
1304
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

PAPER

Investigating and Projecting Population Structures in Open Source
Software Projects: A Case Study of Projects in GitHub

Saya ONOUE†a), Hideaki HATA†b), Nonmembers, Akito MONDEN††c), Member,
and Kenichi MATSUMOTO†d), Fellow

SUMMARY GitHub is a developers’ social networking service that
hosts a great number of open source software (OSS) projects. Although
some of the hosted projects are growing and have many developers, most
projects are organized by a few developers and face difficulties in terms
of sustainability. OSS projects depend mainly on volunteer developers,
and attracting and retaining these volunteers are major concerns of the
project stakeholders. To investigate the population structures of OSS de-
velopment communities in detail and conduct software analytics to obtain
actionable information, we apply a demographic approach. Demography
is the scientific study of population and seeks to identify the levels and
trends in the size and components of a population. This paper presents a
case study, investigating the characteristics of the population structures of
OSS projects on GitHub, and shows population projections generated with
the well-known cohort component method. We found that there are four
types of population structures in OSS development communities in terms
of experiences and contributions. In addition, we projected the future pop-
ulation accurately using a cohort component population projection method.
This method predicts a population of the next period using a survival rate
calculated from past population. To the best of our knowledge, this is the
first study that applied demography to the field of OSS research. Our ap-
proach addressing OSS-related problems based on demography will bring
new insights, since studying population is novel in OSS research. Under-
standing current and future structures of OSS projects can help practitioners
to monitor a project, gain awareness of what is happening, manage risks,
and evaluate past decisions.
key words: OSS, software development communities, software population
pyramids, demography

1. Introduction

As of 2014, GitHub reported having over 3.4 million users
and 16.7 million repositories∗. Why does GitHub attract
so many developers? Several studies have identified the
essence of this success [1]–[4]. GitHub is a distributed
version control system (DVCS) and a web-based hosting
service for Git repositories. Brindescu et al. assessed the
differences between the centralized version control system
(CVCS) and DVCS [1]. They reported that developers pre-
fer DVCS because of its useful features, such as the ability
to commit locally, work offline while retaining full project

Manuscript received September 4, 2015.
Manuscript revised January 4, 2016.
Manuscript publicized February 5, 2016.
†The authors are with Nara Institute of Science and Technol-

ogy, Ikoma-shi, 630–0192 Japan.
††The author is with Okayama University, Okayama-shi, 700–

0082 Japan.
a) E-mail: onoue.saya.og0@is.naist.jp
b) E-mail: hata@is.naist.jp
c) E-mail: monden@okayama-u.ac.jp
d) E-mail: matumoto@is.naist.jp

DOI: 10.1587/transinf.2015EDP7363

history, and create merging branches cheaply. Muşlu et al.
reported that developers moved from CVCS to DVCS be-
cause DVCS has the ability to work offline, to work incre-
mentally, and to context switch and do exploratory coding
efficiently [2]. GitHub has tapped into the opportunity to
facilitate pull-based development by offering workflow sup-
port tools, such as code reviewing systems and integrated
issue trackers. Gousios et al. reported the impacts of pull-
based development based on mining repository data: fast
development, transparency in project management, attract-
ing contributions, crowd sourcing of code review, and de-
mocratizing development [3]. GitHub is also considered as a
developers’ social networking service, and it promotes soft-
ware development through formal and informal collabora-
tion, called social coding. Dabbish et al. examined the value
of transparency and collaboration in OSS, reporting that de-
velopers form a rich set of social inferences, including infer-
ring technical goals and vision and trying to identify projects
with similar, and developers combine these inferences into
effective strategies for coordinating work, advancing techni-
cal skills, and managing their reputations [4].

Although GitHub has many attractive features and
many users and repositories, most projects are inactive and
have very few commits. Based on a qualitative manual anal-
ysis of GitHub repositories, Kalliamvakou et al. reported
that the majority of the projects are personal and inactive [5].
To survive and succeed, software development communi-
ties need to attract and retain contributors. Yamashita et al.
proposed a pair of population metrics, namely, magnetism
and stickiness [6]. Magnet projects are defined as those that
attract a large proportion of new contributors, and sticky
projects as those where a large proportion of the contribu-
tors will continue to make contributions. With the two val-
ues of magnetism and stickiness, OSS projects are classified
into the following four categories: (1) Attractive projects
have high magnet and high sticky values. These projects are
successful both at attracting new contributors and at retain-
ing existing ones. (2) Fluctuating projects have high magnet
but low sticky values. These projects are successful at at-
tracting new contributors but unsuccessful at retaining them.
Therefore, the members of these OSS development commu-
nities fluctuate from year to year. (3) Stagnant projects have

∗Marisa Whitaker, “Former UC student establishes a cele-
brated website in GitHub that simplifies coding collaboration for
millions of users,” University of Cincinnati, April 2014, http://
magazine.uc.edu/editors picks/recent features/wanstrath.html.

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1305

low magnet but high sticky values. In contrast to fluctu-
ating projects, stagnant projects retain existing contributors
but cannot attract new ones. (4) Terminal projects have low
magnet and low sticky values. Based on this classification,
Yamashita et al. empirically studied OSS project histories
and identified at-risk projects.

