
1796
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

PAPER

Power Consumption Signature: Characterizing an SSD∗

Balgeun YOO†a), Seongjin LEE†b), Nonmembers, and Youjip WON†c), Member

SUMMARY SSDs consist of non-mechanical components (host inter-
face, control core, DRAM, flash memory, etc.) whose integrated behavior
is not well-known. This makes an SSD seem like a black-box to users.
We analyzed power consumption of four SSDs with standard I/O opera-
tions. We find the following: (a) the power consumption of SSDs is not
significantly lower than that of HDDs, (b) all SSDs we tested had similar
power consumption patterns which, we assume, is a result of their internal
parallelism. SSDs have a parallel architecture that connects flash memo-
ries by channel or by way. This parallel architecture improves performance
of SSDs if the information is known to the file system. This paper pro-
poses three SSD characterization algorithms to infer the characteristics of
SSD, such as internal parallelism, I/O unit, and page allocation scheme,
by measuring its power consumption with various sized workloads. These
algorithms are applied to four real SSDs to find: (i) the internal parallelism
to decide whether to perform I/Os in a concurrent or an interleaved man-
ner, (ii) the I/O unit size that determines the maximum size that can be
assigned to a flash memory, and (iii) a page allocation method to map the
logical address of write operations, which are requested from the host to the
physical address of flash memory. We developed a data sampling method
to provide consistency in collecting power consumption patterns of each
SSD. When we applied three algorithms to four real SSDs, we found flash
memory configurations, I/O unit sizes, and page allocation schemes. We
show that the performance of SSD can be improved by aligning the record
size of file system with I/O unit of SSD, which we found by using our al-
gorithm. We found that Q Pro has I/O unit of 32 KB, and by aligning the
file system record size to 32 KB, the performance increased by 201% and
energy consumption decreased by 85%, which compared to the record size
of 4 KB.
key words: SSD, characterization, power consumption measurement, in-
ternal parallelism, I/O unit, page allocation scheme

1. Introduction

NAND flash memory based SSDs (Solid State Drives)
are introduced as a solution to overcome the limitations
of HDDs (Hard Disk Drives), such as high power con-
sumption, high noise level, low bandwidth, low IOPS (In-
put/Output Operations per Second), etc. [1], [2]. Although
the bit density of flash memory devices is significantly in-
creased by storing more cells per in2 and more bits per cell
(MLC [3], TLC, and QLC [4]), almost all other aspects of
NAND flash memory devices are getting worse: the pro-

Manuscript received September 27, 2015.
Manuscript revised January 29, 2016.
Manuscript publicized March 30, 2016.
†The authors are with the Division of Computer Science and

Engineering, Hanyang University, Seoul 133–791, Korea.
∗This paper is an extended version of work published in Hot-

Storage’11, June 14-17, 2011, Portland, USA [15].
a) E-mail: starhunter@hanyang.ac.kr
b) E-mail: insight@hanyang.ac.kr
c) E-mail: yjwon@hanyang.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2015EDP7381

gram time is getting longer, endurance (erase and write cy-
cle) is getting shorter, and retention period (expected time
to hold data reliably) is getting shorter [5]. In addition, there
are other problems with SSDs, such as slow random write
performance and high power consumption [6], [7].

The latency and throughput of a storage device depend
heavily on how its internal firmware algorithm handles in-
coming I/Os, and this boils down to the issue of how to
place data blocks on the storage media. In legacy HDDs,
the firmware algorithms focus on reducing head movement
overhead in reading or writing data; to achieve this, cylin-
der serpentine [8], surface serpentine [9], and hybrid serpen-
tine [10] methods have been proposed. At the time, one of
the key concerns among practitioners was to understand how
data blocks are laid out on the storage device. This informa-
tion can be used to optimize the filesystem layout for a given
storage media [11].

Disk layout algorithm is closely link to mechanical
characteristics of a given HDD model. Disclosing the disk
layout algorithm of HDDs means revealing the manufac-
ture’s critical competitive edge. Therefore, the disk layout
algorithm is often the most hidden part of the device. Nu-
merous efforts have been dedicated to shed light on under-
standing the data layout mechanism of storage devices [12]–
[14]. For HDDs, these works exploit I/O latency to infer the
seek time for a given sequence of I/O operations and subse-
quently to find out the data layout scheme (e.g., DIG [11]).
NAND flash storage device, which is SSDs for desktops
and servers or eMMCs for smartphones, consists of mul-
tiple NAND flash chips. A write request from the host (e.g.,
32 KByte) can be directed to a single chip or can be in-
terleaved across multiple chips in a certain granularity, ex-
ploiting a certain type of parallelism. SSDs read data blocks
from the flash chip in 4 KByte or larger units. SSD vendors
are extremely reluctant to disclose the firmware algorithm of
their SSDs, and it is one of the most hidden parts of NAND
based storage devices.

