both techniques—GGRs and reversed g-p
sequences—it is sufficient to use only the most accurate
method (e.g., the SSMCW-based method in the Slearp
toolkit) when implementing as many models as needed.
After merging the hypotheses generated from all of those
models with respect to the second proposed architecture (in
Fig. 2), the results from the compactPTN(A+. . .+F), evalu-
ated using the CMUdict noisy corpus, show even more im-
provement in terms of the PAcc and WAcc.

6. Discussion

The results in Tables 4 and 5 demonstrate that there are two
ways to improve the performance of each separated model,
namely GGRs and reversed g-p sequences.

The previous evaluation results in Table 4 show that
models using reversed g-p sequences generally outper-
formed those using conventional g-p sequences. After an-
alyzing the data, we believe that some conventional se-
quences and their corresponding reversed g-p sequences
were aligned differently owing to differing representations.
Hence, we can assume that using the reversed g-p sequences
provides better-aligned data for G2P conversion.

In order to appreciate the quality and helpfulness of
the phoneme-sequence hypotheses involved in generating
the PTN, we conducted an analysis of the sequences, in-
spired by McNemar’s test theory. By calculating the per-
centage of words for which their corresponding phoneme se-
quences could be correctly established by one model (noted
as ModelA) but not another (noted as ModelB), we can ob-
serve that the comparing results between any two different
models in Table 6 are bigger than zero percentage for all
the corpora. This means that when one model generates
an incorrect phoneme sequence, other models can gener-
ate the correct sequence. In addition, by comparing two
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Table 7 Percentage of words measured from the OOV dataset for different corpora. This measure-
ment is needed to analyze the correctness and incorrectness between the input sequence hypotheses and
the output sequence of the PTN. Here, the results belong to PTN(1+. . .+6) and compactPTN(A+. . .+F).
The second-row results in bold font are misjudged words. “Could be correct” refers to the result ob-
tained on condition that the voting method could perfectly select the best phoneme-sequence from the
generated PTN.

A set of conditions Percentage of words measured from the OOV dataset (%)

Phoneme-sequence hypotheses
(1, 2, . . . , 6) or (A,B, . . . ,F) as inputs

Output sequence
of the PTN PTN(1+. . .+6) compactPTN(A+. . .+F)

Status Number of sequences Status NETtalk Brulex CMUdict CMUdict noisy CMUdict noisy
Correct / Incorrect Some Correct 19.15% 7.84% 17.83% 18.85% 9.70%

Correct / Incorrect Some Incorrect 10.76% 1.99% 8.94% 9.42% 6.44%
Correct All Correct 53.01% 87.33% 57.32% 56.43% 65.86%
Correct All Incorrect 0% 0% 0% 0% 0%

Incorrect All Correct 0.01% 0% 0.03% 0.06% 0%
Incorrect All Incorrect 17.08% 2.84% 15.88% 15.25% 18.01%

Correct/Incorrect Some Could be correct 29.91% 9.83% 26.77% 28.27% 16.14%
Incorrect All Could be correct 1.14% 0.08% 1.23% 1.00% 0.88%

models, especially models using the same method but with
a different representation of the grapheme sequence (i.e.,
the conventional and reversed g-p sequences), we can as-
sume that one model (or an accurate model) will not pro-
vide all of the correct results that were provided by another
model (or an inaccurate model). This is because it is still
likely that one model will generate the correct phoneme-
sequence hypothesis, even when another cannot. For in-
stance, a comparison between the Slearp.reverse and Slearp
models using the NETtalk dataset shows that 5.20% of the
words correctly phoneticized with the Slearp.reverse model
were incorrectly phoneticized by Slearp, but only 4.25% the
other way around (i.e., correctly phoneticized by Slearp, but
not by Slearp.reverse). This evidence strongly reinforce the
point that combining multiple models for G2P conversion is
more effective than using any single model.

On the other hand, we used the eight conditions in Ta-
ble 7 to analyze the relations in terms of correctness and
incorrectness between the phoneme-sequence hypotheses
(hyp.) generated from various source models and the output
of the PTN-based model. These eight conditions are listed
as follows:

• Some hyp. are correct → Output of PTN is correct
• Some hyp. are correct → Output of PTN is incorrect
• All hyp. are correct → Output of PTN is correct
• All hyp. are correct → Output of PTN is incorrect
• All hyp. are incorrect→ Output of PTN is correct
• All hyp. are incorrect→ Output of PTN is incorrect
• Some hyp. are correct → Output of PTN is “Could be

correct”
• All hyp. are incorrect→ Output of PTN is “Could be

correct”

Results based on the second condition (i.e. the second row in
Table 7) indicate that 10.76%, 1.99%, 8.94%, and 9.42% of
the OOV words in NETtalk, Brulex, CMUdict, and CMU-
dict noisy, respectively, were misjudged when using the first
proposed PTN-based architecture. Moreover, the misjudged
results from CMUdict noisy were reduced to 6.44% when
using the second proposed architecture. This shows that the

Table 8 Example showing how a PTN-based G2P conversion can es-
tablish a correct output phoneme sequence even when all of the sequence
hypotheses are incorrect.