The work of Yamashita et al. suggests that we should
go further to analyze moving human resources of OSS
projects in more details not only for the evaluation of project
sustainability but also for providing actionable information
to help practitioners monitor a project, know what is re-
ally working, improve efficiency, manage risk, anticipate
changes, and evaluate past decisions [7]. For example, if one
could know that a project is attracting new contributors but
loosing experienced contributors, then it can be considered
that the project is changing its direction originally intended
by the experienced contributors. For a straightforward way
to analyze such moving human resources, this paper focuses
on the populations of development communities. And, to
conduct software analytics in populations of OSS develop-
ment communities, we apply an approach taken from de-
mography. Demography is the scientific study of popula-
tion. Demographers seek to uncover the levels and trends
in a population’s size and components [8]. Every popula-
tion has a different composition: the number and proportion
of males and females in each age group. This structure can
have considerable impact on the population’s current and
future social and economic situation. Government policy-
makers and planners worldwide use population projections
to gauge future demand for services and to forecast future
demographic characteristics. We believe this perspective,
that is, demography for actionable information, is also im-
portant for OSS projects to manage sustainable development
communities.

A population pyramid is a graphical illustration of the
distribution of the various age groups in a population. De-
pending on the countries’ conditions, the shape of popula-
tion pyramids varies. Population pyramids are used to show
the current status of a country’s population and provide in-
sights about political and social stability, as well as eco-
nomic growth. Population projection is a powerful approach
to discuss future populations [9]. In a previous study, we
applied population pyramids to OSS development commu-
nities. We dubbed this approach software population pyra-
mids [10]. In software population pyramids, contributors are
grouped by their experiences in the communities. Extending
the previous study [10], this paper investigates the character-
istics of the population structures observed in OSS projects
in GitHub by introducing demographic analysis. In addi-
tion, we project the future of population structures using the
well-known cohort component method. We address the fol-
lowing research questions in this paper: What characteris-
tics of population structures exist in OSS projects in GitHub,
and can we project future population structures? The differ-
ences between this study and the Yamashita et al. study [6]
can be summarized as follows:

• The study of Yamashita et al. is based on popula-
tion migration metrics. Therefore, their research spe-
cialized in the migration and remaining of develop-
ers. In contrast, we introduced the demographic ap-
proach. Therefore, we can investigate population struc-
tures deeply and predict the future of development
communities with a well-known method.
• Yamashita et al. considered developers to be authors of

code changes, so they focused only on the commit and
pull request activities. However, we are also interested
in other contributors who send issues and comments.
So we analyze other activities as well as commit and
pull request activities, which makes it possible to un-
derstand development communities in detail.
• Our software population pyramids consist of various

experience groups in a software development commu-
nities. Our method thus allows us to see long-term con-
tributors, though the previous study did not distinguish
between the experiences of individual developers.

2. Demographic Analysis

2.1 Population Structures

Age and sex are the most basic characteristics of a popula-
tion. Every population has a different age and sex compo-
sition, and this population structure can have considerable
impact on the population’s current and future social and eco-
nomic situation [8]. A population pyramid graphically dis-
plays a population’s age and sex composition.

In a general population pyramid, the population is dis-
tributed along the horizontal axis, with males shown on the
left and females on the right. The male and female popula-
tions are broken down into five-year age groups represented
by horizontal bars along the vertical axis, with the youngest
age groups at the bottom and the oldest at the top. The shape
of the population pyramid gradually evolves over time, fol-
lowing trends in fertility, mortality, and international migra-
tion. We can understand the status of a country just by look-
ing at population pyramids. Figure 1 (a) shows the popu-
lation pyramid of India in 2010. This pyramid is large to-
ward bottom, a form that is common in developing coun-
tries. Population pyramids are also useful for predicting the
future composition of a population. Figure 1 (b) shows the
projected population pyramid of Japan in 2050. It seems like
a tower rather than a pyramid. This form is common in low
birth rate and high longevity countries. Depending on the
countries’ status, the shape of population pyramids varies.

2.2 Software Population Pyramids

There are various contributors to the OSS project. There
are, for example, bug reporters, commenters, reviewers, and
coding contributors. All contributions and various contrib-
utors are important for OSS projects. For example, bug
reporters assume an important role in improving the qual-
ity of OSS [11]. Also, developers can keep up motivation

1306
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

Fig. 1 General population pyramid.

by getting some comments of thanks, admiration, or opin-
ion. However, coding contributors, bug reporters, and com-
menters differ essentially. Contributors can comment or re-
port bugs without a deep understanding of source code files,
but coding contributors need to understand them. So, cod-
ing contributors are considered to be required to have spe-
cific skills, unlike bug reporters or commenters. Therefore,
in this study, we distinguish coding contributors with other,
non-coding contributors.

It is often the case that core developers contribute to
both coding and non-coding activities. We identify individ-
uals as coding contributors if the contributors have experi-
enced code-related activities at least once in his/her existing
period. If a contributor only has non-coding activities in a
given period, he/she is regarded as a non-coding contributor.
Then if the contributor begins code-related activities later,
he/she will be classified as a coding contributor. To clar-
ify such transitions, we call such contributors “moved con-
tributors”. End users play an important role in maintaining
contributors’ motivation [12]. However, because contribu-
tions of end users are not recorded in software repositories
in general, our study do not consider them.

We have proposed software population pyramids:
population pyramids of software development communi-
ties [10]. Contributors are considered to be the constituent

member of the communities, and the contribution periods
are regarded as existing periods or lifetimes. A software
population pyramid consists of two back-to-back bar graphs,
with the population plotted on the X-axis and experience on
the Y-axis. The bar graph on the right shows coding con-
tributors, and the bar graph on the left shows non-coding
contributors in a particular population in three-month expe-
rience groups. In a general population pyramid, the pop-
ulations are broken down into five-year age groups. How-
ever, we should make software population pyramids with
shorter periods because the five-year length is too long for
OSS projects. In our previous study, we analyzed software
population pyramids in one year length [10]. However, we
found that many contributors leave projects within a year.
In addition, less than three months is too short for many
projects to obtain enough data to draw a population pyra-
mid. So, in this study, we make software population pyra-
mids with three months groups, and analyze population of
contributors in OSS projects.