The existing works on reverse engineering of HDDs
cannot be applied to SSDs because they exploit seek time
behavior of the HDDs to understand their internal structure.
This work aims at developing a method to derive the internal
behavior of SSDs. In particular, we focus on finding the de-
gree of internal parallelism and how it is exploited in laying
out data. In this regard, we exploit the power consumption
behavior of SSDs. We discover the hidden features of SSDs
to improve the performance. As a result, we develop the
method, named I/O unit aligning, that improve performance

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



YOO et al.: POWER CONSUMPTION SIGNATURE: CHARACTERIZING AN SSD
1797

and significantly reduce the energy consumption. In addi-
tion, we present the Power Budget as a guideline to evaluate
SSDs.

In our previous work [15], we discovered the page al-
location scheme of Intel X-25M, the I/O unit of Samsung
MXP, and introduced the concept of Power Budget in de-
signing SSDs. In this paper, we delve into the characteristics
of two additional SSDs, Samsung 840 and Toshiba Q pro.
While the previous work focused on power consumption of
write operations and analyzing the result, this work not only
considers the read behaviors of SSDs but suggests a formal
characterization method to generalize the technique. This
paper also introduces a mechanism to improve the perfor-
mance of SSDs while minimizing the power consumption
of the device. This work’s contributions are as follows:

• (i) Formal characterization method to find the internal
parallelism, I/O unit, and page allocation scheme of
SSDs (Sect. 4: SSD Characterization)
• (ii) Analysis of the read behaviors of Intel X-25M and

Samsung MXP
• (iii) Analysis of the read and write behaviors of Toshiba

Q Pro and Samsung 840
• (iv) Mechansism to improve the I/O performance while

minimizing the power consumption via exploiting I/O
unit
• (v) Improved Power Budget model.

The remainder of this paper is organized as follows:
Sect. 2 describes other works related to this study. The back-
ground, such as the SSD architecture, flash memory, chan-
nel and way, and FTL (Flash Translation Layer) are briefly
discussed in Sect. 3. Section 4 presents three essential SSD
characterization algorithms. Experiment environment, val-
idation and case studies on the four SSDs are presented in
Sect. 5. Section 6 explains the benefits of aligning the I/O
unit of SSDs. Section 7 explains Power Budget. Section 8
concludes the paper.

2. Related Work

There are previous works that exploit seek time of disk arm
to determine the sector layout strategy in HDDs [11], [16],
[17]. However, the HDDs and SSDs have a different phys-
ical structure. HDDs have various mechanical parts (plat-
ter, spindle, head, actuator arm, actuator axis, and actuator),
while SSDs only have electronical parts. Therefore, these
previous studies on HDDs cannot be applied to SSDs.

A number of works characterized the behavior of SSDs
through mathematical modeling or via simulation [18].
Yang et al. [19] and Tao et al. [20] used simulation method
to determine page size, the address allocation policies, and
parallelism. In particular, Tao et al. [20] examined the effect
of write buffer size and page size on overall performance
of SSDs. Changing the write buffer from 4 MB to 32 MB
did not have a significant impact on the throughput (MB/s).
However, varying the page size from 1KB to 4 KB resulted
in noticeable changes in the average response time (msec)

and the throughput (MB/s).
Simona et al. [21] used Flashsim [22] to figure out the

discrepancies between the potential performance of SSDs
and the observed performance of real-world workloads (Mi-
crosoft Research (rsrch0, prxy0, src11, proj2), Harvard Uni-
versity (dea2, akadeasna2, and lair62b), and UMass Trace
Repository (fin1, fin2)) [22]. They proposed an SSD perfor-
mance prediction model. This model shows that SSDs are
not utilized to its maximum performance.

Some exploited energy consumption behavior to un-
derstand the internal behavior of SSDs. Shin et al. used
uFlip [23] to measure the power consumption of SSDs.
They connected an electronic resistor between the SSD and
power line to collect power consumption through the re-
sistor using Labview; they tried to analyze page allocation
scheme of SSDs. SSDs consume high energy in a short
time while performing write and erase operations. Although
the peak value of power consumption is important in analy-
sis, their method failed to capture them because of the low
sampling resolution. Similarly, Seong et al. [24] collected
power consumption of real SSDs and HDDs and compared
them with power consumption of the in-house developed
SSD. With PCI-6259 (the National Instrument’s data acqui-
sition board), Seong et al. measured the energy consump-
tion of storage devices in µjoules and used the results as
a basis to compare the performance of SSDs. However,
they did not provide enough proof that their method can
be used to analyze the behavior of SSD. Seo et al. [7] col-
lected power consumption of SSDs using SM2040 (Signa-
metrics PCI digital multimeter), and analyzed power con-
sumption patterns. They measured energy consumption of
SSDs while performing random/sequential read/write oper-
ations in various sizes. Although their experiment can be
used to characterize SSDs, their focus was limited to en-
ergy efficiency side of SSDs, according to the workloads.
Mohan et al. [25] used data of Grupp et al. [26] to vali-
date their power model. Grupp et al. measured power con-
sumption of SSDs while performing basic operations such
as read, program, and erase using high-resolution current
probe (Agilent 1147A). Grupp et al. also measured and cal-
culated energy per operation in terms of peak power, aver-
age power, and idle power of flash memory. Grupp et al.
collected power consumption of SSDs with high sampling
rate so as not to lose the peak value. Therefore, unlike Shin
et al., they collected all the peak value of power consump-
tion. Also, Grupp et al. suggested Mango FTL to improve
responsiveness of SSDs and decrease their power consump-
tion. Park et al. [27] classified the state of SSDs into four
categories (active, idle, standby, and sleep) and measured
the Ampere (A) for each state using an oscilloscope. How-
ever, they presented data only for the in-house developed
SSDs which makes it difficult to apply their work to other
studies or applications.