Reference:
“BERENDS”

→ /B EH R EH N D Z/
1 Slearp: B EH R AH N D Z

A
ligned

sequence
hypotheses

2 Phon.: B EH R EH N Z
3 DirecTL+: B ER EH N D Z

4 Slearp.reverse: B EH R AH N D Z
5 Phon.reverse: B EH R EH N Z

6 DirecTL+.reverse: B EH R EH N Z

PTN sequence: B

{
EH
@

}{
R

ER

}{
EH
AH

}
N

{
D
@

}
Z

↓ ↓ ↓ ↓ ↓ ↓ ↓
Voting(Output): B EH R EH N D Z

proposed architectures can nevertheless improve the model
performance when selecting a better technique for determin-
ing the best phoneme sequence from the PTN sequence.

Even when all of the phoneme sequence hypothe-
ses are incorrect, the PTN-based G2P conversion is still
able to select the best phoneme candidate from each se-
quence (e.g., 0.01% for NETtalk, 0% for Brulex, 0.03%
for CMUdict, and 0.06% for CMUdict noisy). The exam-
ple in Table 8 demonstrates that the PTN-based model can
produce a correct output phoneme sequence for the word
“BERENDS” even when all of the generated sequence hy-
potheses are incorrect. By supposing that the voting method
could perfectly select the best output phoneme sequence
from the generated PTN, the last row of Table 7 shows that
the previous results could be improved to 1.14%, 0.08%,
1.23%, and 1.00% for NETtalk, Brulex, CMUdict CMU-
dict noisy, respectively; in addition, if we also counted the
cases that at least one correct phoneme-sequence hypothe-
sis is used in the PTN generation, then both Tables 4 and
7 show that the performance of the PTN-based G2P con-
version would be highly improved from 73.45% to 84.06%
(1.14% + 29.91% + 53.01%) for NETtalk, from 95.98%
to 97.24% (0.08% + 9.83% + 87.33%) for Brulex, from
75.17% to 85.32% (1.23% + 26.77% + 57.32%) for CMU-
dict, and from 75.30% to 85.70% (1% + 28.27% + 56.43%)
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for CMUdict noisy. These large improvements give us hope
for the future challenge, which means that the voting method
in our proposed PTN-based architectures for G2P conver-
sion need to be improved.

The evaluation results for the compact version of the
proposed PTN-based G2P conversion in Table 5 demon-
strate that the novel use of reversed g-p sequences and GGRs
improves PTN-based G2P conversions, even when only a
single method is used. By comparing the evaluation results
provided by the PTN-based architecture and its compact ver-
sion, the results using the CMUdict noisy corpus in Table 7
show that 18.85% of the correct words while using the first
architecture, but only 9.70% of correct words while using
the second architecture, has to take risk in the voting pro-
cess. Thus, our compact PTN-based G2P conversion effec-
tively minimizes risk in the voting process from combining
inaccurate models with accurate ones. Furthermore, many
different PTN-based architectures will be proposed to ad-
dress challenges to G2P conversion in the future.

7. Conclusion and Future Work

In this paper, we showed that the proposed PTN-based G2P
conversion is a novel and effective method for improving
the quality of phoneme prediction for OOV words. The
proposal combines different approaches to phoneme predic-
tion in order to address the various problems encountered
by G2P conversion. It also provides significant and con-
sistently improved results compared to models based on a
single approach. The novel use of reversed g-p sequences
and GGRs in this paper can make complementary models
that allow to generate new hypotheses so that ensemble of
them has considerable gain for the PTN-based G2P conver-
sion model, and it also can minimize the risk associated with
combining accurate and inaccurate models. Moreover, we
demonstrated that the representation of both graphemic and
phonemic information plays an important role in improving
model performance.

In future work, we plan to create new and effective
GGRs to further improve our proposed approach, enabling a
trained model to generate more accurately output phoneme-
sequence hypotheses, such that only two models (using
conventional and reversed g-p sequences) will be sufficient
for our PTN-based G2P conversion. Moreover, the ham-
ming distance, calculated from the articulatory features of
phonemes [20], shall be used for the DP alignment pro-
cess in the ROVER system. Inspired by the Long Short-
Term Memory Recurrent Neural Network-based G2P con-
version [21], we shall attempt to challenge our approach at
the voting level with the use of a finite state transducer and
a joint n-gram model, rather than relying on the simplistic
voting method available in the ROVER system.
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