There are some differences between our software pop-
ulation pyramids and the general population pyramids.

• Whereas a population pyramid consists of bars for
males and females, a software population pyramid con-
sists of coding bars for contributors and non-coding
contributors.
• In a general population pyramid, people appear at birth

and disappear when they die, but in a software popula-
tion pyramid, contributors start their experiences when
they enter and finish when they leave the development
communities. In this study, we consider that a contrib-
utor left a project when he/she did not give any con-
tribution on that project for more than three months.
However, very few contributors might come back to the
project after three-month (or more) interval. They dis-
appear from the pyramids while they are inactive tem-
porarily. In that case, we consider them as experienced
contributors when they come back to the project.
• The height of general population pyramids are simi-

lar to each other, because maximal life-span of human
is not so different in each country. However, software
population pyramids have different heights, because
OSS projects have different existing periods and peo-
ple can leave freely.
• Because the parent-child relationships exist in popula-

tion pyramids, there are correlations between the vol-
ume of the parent population and the population of
children. However, software population pyramid do
not exhibit such relationships. This can cause the pyra-
mid to change dramatically.

2.3 Datasets

We analyze the GitHub dataset provided by Gousios [13].
This dataset includes developers’ activity histories for 90
OSS projects. Figures 2 and 3 show point diagrams that plot
metrics of projects. Figure 2 shows the distribution of de-

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1307

Table 1 GitHub development activities.

Development Activities Overview Separation
commits Commit to the repository coding
pull requests Request a commit to committers
commit comments Comment against commit
issues An issue associated with a repository non-coding
issue comments Comment against commit
pull request comments Comment against commit pull request
events This is a read-only API to the GitHub events.
followers A follower to a user.
forks A copy of a repository
org members Users that are members of an organization.
repo collaborators Users with access to the repository. excluded in this study
repo labels Label list is labeled to the repositories
repos A dump of every public repository
issues events An event on an issue
users Github users.
watchers Users that have starred (was watched) a project

Fig. 2 Distribution of development periods and the number of contribu-
tors.

Fig. 3 Distribution of the number of coding contributors and the number
of non-coding contributors.

velopment periods and the number of contributors. From
Fig. 2, we can see that homebrew has many contributors
and that the development period of rails is long. Figure 3
shows the distribution of the number of coding contribu-
tors and the number of non-coding contributors by project.
From Fig. 3, we see that homebrew and rails have many cod-
ing and non-coding contributors. From small to large-scale
projects, this dataset includes various types of projects. In
total, this dataset includes 16 development activities, but
to focus on contributors’ activities, we use only six de-
velopment activities. Table 1 shows the name of 16 de-
velopment activities and an explanation of the content of
these activities. Pull request and commits are considered

Table 2 Example of data of activity and activity periods of contributors
in t1 and t2.

Pyramids in t1 Pyramids in t2
Working months Working months

Contributor coding non-coding coding non-coding
C1 1 - 4 -
C2 - - - 2
C3 - 3 2 6
C4 5 2 8 5
C5 - 4 - 7
C6 3 5 6 8

to be coding-related activities, whereas commit comments,
issue comments, pull request comments and issue events
are considered non-coding activities. Events, followers,
org members, repo collaborators, repo labels, repos, users
and watchers are not related to contributors’ activities.
“Forks” is generally a contributor’s activity; however, fork
itself does not contribute to the development, and also fork
is often done by a person before he/she participate in a de-
velopment as a contributor. So we excluded it from the con-
tributors’ activity list.

We classified contributors as coding and non-coding
contributors. Coding contributors are contributors who have
at least one code-related activity in their existing periods.
Non-coding contributors are contributors who have not ex-
perienced code-related activities but have experienced non-
coding activities. We obtained the dates of those events for
each contributor, and identified the contribution period from
the first event until the last event. Details of how to obtain
the data are explained in Appendix A. Contribution peri-
ods are divided into coding periods and non-coding peri-
ods based on the classification of the activity events. If a
contributor has only non-coding activities in his/her early
period, the period is regarded as a non-coding period and
he/she is regarded as a non-coding contributor. If a contrib-
utor has coding-related activities, the period is regarded as a
coding period and he/she is regarded as a coding contributor.

Table 2 shows an example of data of activity and activ-
ity periods of contributors, and Fig. 4 shows software pop-
ulation pyramids that plot the data of Table 2. The time t2

1308
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

Fig. 4 Examples of software population pyramids in t1 and t2.

is three months later to the time t1. The X-axis is the num-
ber of contributors. The center is zero, the right side shows
the number of coding contributors, and left side shows non-
coding contributors. The Y-axis is the activity period of con-
tributors. For example, contributor C1 has coding activity
periods of one month in t1 and four months in t2. Therefore,
he/she is plotted as C1 in location in Fig. 4 (a) and Fig. 4 (b)
as a coding contributor. Contributor C2 has a non-coding
activity period of two months in t2. He/she is plotted as
C2 in location in Fig. 4 (b) as a non-coding contributor. In
contrast, contributor C3 has a non-coding activity period of
three months in t1. He/she is plotted as C3 in location in
Fig. 4 (a) as a non-coding contributor. However, he/she has a
coding activity period of two months in t2. Therefore, he/she
is plotted as C3 in location in Fig. 4 (b), having moved to the
contributor side.

The method of calculating activity periods used here
does not take into account actual activity between start and
end. In a previous study, we analyzed the frequency of ac-
tivities of contributors, finding that, although some contribu-
tors continued to make small contributions for long periods,
there is no contributor that stops activities in a project and
then rejoins the project later [14]. However, it is important
to take into account the frequencies of contributions. This
could be the future work of this study.