A common problem in most of these measurement is a
low sampling rate (longer than 1 msec). To accurately cap-
ture the energy consumption behavior of SSDs, sampling in-
terval should be set smaller than program time of a NAND



1798
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

flash, e.g., 900 µs [28]. In this paper, we propose SSD char-
acterization techniques and algorithms to identify internal
parallelism, I/O unit, and page allocation scheme of SSDs,
with a high sampling rate (less than 2 us). We applied these
techniques and algorithms to four real devices and present
the results as a case study.

3. Background

3.1 Flash Memory and SSD

The structure of a common flash memory package is shown
in Fig. 1 [6]. A flash memory package contains two or more
dies (chips), and each die can be selected individually to
execute commands independently [29]. Typically, a die is
composed of two or more planes and in most flash memo-
ries [29], [30], each plane has a page register which is used
as a buffer for read and write operations [22]. Page registers
support multiple planes that concurrently performs the same
operation. This is called plane-level parallelism [31].

In modern SSDs, flash memory packages are organized
into multiple groups and each group is allocated a dedicated
bus called channel and way. The flash packages that are
attached to the different channels can transfer data in parallel
manner, and are attached to the ways can transfer data in
interleave manner. Flash memory packages are connected
in multi-channel and multi-way fashion.

Fig. 1 Internal structure of a Flash Memory Package, based on product
specifications on Samsung’s K9XXG08UXM series NAND flash

Fig. 2 Page allocation strategy vs. current consumption (bi: beginning of programming chip i, ei: end
of programming chip i, Tw: way switching time, Tc: channel switching time)

A typical main components of SSDs include host in-
terface, internal buffer (DRAM or SRAM), SSD controller,
flash memory controller, and flash memory. Host interface
connects the SSD with the host via standard interface (e.g.,
SATA or IDE). An internal buffer holds data or metadata,
which will be written to the flash memory, and stores the
address table of flash memory. SSD controller manages the
flash memory via the flash memory controller. SSD con-
troller executes firmware, such as FTL, buffer management,
ECC, etc. FTL is mainly responsible for three tasks: ad-
dress mapping [32]–[34], garbage collection [35], [36], and
wear-leveling [37], [38]. Flash memory controller manages
the flash memory packages in each channel. It has cache
register to cache data in channel operations. Flash memory
packages in the same channel share cache register. Read
and write operations are performed in an interleaved man-
ner [39]. Some SSDs have ECC block for each channel [27].

3.2 Energy Consumption of SSDs

The peak energy consumption of SSDs provides us impor-
tant information in characterizing the internal structure of
SSDs, which is closely related to SSD’s degree of paral-
lelism. When data is programmed in parallel to a number
of empty flash blocks, the throughput and energy consump-
tion of SSD increases. However, when data is programmed
to a empty flash block in serial, the throughput and energy
consumption of SSD decreases than parallel case. There is
a trade-off between an peak energy consumption of SSDs
and their throughput. To characterize the internals of SSDs
such as page allocation algorithm, and the number of chan-
nels and ways, we exploit the peak energy consumption of
device.

Figure 2 illustrates the energy consumption in writing
three pages. Writing a page to a NAND flash can be parti-
tioned into three phases: i) sending a command to the com-
mand register (C), ii) sending data to data register (D), iii)
and programming the NAND page using the content in the
data register (P).

There are three layout while programming three pages
to the flash memories: All pages are on the same die; spread



YOO et al.: POWER CONSUMPTION SIGNATURE: CHARACTERIZING AN SSD
1799

across multiple dies on a channel; and spread across differ-
ent dies in different channels. Figure 4 (a) shows the first
case that three pages are written to the same flash die. Three
pages are written sequentially, therefore there can be only
one programming activity at a time and this case has longest
time. Figure 4 (b) shows the second case where three pages
are written to different flash dies attached to the same chan-
nel. The process C and D can be serialized, and the flash
dies can perform the programming concurrently. We call
this way-parallelism. Figure 4 (c) shows the third case that
three pages are written to flash dies in different channels.
The process C and D can be parallelized, and the latency of
this case is the shortest. This is called channel-parallelism.

In one of the SSD models†, we observed some delays
in switching channels [15]. We carefully suspect that this is
due to the hardware overhead of channel multiplexing. As
shown in Fig. 4 (c), with higher degree of parallelism, the to-
tal time for writing three pages decreases. When SSDs use
multiple flash memory packages in parallel to increase the
performance, the duration of current peak decreases. How-
ever, the peak current increases for a brief moment in the
number of flash memory packages that use power. Con-
versely, when a small number of flash memory packages
are used to perform an operation, the performance decreases
and the duration of current usage increases but the peak cur-
rent decreases.

The number of packages used in performing read and
write operations varies in SSDs. Using high number of
packages would result in better performance but at the ex-
pense of high power consumption.