3. Characteristics of Population Structures

We classify the shapes of software population pyramid, and
investigate their characteristics. For this purpose, we pro-
pose two new measures. One is the proportion of the number
of non-coding contributors (non) to the number of coding

Fig. 5 Distribution of CCR and NCR of OSS projects in GitHub.

contributors (coding), called the Coding Contributors Ratio
(CCR). CCR is defined as follows:

CCR =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

coding − non
coding

(coding ≥ non)

coding − non
non

(coding < non)

CCR ranges from −1 to 1. Higher values mean that
more contributors are coding contributors, and lower values
mean that more contributors are non-coding contributors. If
the value is close to 0, the number of coding contributors
and the number of non-coding contributors are similar.

The other proposed measure is the proportion of the
number of experienced contributors to the number of new-
comers (new contributors), called the New Contributors Ra-
tio (NCR). In this study, we define newcomers as contrib-
utors who have less than three months of activity periods,
and we define experienced contributors as those with longer
activity periods. NCR is defined as follows:

NCR =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

new − experience
new

(new ≥ experience)

new − experience
experience

(new < experience)

NCR ranges from −1 to 1. Higher values mean that
more contributors are new contributors, and lower values
mean that more contributors are experienced contributors.
If the value is close to 0, the number of new contributors
and the number of experienced contributors are similar.

Figure 5 shows the distribution of the projects using
the CCR and the NCR in September 2013. Because four
projects did not have any contributors in this period, we

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1309

Fig. 6 Examples of software population pyramids of each type. (Note that scales are different.)

could not plot them. For that reason, there are 86 projects
displayed in Fig. 5. With this distribution, we can classify
the projects into the following four types:

• Type A: There are more newcomers than experienced
contributors, and more coding contributors than non-
coding ones in a project. So, the shape of software
population pyramid on the right side is larger than the
left side, and the bottom is larger than others, also ex-
perienced contributors are plotted intermittently.
• Type B: There are more newcomers than experienced

contributors, and more non-coding contributors than
coding ones in a project. So, the shape of software pop-
ulation pyramid on the right side is larger than the left
side,and the bottom part is larger than other parts. Also,
experienced contributors are plotted intermittently.
• Type C: There are more experienced contributors than

newcomers, and more coding contributors than non-
coding ones in a project. So, the shape of software
population pyramid on the left side is larger than the
right side, and the bottom part is larger than other
parts. Also, experienced contributors are plotted inter-

mittently.
• Type D: There are more experienced contributors than

newcomers, and more non-coding contributors than
coding ones in a project. So, the shape of software pop-
ulation pyramid on the left side is larger than the right
side, and experienced contributors are plotted continu-
ously.

There are 23 projects categorized Type A, 42 projects
as Type B, 18 projects as Type C, and three projects as Type
D. Figure 6 presents examples of software population pyra-
mids belonging to Type A, Type B, and Type C.

(a) Type A In these projects, there are few experienced
non-coding contributors. In django-cms, there are
many moved contributors. Because many developers
moved from non-coding to coding, these projects have
many coding contributors.

(b) Type B Font-Awesome has many non-coding contrib-
utors. This project makes Web icon fonts, and many
people sent requests for new icons to this project.
Therefore, many non-coding contributors leave this
project immediately following a short period of con-

1310
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

Fig. 7 Examples of software population pyramids (CCR and NCR are close to 0). Scales are different.

tribution.
(c) Type C There are many moved contributors in Craft-

Bukkit. Also, there are many coding newcomers. How-
ever, many coding contributors continue their activi-
ties, because there are more experienced contributors
than there are newcomers.

In Fig. 6, we see that the shapes of the pyramids are dif-
ferent from each other. OSS projects are managed by vol-
untary contributors, so contributors may not correspond to
the many bug reports in projects of Type B. Additionally,
it is difficult to obtain coding newcomers, because there are
no moved newcomers. However, there are a few contrib-
utors that report bugs, such as in Type A or C, so these
projects have little chance of improving the quality of the
OSS through bug reports.

Figure 7 shows the software population pyramids of
homebrew and rails. Homebrew belongs to Type A, and
rails belongs to Type D. In these projects, both CCR and
NCR values are close to 0. These projects are continually
gaining contributors because their software population pyra-
mids do not have intermittent bars. In addition, there are
many moved contributors. We can see that these projects
succeeded in attracting and retaining new/experienced and
coding/non-coding contributors.

Projects that are plotted close to the center of the graph
are well balanced in CCR and NCR. In these projects, there
are an almost equal the number of contributors and newcom-
ers, and almost equal the number of non-coding contributors
and coding ones too. It is our important future work to con-
sider adding another (5th) project type to distinguish such
projects from others. For example, if we distinguish the
projects that plotted around the origin belonging to the top
10% and others, six project such as homebrew, rails, bitcoin,
diaspora, openFrameworks and redis meet that definition.

4. Population Projection

For project managers, it is important to maintain experi-
enced contributors. Therefore, we propose a population
projection method of the number of contributors in OSS
projects using demographic methods.

4.1 Cohort Component Population Projection

We predict the number of contributors using a simplified co-

hort component population projection. In demography, a co-
hort is a group of subjects share a particular event during a
particular time span. Cohort component population projec-
tion is the simplest population projection method. Isserman
offers a way to project the size of populations [15]. Isser-
man’s method uses the survival rate [16], as well as fertility,
mortality, and migration data. We can project the size of
populations at a certain age cohort using following formu-
las:

Population of age (X + n) in year (T + n)

= Survival Rate × Population of age X in year T

where

Survival Rate

=
Population of age (X + n) in year T
Population of age X in year (T − n)

X is the age of the cohort being examined, n is an interval
of time usually set at ten years representing the period of
time between the two most recent censuses, and T is the
year of the most recent census. We replace each variable in
our software population pyramids such that X is the activity
period of the cohort being examined, n is an interval of time
set at three months representing the period of time between
the two most recent contributors counting, and 3 m in year
T is the month of most recent contributors counting.