4. SSD Characterization

In this paper, we develop characterization method to find
three features of SSDs. The first feature is its internal par-
allelism. SSD has four levels of parallelism (channel, chip,
die, and plane). We are especially interested in finding die-
level parallelism. Second, we find an read/write I/O unit size
of SSDs, which is larger than a page. Third, we will find an
page allocation scheme of SSDs. This means finding the lo-
cation of a flash memory package on which data is written.

While programming write requested data, SSDs show
various patterns of peak currents, which are closely related
to the number of dies and the I/O unit size. In this paper,
we apply our characterization method to four real SSDs to
find their three features. We find the number of dies and
the I/O unit size by analyzing the energy consumption pat-
terns of SSDs while they perform read and write opera-
tions. Those information, combined with the number of
flash memory packages and the number of channels, en-
able us to infer channel/way utilization and page allocation
scheme of SSDs.

4.1 Internal Parallelism and I/O Unit

In analyzing energy consumption of SSDs, we focus on how
†Samsung SSD 840 PRO

Fig. 3 Changes in peak current according to I/O unit sizes and the num-
ber of dies in an SSD with four packages (I/O: I/O Unit, Die: number of
Dies per package, Package: number of active packages)

its peak current changes when write requested data size in-
creases. In a flash memory, a page is the smallest unit size
in reading and writing data. Page sizes are different (4 KB,
8 KB, or 16 KB), depending on flash memory packages. If
a flash memory package has multi-flash memories (chip or
die), each die can operate page programming concurrently.
Therefore, the number of dies equal to the number of con-
current programming operations. A large write request are
divided into page size × (no. of dies) to be allocated to each
package. SSDs that are performing program operation has
higher peak current (active state peak current) than SSDs in
idle state. SSDs show the minimum active state peak current
(mpeak) when it is performing page-size write, and shows the
maximum active state peak current (Mpeak) when all pack-
ages are activated. When SSDs are using one package with
multiple dies to program page size × (no. of dies), its peak
current is same as when they are performing page-size write
because program operation perform programming in an in-
terleaved manner. Therefore, if write requested data size is
increased, peak current of SSDs increase in steps from mpeak

to Mpeak.
In some SSD controllers read and write in units that

are larger than a page. They read or write multiple pages, si-
multaneously, as a single operation to reduce the number of
read/write operations. We define this unit as the I/O unit of
SSDs. As explained above, the peak current of SSDs change
in steps. Generally, as the number of dies in a flash memory
package increases, the tread depth of each step increases,
and as the size of I/O unit increases, the number of steps
decreases. Figure 3 (a) and Fig. 3 (b) show how the tread
depth of steps change when the number of dies changes in an
SSD which has 4 packages and 1 page I/O unit. Figure 3 (a)
shows peak current of a flash memory package with 1 die.
If the write size is 1 page, the peak current is mpeak because
I/O unit is 1 page. If the write size is 4 pages, the peak cur-
rent is Mpeak. Therefore, the number of steps is 4, and the
tread depth of a step is 1 page. Figure 3 (b) shows peak cur-
rent of a flash memory package that has 2 dies. In this case,
the peak current is mpeak for both 1-page and 2-pages writes
because two dies are activated concurrently. If the write size



1800
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

is larger than 6 pages, the peak current is Mpeak. Therefore,
the number of steps is 4, and the tread depth of a step is 2
pages. Figure 3 (c) shows how the number of steps changes
when I/O unit changes from 1 page (Fig. 3 (a)) to 4 pages in
an SSD with 1 die. Even when the write size is 1 page, the
SSD has Mpeak because I/O unit is 4 pages. When write size
larger than 4 pages and smaller than 9 pages, two write op-
erations are performed serially with no peak current change.
Therefore, there are no steps in this case. Figure 3 (d) shows
how the number of steps changes when I/O unit changes
from 1 page (Fig. 3 (b) to 4 pages in an SSD with 2 dies.
The peak current is mpeak × 2 for both 1-page and 4-pages
writes. When the write size is larger than 5 pages, the peak
current increases to Mpeak. Therefore, the number of steps
is 2, and the tread depth of a step is 4 pages.

We can infer the number of dies in a flash memory
package (Ndie) from the tread depth of a step (Dstep) and
the number of steps (Nstep) both obtained from our experi-
ment, and the number of flash memory packages (Npackage)
that can be obtained from the vendor specifications. By mul-
tiplying Nstep and Dstep, we can get the number of pages
that an SSD can program simultaneously. By dividing this
value by Npackage, we can get the number of pages which can
be programmed simultaneously to a package. This value is
equal to Ndie (Eq. (1)).

Ndie = Nstep × Dstep/Npackage (1)

I/O Unit = Npackage/Nstep × Ndie (2)

Since, the size of I/O unit is fixed by firmware of SSDs,
inferring the size of I/O unit is essential to performance opti-
mization. We can infer the I/O unit information from Nstep,
Npackage, and Ndie. The number of flash memory packages
that belongs to one step can be obtained by dividing Npackage

by Nstep. The number of dies that belongs to one step can
be obtained by multiplying this value by Ndie (Eq. (2)). If
we substitute Ndie in Eq. (2) with Eq. (1), we can see that the
I/O unit is identical to Dstep.

Through our experiment, we can obtain Nstep and Dstep.
We used sequential write workload and started write size at
the page size of an SSD. Write size is increased in multi-
ple of page size until the peak current of the SSD reached
its Mpeak, which was obtained before the experiment by per-
forming 1 MByte sequential write; 1 MByte sequential write
is sufficient size to map the I/O to all flash memory packages
in all target SSDs. We then measured the peak current value
for each write size. The experiment terminated when the
peak current reached Mpeak. Nstep and Dstep can be found by
plotting the results on a graph.

We already defined the I/O unit as Dstep. However, this
definition only applies to write I/O units and a separate ex-
periment is needed to determine read I/O unit size. When a
read request is issued by the host, the SSD controller looks
for the physical location of the requested data. After locat-
ing the requested data, the flash memory controller reads
I/O unit data from the flash memory to the cache register.
After reading I/O unit data to the cache register, the SSD
controller reduces power supplied to the flash memory from

active level to standby level because the flash memory is not
being used while the data is transferred from the cache reg-
ister to I/O buffer and from I/O buffer to the host. Because
the power stage changes from active to idle, the waveform of
the current falls. Therefore, it is possible to find the read I/O
unit size by the number of peak currents in the waveform.

Read and write I/O unit sizes refer to the actual read
and write units sent to the flash memory by the SSD con-
troller. Information on I/O unit size is essential to improving
the performance of SSDs. If the OS knows the I/O unit of
the SSDs, interface bottleneck can be reduced by adjusting
the basic I/O unit of the OS to the I/O unit of SSDs. Also,
by changing a random I/O to a sequential I/O, fragmentation
of SSDs can be reduced.

4.2 Page Allocation Scheme

In this section, we present characterization method to find
page allocation scheme of SSDs. In order to do this charac-
terization, we need information from vendor specifications,
such as number of channels (Nchannel) and number of pack-
ages (Npackage). We also need experiment results, such as
Dstep, Ndie, and peak current duration. Our method consists
of two steps. First, we find the physical structure of an SSD.
For example, if an SSD has 8 channels and 16 packages,
then 2 packages are connected in each channel and the num-
ber of dies in each package is Ndie. Second, we infer I/O
allocation scheme. SSD controller chooses target packages
to allocate write requested data. If write requested data are
allocated to multiple packages, the target packages are di-
vided into two cases:

Case 1: Target packages share a channel: If write re-
quested data are allocated to a package, data is transferred to
the register of package through the channel, and this process
occupies the channel until the transfer is complete. There-
fore, when target packages share a channel, delay occurs
during register transfer time. From this result, we can con-
clude that if one channel is used to allocate write requested
data, then the performance of SSD is reduced by register
transfer delay, but since packages perform programming in
an interleaved manner, peaks in current are also reduced. In
such case, we use case 2.

Case 2: Target packages do not share a channel: In this
case, after first target package is selected, the next I/O is al-
located to another channel. This incurs only channel switch-
ing delay which is less than the register transfer delay [15].
From this result, we can conclude that when multiple chan-
nels are used to allocate I/Os, the performance of SSD in-
creases; since multiple packages operate concurrently, this
also increases peaks in current consumption than case 1.

We can calculate an I/O duration of an SSD using reg-
ister delay or channel switching delay. By comparing the
calculated values to the actual I/O duration obtained from an
experiment, we can infer the SSD’s page allocation scheme.
We have to consider the three cases that write requested data
are allocated to multiple packages. We explain the three
cases by using the example in Fig. 4 which has 4 packages.



YOO et al.: POWER CONSUMPTION SIGNATURE: CHARACTERIZING AN SSD
1801

Table 1 Characteristics of SSDs

Model Name Interface Capacity Type R/W Performance Channel DRAM Size Release Date

Intel X-25M SATA 2 80 GB MLC 250/70 MB/s 10 16 MB 2008.09
Samsung MXP SATA 2 128 GB MLC 220/200 MB/s 8 128 MB 2009.04
Toshiba Q Pro SATA 3 128 GB MLC 554/512 MB/s 4 - 2013.03
Samsung 840 SATA 3 250 GB TLC 530/250 MB/s 8 512 MB 2012.10

Fig. 4 Configuration cases of page allocation scheme

Figure 4 (a) shows the first case that four packages con-
nected with 2-channel 2-way configuration. When data is
received, the package #0 of first channel is selected and the
first channel is preempted which incurs register transfer de-
lay. When the package #0 of second channel is selected
and the second channel is preempted, then there is chan-
nel switch delay and register transfer delay. The package #1
of first channel cannot be selected immediately because the
package #0 has preempted the first channel. The package
#1 of first channel must wait before it can performs register
transfer operation. When the package #1 of second channel
is selected, channel switching delay occurs but not register
transfer delay because the operation on the package #0 of
second channel is complete. Therefore, the package #1 of
second channel can perform register transfer without wait-
ing. We call this channel priority allocation method.