For example, we consider a case of a projection 10 to
19 year-old population in 2020. In this projection, we use 0
to 9 year-old population in 2000 and 10 to 19 year-old pop-
ulation in 2010 to calculate a survival rate of 0 to 9 year-old
population. Here, the survival rate is calculated as follows.

Survival Rate

=
Population of age (10 to 19) in 2010
Population of age (0 to 9) in 2000

where

Population of age (10 to 19) in 2020

= Survival Rate of 0 to 9

× Population of age (0 to 9) in 2010

In this way, to calculate the population of each cohort
and to sum them. The cohort component method includes
birth and net migrants in general. Births are the same as

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1311

Table 3 Median of ABRE.

non-coding moved coding All
cohort baseline method cohort baseline method cohort baseline method cohort baseline method

Type A 0.4993 0.5000 0.3027 0.5000 0.1865 0.3731 0.2534 0.5000
Type B 0.5000 0.6332 0.3923 0.5000 0.5000 0.5750 0.5000 0.5917
Type C 0.6711 1.0000 0.2500 0.7179 0.3684 0.6250 0.3333 0.7500
Type D 0.3137 1.0000 0.2378 0.2500 0.4808 0.6154 0.2875 0.6667

All types 0.5000 0.6667 0.3299 0.5000 0.4074 0.5417 0.4000 0.6000

newcomers to an OSS project in our study. Births are de-
rived from the number of mothers and the birth rate. How-
ever, these input data do not exist for the number of contrib-
utors, so we use following very simple formula to calculate
newcomers:

newcomer = (P {T } + P {T − n})/2
where

P {T } = Population activity period 3 m in year T

Additionally, we do not consider that contributors
move to other projects in our study, so we do not calculate
net migration.

4.2 Evaluation

With the cohort component population projection method,
we project a future population size for the 36 projects that
have more than 100 contributors. There are four projects
categorized as Type A, 21 projects as Type B, nine projects
as Type C, and two projects as Type D. In this study, we
project the number of contributors of September 2013 by
calculating the survival rate from the number of contributors
of March and June 2013. In order to verify the projection
accuracy of our proposed method, we compared it with the
baseline method, which assumes that the number of contrib-
utors of September and June 2013 are the same. Populations
are projected for non-coding, moved, and coding contribu-
tors, separately.

To evaluate the projection accuracy, we compare the
projection error of our propose method to the baseline
method one. MRE (Magnitude of Relative Error) [17] or
MER (Magnitude of Error Relative to estimate) [18] are
used to evaluate the prediction accuracy. We use ABRE
(Absolute Balanced Relative Error) [19] as an evaluation
metric of the prediction accuracy for the number of contrib-
utors remaining.

Measured values of the number of contributors is de-
noted as x, and the predicted value of the number of con-
tributors is denoted as x̂. Each indicator is determined by
the following equation:

MRE =
|x − x̂|

x

MER =
|x − x̂|

x̂

ABRE =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

|̂x − x|
x

(x̂ − x ≥ 0)

|̂x − x|
x̂

(x̂ − x < 0)

Table 4 Result of Wilcoxon test.

p-value
non-coding moved coding All

Type A 0.02748 0.00158 0.26867 0.00014
Type B 0.00037 0.01845 0.06200 0.00001
Type C 0.05935 0.00035 0.16000 0.00013
Type D 0.00001 0.02700 0.02901 0.00000

All types 0.00000 0.00000 0.00116 0.00000

For these metrics, lower values indicate higher accu-
racy. MRE is the relative error of the predicted value to the
actual value and MER is the relative error between predicted
and actual values to the predicted value. However, MRE and
MER share the problem that these measures cannot distin-
guish excessive prediction and too little prediction. In this
study, we evaluated projection accuracy by using the ABRE
to evaluate the balance between excessive prediction and too
little prediction.

To investigate the projection accuracy, we used
the Wilcoxon non-parametric statistical hypothesis test.
Wilcoxon test is generally used when comparing two related
samples to assess whether their population mean ranks dif-
fer. It can be used as an alternative to the paired Student’s
t-test, t-test for matching pairs, or the t-test for dependent
samples when the population cannot be assumed to be nor-
mally distributed. With the Wilcoxon test, we test the dif-
ference between the ABREs of our propose method and the
ABREs of the baseline method. In particular, we test each
project type (Type A-D) and each contribution type (non-
coding, moved, coding). Then, we test their measures of
central tendency, and investigate whether there are signifi-
cant differences in projection accuracy.

Table 3 shows the median of the ABREs. If the ABRE
value is close to 0, the projection accuracy is high. In Ta-
ble 3, projection accuracies of our proposed method are
higher than the baseline method in all predictions. Table 4
shows the result of the Wilcoxon test (95% confidence),
where bold numbers indicate the statistical significant im-
provements by the proposed (cohort) method. In Table 4,
projection of non-coding contributors has no significant dif-
ference in Type C, and projections of coding contributors
have no significant difference in Type A, B, and C. How-
ever, projection of all contributors and all types have signif-
icant difference. In this result, the projection accuracy of
our proposed method was higher than the baseline method.
On the other hand, there was no difference in the predictive
accuracy between different project types in this projection.
This result shows the possibility that the reduction of con-

1312
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

Fig. 8 Comparing measured and predicted values of the number of contributors.

tributors depends little on type of activities, the number of
newcomers or experienced contributors.

Figure 8 shows actual software population pyramids
and lines of predicted values. We can see that most of the
lines are surprisingly well fitted to the observed data, espe-
cially near the top of each pyramid. In this study, we define
short-term contributors as contributors that have activity pe-
riod of less than one year, and define long-term contribu-
tors as contributors that have activity period of equal to or
more than one year. The median of ABRE of short-term
contributors is 0.4055, and median of ABRE of long-term
contributors is 0.3333. The result of the Wilcoxon rank test
(95% confidence) showed that the difference is significant
(p-value = 0.0460), which indicates that the projection of the
number of long-term contributors is higher accuracy than
the projection of the number of short-term contributors.

5. Related Work

Web services for software developers, such as GitHub† and
Open Hub††, are popular. Therefore, we can easily under-
stand the activity of contributors in OSS. Dabbish et al.
asserted that exposing the activity of contributors through
social network services is likely to rapidly promote cooper-

†GitHub https://github.com/
††Open Hub https://www.openhub.net/

ation and learning in OSS development. They interviewed
GitHub users and examined cooperation and learning in the
OSS community [4]. They found that contributors build a
set from the activity information in GitHub, such as con-
sulting someone else’s technique when they edit code.

There are many studies that focus on the social as-
pects of software development. Bogdan noted the success
of an OSS project depends to a large extent on the social as-
pects. He sought to increase understanding of how human
aspects, gamification, and social media influence OSS [20].
Phillips et al. considered the building of team effectiveness
and found that many challenges are social, not technical.
They applied insights from group dynamics and organiza-
tions to inform the design of engineering tools and practices
to improve the building of team effectiveness [21].

We considered that homebrew and rails are success-
ful projects. However, the success of software development
cannot be decided easily. Ralph et al. interviewed an in-
terdisciplinary sample of 191 design professionals concern-
ing their perceptions of software engineering success. They
concluded that stakeholder impacts are driven by project
efficiency, artifact quality, and market performance [22].
However, we consider the success of OSS to be related to
contributors as well.

There are studies about prediction of contributors and
the continuity of contributors’ activity. Steinmacher et al.

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1313

argued that the sustainability of many OSS projects relies
on retaining newcomers. They discussed some barriers
faced by newcomers to OSS [6]. Additionally, they found
that 20% of new contributors become long-term contribu-
tors [23].

Rastogi et al. presented a framework that character-
izes the stability of the community in software maintenance
projects using community participation patterns. They
modeled community participation patterns of contributors
and forecast future behavior to help plan and support in-
formed decision making [24]. Also, Loyala et al. proposed
a methodology that adapts Lotka-Volterra-based biological
models used for describing host-parasite interactions to un-
derstand how the population of OSS contributors evolves
over time. Their experiments showed that the proposed ap-
proach performs effectively in terms of providing an estima-
tion of the population of developers for each project over
time [25].

Zhou and Mockus studied long-term contributors
(LTC), analyzing the behavior of individual participants in
Gnome and Mozilla [26]. They reported that future LTCs
tend to be more active and show more community-oriented
attitudes than do other joiners during their first month.

Social network analysis is a research area related to this
study. For example, Bird et al. reported that developers play
a significant social role in email lists [27]. Similarly, Bird et
al. analyzed email addresses in OSS projects to examine the
community structure among developers [28].

Onoue et al. studied the characteristics of developers’
activities, finding that various developers Are characterized
by different types of development activities [14].

Hata et al. studied the characteristics of sustainable
OSS projects through game theoretical analysis and empir-
ical analysis [29]. They reported that to have coding devel-
opers, that is, to incentivize developers to code, the projects
should prepare documents, or the projects or third parties
should hire developers. These strategies were in fact imple-
mented by sustainable projects in GitHub.

6. Discussion and Conclusion

In this study, we focus on contributors to OSS projects us-
ing a demographic approach. In OSS projects, many people
are involved in development, meaning that human resources
are very important for OSS. We conclude that we can pre-
dict the future of participation in OSS projects by analyzing
them from a demographic perspective.

In the field of demography, researchers create popu-
lation pyramids to analyze the current situation of selected
countries. We proposed a population pyramid for OSS
projects called the software population pyramid. Contribu-
tors are considered the constituent member of the communi-
ties, and the contribution periods are regarded as experience
periods or lifetimes. A software population pyramid con-
sists of two back-to-back bar graphs, with the population
plotted on the X-axis and experience on the Y-axis. One
of the bar graphs shows coding contributors and the other

shows non-coding contributors in a particular population in
three-month experience groups.

We classified shapes of the software population pyra-
mid and compared them. To classify the shape of these pyra-
mids, we proposed two new measures, CCR and NCR. CCR
is the proportion of the number of non-coding to the num-
ber of coding contributors, and NCR is the proportion of the
number of experienced contributors to the number of new-
comers. Using these measures, we classified 86 software
population pyramids into four types as follows.

• Type A: There are more newcomers than experienced
contributors, and more coding contributors than non-
coding ones in a project.
• Type B: There are more newcomers than experienced

contributors, and more non-coding contributors than
coding ones in a project.
• Type C: There are more experienced contributors than

newcomers, and more coding contributors than non-
coding ones in a project.
• Type D: There are more experienced contributors than

newcomers, and more non-coding contributors than
coding ones in a project.

There were 23 projects categorized as Type A, 42 projects as
Type B, 18 projects as Type C, and three projects as Type D.
The result indicates that, for projects in Type A and Type B,
contributors do not stay long time in their projects after their
contributions. For projects of Type C and Type D, they can
not get enough newcomers; thus, they should consider how
to recruit newcomers. So, those projects should consider
how to get newcomers. Especially, Type C projects should
attract non-coding newcomers, e.g. who post many issues,
so that some of them might become coding newcomers as
well.