Figure 4 (c) shows the second case that 4 packages con-
nected with 2-channel 2-way. The package #0 of first chan-
nel preempts the channel which incurs register transfer de-
lay. The package #1 of first channel cannot be selected, be-
cause the package #0 of first channel preempted the channel.
The package #1 of first channel must wait before it performs
register transfer. Channel switching delay occurs to select
the package #0 of second channel and register transfer delay
also occurs when the package preempts the channel. The
package #1 of second channel cannot be selected because
the package #0 of second channel preempted the channel.
The package #1 of second channel must wait before it per-

Table 2 Internal parallelism and I/O unit

Name Nstep Wstep Ndie I/O Unit Mpeak

X-25M 20 1 page 1 - 530 mA
MXP 4 8 pages 2 32 KB 400 mA
Q Pro 4 4 pages 4 32 KB 644 mA
840 1 1 page 1 - 650 mA

forms register transfer operation. This case has longest du-
ration of three cases, as shown in Fig. 4 (d). We call this way
priority allocation method.

Figure 4 (e) shows the third case that 4 packages con-
nected with 4-channel 1-way. In this case, there is no wait-
ing time, unlike Fig. 4 (a) and Fig. 4 (c). There is only chan-
nel switching delay. Whenever there is waiting, it increases
the duration of I/O which decreases the performance of
SSD. Also, since power is continuously supplied to the de-
vice even during the waiting period, it leads to power inef-
ficiency. This case, which does not have waiting time, has
shortest duration of three cases as shown in Fig. 3 (f). We
call this channel only allocation method.

We can infer the page allocation scheme of SSDs as
following steps. First, calculate the duration of three cases.
Second, compare the calculated duration with the actual du-
ration obtained from an experiment. The case which has
the closest duration of the experiment is the page allocation
scheme of the target SSD. Third, expand the page allocation
scheme to other write request size. Detailed analysis with
four real SSDs are addressed in Sect. 5

5. Case Study

In this paper, four SSDs are studied: Intel X-25M, Samsung
MXP, Toshiba Q Pro, and Samsung 840. Intel X-25M has
10 channels; Samsung MXP has 8; Toshiba Q Pro has 4; and
Samsung 840 has 8 channels. The size of I/O buffer varies as
shown in Table 1. Toshiba Q Pro does not have DRAM I/O
buffer on PCB board. We conjecture that Toshiba Q Pro has
internal DRAM in controller chip. In this section, various
features of SSDs, such as power consumption in idle state,
internal parallelism, I/O unit, and page allocation scheme,
are described.

Table 2 summarizes the results of our experiment.
Workloads for each SSD started at 4 KB and increased by
4 KB to 160 KB with X-25M and to 128 KB with MXP and
Q Pro. As we increased the write size, the peak current in-
creased. The intervals at which the peak current increments
are varied by the SSDs. With X-25M, the peak current in-
creased every time the size increased by 4 KB. MXP and Q
Pro increases its peak current on every 32 KB increase in
the write size.



1802
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

Fig. 5 Measurement environment

5.1 Experiment Environment

5.1.1 Measurement Hardware

Figure 5 shows the experiment environment which consists
of host system, an oscilloscope, and the target SSD. A high-
resolution current probe is used in measuring current of
SSDs between the target and the host system. Tektronix
DPO3012 oscilloscope is used in data collection. In general,
a flash memory’s program time is shorter than 900 µs [28].
In this paper, sampling rate of the oscilloscope is set at 2 µs
in write operations and 4 µs in read operations to measure
current without losing the peak value. The host system,
which creates workload to the target SSD, has Intel Dual
Core2 2.9 GHz CPU and 4 GB main memory. The host sys-
tem was loaded with Linux 2.6.39 and we opened SSDs as a
raw device to reduce the noise caused by the file system. We
calculate the power (watt) by multiplying current with input
voltage which is 5 V, and the energy (joule) is calculated by
multiplying the ‘averaged’ power with the time.

5.1.2 Initialization SSD

As SSDs are used extensively, the number of invalid pages
increases and SSDs become “dirty”. When “dirty” SSDs
perform a workload, garbage collection will be performed
in the background. To prevent this background operation,
which might interfere with the test, “dirty” SSDs should
be initialized before running an experiment. In this paper,
secure erase technique [40] (ANSI ATA and SCSI disk in-
terface specific disk purging commands that are performed
internal of the disk) is used to initialize SSDs.

In this paper, initialization refers to setting the target
SSD to the right state before performing experiments. When
SSDs are used without initialization, there is too much noise
which makes difficult to separate small sized I/Os from
the noise. Some features of SSDs that can interfere with
performing workload, such as read-ahead, look-ahead, and
write buffer, and these are turned off before the experiment.

Figure 6 (a) shows power consumption of Intel X-25M
when it is in idle state. It shows 240 mA peaks at 50 msec
intervals. Without removing these peaks, it is difficult to
analyze the results because these peaks in idle state are sim-

Fig. 6 Intel X-25M standby mode

Fig. 7 Intel X-25M Write Caching On/Off

Table 3 SSD initialization commands

Name Option Flag

Read-ahead -a 0 to 248
Look-ahead -A 0/1

Drive write-caching -W 0/1
Drive standby -y -

ilar to the peak values of performing a 12 KB write oper-
ations. Figure 6 (b) shows power consumption of Intel X-
25M after a standby command was sent with hdparm [41]
using -y option. It shows that 240 mA peaks are removed.
In some SSDs, write request data is not written to the flash
memory but is recorded only on an I/O buffer (DRAM or
SRAM). In this case, current value obtained in the experi-
ment is not from the flash memory. Figure 7 shows the two
energy consumption patterns of X-25M, Fig. 7 (a) shows the
power consumption of the SSD when the write requests are
written to the I/O buffer. Figure 7 (b) is when the requests
are written to the flash memory. To prevent write request
data from being recorded on an I/O buffer, we disabled the
device’s write buffer by a command (hdparm) before the ex-
periment. The initialization commands are summarized in
Table 3.

5.1.3 Data Sampling

In this paper, we collect electric current, which is the amount
of charge flowing through the conductor per unit time. Mag-
netic or heat flow can interfere with measuring current and
noise was initially found in the oscilloscope. For efficient
analysis, we used moving average on the collected data.
Very high and short-lasting peaks observed on raw data are
lost after use moving average; this is not a problem because
what we want to observe is the gap between the peaks and
the pattern of power consumptions, not the original peak



YOO et al.: POWER CONSUMPTION SIGNATURE: CHARACTERIZING AN SSD
1803

Fig. 8 Power consumption of Toshiba Q pro for write operations with
increasing request size

Fig. 9 Power consumption of Toshiba Q pro for read operations

values. In this paper, two window sizes were used in calcu-
lating moving averages. First, window size of 20 was used
to find the internal parallelism of SSD, where the exact peak
values are important. Second, window size of 100 was used
to find the I/O unit, where patterns of results are more im-
portant than the exact peak values.

5.2 TOSHIBA Q Pro

Figure 8 shows power consumption of Toshiba Q Pro per-
forming write operations in sizes from 4 KB to 128 KB in
increment of 4 KB. Since Toshiba does not disclose page
size of Q Pro, we used the method presented in Chen’s pa-
per [31] to find the information. From this method, we found
page size of Q Pro to be 8 KB. Therefore, Dstep of Q Pro is 4
pages (32 KB). From Eq. (1) and Eq. (2), we can obtain the
following parameters: Ndie is 4, and write I/O unit is 32 KB.

Figure 9 shows power consumption of Q Pro perform-
ing read operations in various sizes, from 4 KB to 32 KB, in
increments of 4 KB. The result shows that as the size of read
operation increases in increment of 8 KB, power consump-
tion pattern of 8 KB read is repeated: twice with 12 KB,
three times with 20 KB, and 4 times with 32 KB read. From
this result, we conclude that read I/O unit of Q Pro is 8 KB

Fig. 10 Power consumption of Intel X-25M for write operations with
increasing request size

which is different from its write I/O unit.
I/O unit and page table has inverse proportional rela-

tionship; thus, larger the I/O unit, smaller the size of page ta-
ble. Some benefits of keeping I/O units large are that merg-
ing pages can be simplified and overhead of allocation a free
page can be reduced. However, when there are intermittent
write requests from the host, free page pool is soon depleted
and the overhead in write operation increases because writes
are done in large I/O unit. If FTL takes advantage of write
cache in the device, write requests can be merged to form
a large chunk of data with the size of I/O unit. In the case
of read requests, the device does not have such opportunity
to merge the I/O requests in the cache. Thus, at each read
request, one has to read in the size of I/O units. As a result,
Toshiba Q Pro has different size of read and write I/O unit
to improve the I/O performance.

Toshiba Q Pro has 4 channels and 4 flash memory
packages. Ndie is 4. We can infer its configuration as fol-
lows: Q Pro has 4 channels; each channel is connected to
one flash memory package with way; and each package has
4 dies. Write I/O unit of Q Pro is 4 pages (32 KB) which
is allocated to one package (4 dies). 8-page write request is
allocated to 2 packages; 12-page write request is allocated
to 3 packages; and 16-page write request is allocated to 4
packages. Therefore, the maximum size that can be pro-
grammed concurrently is 128 KB (4 × 4 × 8 KB) in Q Pro.
Since up to four pages are allocated to a single package (i.e.,
channel), we can conclude that Q Pro uses way priority page
allocation scheme.

5.3 Intel X-25M

Figure 10 (a) shows power consumption of Intel X-25M per-
forming write operations in sizes, from 4 KB to 80 KB, in
increments of 4 KB. From Eq. (1) and Eq. (2) of Sect. 4.1,
we can obtain the following parameters: Ndie is 1, and write
I/O unit is 4 KB. Current duration of X-25M increased on
average, 33 µs per 4 KB increase in write size, until the write
size reaches to 80 KB, except when the write size increased
from 80 KB to 84 KB; in this case, the duration increased
1.4 ms as shown in Fig. 10 (b).

Figure 11 shows power consumption of X-25M per-
forming read operations in various sizes, from 4 KB to
16 KB, in increments of 4 KB. The result shows that as
the size of read operation increases in increments of 4 KB,



1804
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

Fig. 11 Power consumption of Intel X-25M for read operations

power consumption pattern of 4 KB read is repeated: twice
with 8 KB, three times with 12 KB, and 4 times with 16 KB
read. From this result, we can conclude that read I/O unit
of X-25M is 4 KB which is same as its write I/O unit. With
small I/O unit, each channel processes small I/Os, resulting
in high performance. A disadvantage is its high power con-
sumption due to a higher number of channels in use.