Through empirical research, we found that the shapes
and the transitions of software population pyramids vary
depending on the status of the development communities.
However, it is difficult to clarify the components of the con-
tributor population of OSS projects using only these values.
Other, new metrics are needed to clarify contributors’ com-
ponents in OSS projects. For example, the number of activ-
ities or frequency of activities should be considered.

The demographic approach of population projection
is a powerful way to predict future population dynamics.
In this study, we projected the number of contributors of
September 2013 using the simplified cohort component pop-
ulation projection that calculates the survival rate from the
number of contributors of March and June 2013. In order to
verify the projection accuracy of our proposed method, we
compare it with the baseline method, which assumes that
the number of contributors of September and June 2013 are
the same. To statistically compare the projection accuracy,
we used the Wilcoxon non-parametric statistical hypothesis
test. As a result, the projection accuracy of our proposed
method was higher than the baseline method. However,
this projection method cannot predict long-term contribu-
tion patterns because it does not predict newcomers in a nar-

1314
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

row sense. Therefore, our future work includes improving
the accuracy of these predictions and expanding the predic-
tion to account for newcomers and to extend predictions into
the long-term future. We believe this perspective is also im-
portant for OSS projects to manage sustainable development
communities.

Acknowledgments

This work has been supported by JSPS KAKENHI Grant
Number 26540029 and Program for Advancing Strategic In-
ternational Networks to Accelerate the Circulation of Tal-
ented Researchers: Interdisciplinary Global Networks for
Accelerating Theory and Practice in Software Ecosystem.

References

[1] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do
centralized and distributed version control systems impact software
changes?,” Proc. of 36th Int. Conf. on Softw. Eng., ICSE 2014, New
York, NY, USA, pp.322–333, ACM, 2014.

[2] K. Muşlu, C. Bird, N. Nagappan, and J. Czerwonka, “Transition
from centralized to decentralized version control systems: A case
study on reasons, barriers, and outcomes,” Proc. of 36th Int. Conf. on
Softw. Eng., ICSE 2014, New York, NY, USA, pp.334–344, ACM,
2014.

[3] G. Gousios, M. Pinzger, and A.v. Deursen, “An exploratory study of
the pull-based software development model,” Proc. of 36th Int. Conf.
on Softw. Eng., ICSE 2014, New York, NY, USA, pp.345–355,
ACM, 2014.

[4] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: Transparency and collaboration in an open software repos-
itory,” Proc. of 2012 ACM Conf. on Comput. Supported Coopera-
tive Work, CSCW ’12, New York, NY, USA, pp.1277–1286, ACM,
2012.

[5] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D.M. German,
and D. Damian, “The promises and perils of mining github,” Proc.
of 11th Work. Conf. on Mining Softw. Repositories, MSR ’14, New
York, NY, USA, pp.92–101, ACM, 2014.

[6] K. Yamashita, S. McIntosh, Y. Kamei, and N. Ubayashi, “Magnet
or sticky? an oss project-by-project typology,” Proc. of 11th Work.
Conf. on Mining Softw. Repositories, MSR ’14, New York, NY,
USA, pp.344–347, ACM, 2014.

[7] R.P.L. Buse and T. Zimmermann, “Information needs for software
development analytics,” Proc. of 34th Int. Conf. on Softw. Eng.,
ICSE ’12, Piscataway, NJ, USA, pp.987–996, IEEE Press, 2012.

[8] A. Haupt, T. Kane, and C. Haub, PRB’s Population Handbook 6th
ed., Population Reference Bureau, 2011.

[9] S. Pennec, APPSIM-Cohort component population projections to
validate and align the dynamic microsimulation model APPSIM,
National Centre for Social and Economic Modelling, 2009.

[10] S. Onoue, H. Hata, and K. Matsumoto, “Software population pyra-
mids: The current and the future of oss development communi-
ties,” Proc. of 8th ACM/IEEE Int. Symp. on Empirical Softw. Eng.
and Measurement, ESEM ’14, New York, NY, USA, pp.34:1–34:4,
ACM, 2014.

[11] E. Raymond, The cathedral and the bazaar: musings on linux and
open source by an accidental revolutionary, “O’Reilly Media, Inc.”,
Sebastapol, CA, O’Reilly Media, Oct. 1990.

[12] M. Zhou and A. Mockus, “Does the initial environment impact the
future of developers?,” Proc. of 33rd Int. Conf. on Softw. Eng., ICSE
’11, New York, NY, USA, pp.271–280, ACM, 2011.

[13] G. Gousios, “The ghtorent dataset and tool suite,” Proc. of 10th
Work. Conf. on Mining Softw. Repositories, MSR ’13, Piscataway,

NJ, USA, pp.233–236, IEEE Press, 2013.
[14] S. Onoue, H. Hata, and K.I. Matsumoto, “A study of the character-

istics of developers’ activities in github,” Proc. of 5th Int. Workshop
on Empirical Softw. Eng. in Practice, IWESEP ’13, pp.7–12, Dec.
2013.

[15] A.M. Isserman, The Right People, the Right Rates, Journal of the
American Planning Association, vol.59, no.1, pp.45–64, 1993.

[16] J.C. Raymondo, Survival Rates: Census and Life Table Methods,
Population Estimation and Projection, Quorum Books, New York,
1992.

[17] S.D. Conte, H.E. Dunsmore, and V.Y. Shen, Software Engineering
Metrics and Models, Benjamin-Cummings Publishing, Redwood
City, CA, USA, 1986.

[18] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd, “What
accuracy statistics really measure [software estimation],” Software,
IEE Proceedings, vol.148, no.3, pp.81–85, June 2001.

[19] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, “Robust re-
gression for developing software estimation models,” J. Syst. Softw.,
vol.27, no.1, pp.3–16, Oct. 1994.

[20] B. Vasilescu, “Human aspects, gamification, and social media in
collaborative software engineering,” Companion Proceedings of the
36th International Conference on Software Engineering, ICSE Com-
panion 2014, New York, NY, USA, pp.646–649, ACM, 2014.

[21] S. Phillips, T. Zimmermann, and C. Bird, “Understanding and im-
proving software build teams,” Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, New York, NY,
USA, pp.735–744, ACM, 2014.

[22] P. Ralph and P. Kelly, “The dimensions of software engineering suc-
cess,” Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, New York, NY, USA, pp.24–35, ACM,
2014.

[23] I. Steinmacher, I.S. Wiese, T. Conte, Gerosa, and M. Aurélio, “Why
do newcomers abandon open source software projects?,” Proc. of 6th
Int. Workshop on Cooperative and Human Aspects of Softw. Eng.,
CHASE ’13, pp.25–32, May 2013.

[24] A. Rastogi and A. Sureka, “What community contribution pattern
says about stability of software project?,” Software Engineering
Conference (APSEC), 2014 21st Asia-Pacific, pp.31–34, Dec. 2014.

[25] P. Loyola and I.-Y. Ko, “Population Dynamics in Open Source Com-
munities: An Ecological Approach Applied to Github,” Proceedings
of the 23rd International Conference on World Wide Web, WWW
’14 Companion, pp.993–998, April 2014.

[26] M. Zhou and A. Mockus, “What make long term contributors: Will-
ingness and opportunity in oss community,” Proc. of 34th Int. Conf.
on Softw. Eng., ICSE ’12, Piscataway, NJ, USA, pp.518–528, IEEE
Press, 2012.

[27] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” Proc. of 3rd Int. Workshop on
Mining Softw. Repositories, MSR ’06, New York, NY, USA,
pp.137–143, ACM, 2006.

[28] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent
social structure in open source projects,” Proc. of 16th ACM SIG-
SOFT Int. Symp. on Found. of Softw. Eng., SIGSOFT ’08/FSE-16,
New York, NY, USA, pp.24–35, ACM, 2008.

[29] H. Hata, T. Todo, S. Onoue, and K. Matsumoto, “Characteristics of
sustainable oss projects: A theoretical and empirical study,” Proc.
of 8th Int. Workshop on Cooperative and Human Aspects of Softw.
Eng., pp.15–21, May 2015.

Appendix: The Method for Obtaining Data

In this appendix, we show the method for obtaining data. We
obtained the dates of development activities for each con-
tributor, and identified the contribution period from the first
activity to the last activity. Figure A· 1 shows an example of

http://dx.doi.org/10.1145/2568225.2568322
http://dx.doi.org/10.1145/2568225.2568284
http://dx.doi.org/10.1145/2568225.2568260
http://dx.doi.org/10.1145/2145204.2145396
http://dx.doi.org/10.1145/2597073.2597074
http://dx.doi.org/10.1145/2597073.2597116
http://dx.doi.org/10.1109/icse.2012.6227122
http://dx.doi.org/10.1145/2652524.2652565
http://dx.doi.org/10.1145/1985793.1985831
http://dx.doi.org/10.1109/msr.2013.6624034
http://dx.doi.org/10.1109/msr.2013.6624034
http://dx.doi.org/10.1109/apsec.2013.104
http://dx.doi.org/10.1080/01944369308975844
http://dx.doi.org/10.1049/ip-sen:20010506
http://dx.doi.org/10.1016/0164-1212(94)90110-4
http://dx.doi.org/10.1145/2591062.2591091
http://dx.doi.org/10.1145/2568225.2568274
http://dx.doi.org/10.1145/2568225.2568261
http://dx.doi.org/10.1109/chase.2013.6614728
http://dx.doi.org/10.1109/apsec.2014.88
http://dx.doi.org/10.1145/2567948.2578843
http://dx.doi.org/10.1109/icse.2012.6227164
http://dx.doi.org/10.1145/1137983.1138016
http://dx.doi.org/10.1145/1453101.1453107
http://dx.doi.org/10.1109/chase.2015.9

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1315

Fig. A· 1 An examples of commit comments data.

the data of commit comments. This is a record for one of
the commit comment. It has dates such as “created at” and
“updated at”. We identify the contribution period of con-
tributors from those dates. Contribution periods are divided
into coding periods and non-coding periods based on the
classification of the activities as shown in Table 1.

Saya Onoue received a B.E. degree in in-
formation science from the Nara Women’s Uni-
versity in 2013, and she received an M.E. de-
gree in information engineering from the Nara
Institute of Science and Technology (NAIST) in
2015. She is currently a Ph.D. student at NAIST.
Her research interest is activity of contributors
in OSS projects.

Hideaki Hata received a Ph.D. degree in
information science and technology from Osaka
University in 2012. He is now an assistant pro-
fessor at Nara Institute of Science and Technol-
ogy. His research interests include software ana-
lytics, software economics, and human-software
interaction. He is a member of the IPSJ, JSSST,
IEEE, and ACM.

Akito Monden received a B.E. degree
in 1994 in electrical engineering from Nagoya
University and M.E. and D.E. degrees in 1996
and 1998 in information science from the Nara
Institute of Science and Technology. He is cur-
rently a professor at Okayama University. He
was an honorary research fellow at the Univer-
sity of Auckland (2003-2004). He is a member
of the IEEE, ACM, and IEICE.

Kenichi Matsumoto received a Ph.D. de-
gree in information and computer sciences from
Osaka University. He is a professor in the Grad-
uate School of Information Science at the Nara
Institute of Science and Technology. His re-
search interests include software measurement
and software process. He is a senior member of
the IEEE, and a member of the ACM, the IEICE,
and the IPSJ.