Intel X-25M has 10 channels and 20 flash memory
packages, and Ndie is 1. From this, we can infer X-25M’s
flash memory configuration as follows: X-25M has 10 chan-
nels; each channel is connected to 2 flash memory pack-
ages with way; and each package has one die. The maxi-
mum size that can be programmed concurrently is 80 KB
(20 × 1 × 4 KB) because X-25M allocates page (4 KB) to
each die.

X-25M has two types of delay. In our experiment,
when we increased write size by 4 KB, duration of peak
current increased 33 µs on average. When we increased
write size from 80 KB to 84 KB, duration of peak current
increased by 1.4 ms. From this result, we can infer that X-
25M allocates 84 KB in the following 3 steps.

The first 40 KB is allocated to package #0 in each chan-
nels, 4 KB per channel. Each package preempts the channel
which incurs register transfer delay. This channel preemp-
tion time is 82 µs [30], because this delay is due to 4 KB
transfer.

The second 40 KB is allocated to the package #1 in
each channels, 4 KB per channel. To select package #1 in
each channel as target, there needs to be 10 channel switch-
ing. Since channel switching delay in X-25M is 33 µs, 10
channel switching delays (33 µs × 10) is longer than the
channel preemption time in the first step (82 µs). Therefore,
the second 40 KB is allocated without waiting.

The last 4 KB is allocated to the package #0 of channel
#0. However, since the target package is busy with 82 µs
register transfer and 900 µs page program, the last 4 KB
must wait until the prior operations are finished. The wait-
ing time of the last 4 KB is 322 µs ((900 µs + 82 µs) −
(33 µs×20)). Experiment result took about 1ms longer than
our calculation. We can try to guess that page program per-
formance is slower than the vendor specification or there is
unknown delay between the continuous program operations.
We can conclude that the X-25M uses channel priority page
allocation scheme.

Fig. 12 Power consumption of Samsung 840 for write operations with
increasing request size

Fig. 13 Power consumption of Samsung 840 for read operations with
4 KB and 512 KB

5.4 SAMSUNG 840

SAMSUNG 840 has 8 channels and 8 flash memory pack-
ages, and Ndie is 1. 840 has very simple page allocation
scheme similar to the X-25M. The write data is allocated
on a page in each channel. In addition, the maximum size
of the concurrent writes are 32 KB. Figure 12 shows power
consumption of Samsung 840 performing write operations
in sizes, from 4 KB to 16 KB, in increments of 4 KB. The
peak current increased by 50 mA per 4 KB increase in write
sizes. Its maximum peak current was 650 mA, which was
reached while performing 32 KB write. The peak current
values increased 8 times while performing the above men-
tioned write operations. From the result, we can obtain the
following parameters: Nstep is 8, and Dstep is 1 page (4 KB).
From Eq. (1) and Eq. (2) of Sect. 4.1, we can obtain the fol-
lowing parameters: Ndie is 1, and write I/O unit is 4 KB.

If only the write results are considered, 840 has simi-
lar result with X-25M. Figure 13 shows power consumption
of 840 performing read operations with 4 KB and 512KB.
The result shows that as the size of read operation increases,
power consumption pattern is not changed. Furthermore,
energy consumption of read operation is too much high. For
example, 4 KB energy consumption of read operation with
Q Pro is 1.97 mJ, however, 840 is 6,325 J.

From the result, we can conclude that the read I/O unit
size of Samsung 840 is something larger than the I/O unit
of write operation. The specification of 840 tells us that
the device uses TLC NAND Flash memory and has read
and write performance of 530 MB/sec and 240 MB/sec, re-
spectively. On the other hand, 840 pro which is based on



YOO et al.: POWER CONSUMPTION SIGNATURE: CHARACTERIZING AN SSD
1805

Fig. 14 Power consumption of Samsung MXP for write operations with
increasing request size

840 uses MLC NAND and has read and write performance
of 540 MB/sec and 520 MB/sec, respectively. One of the
main reason for the slower write performance in 840 is that
it is using TLC NAND Flash memory while having simi-
lar read performance. Since TLC devices are saving three
bits in a cell, it has to be more careful in incrementing the
voltage to set the bits. One way to deal with it is to intro-
duce more steps used in Incremental Step Pulse program-
ming (ISPP) [42].

5.5 SAMSUNG MXP

Figure 14 shows power consumption of Samsung MXP per-
forming write operations in sizes, from 4 KB to 128 KB, in
increments of 4 KB. Using Eq. (1) and Eq. (2) of Sect. 4.1,
we can obtain the following parameters: Ndie is 2, and write
I/O unit is 32 KB. We observed an unusual trait in MXP’s
power consumption. As shown in Fig. 14, the peak cur-
rent of MXP does not return to idle state power consump-
tion after completing the write operations but is maintained
at 80 mA for a while. The full graphs are omitted to save
space but the tail of these 80 mA state lasts about 5 seconds.
Another noticeable point of MXP is its very low power con-
sumption level during idle state compared to Q Pro, X-25M,
and 840. From these two points, the power consumption
technique of MXP can be inferred as follow: MXP reduces
idle state power consumption by completely blocking power
supply to the flash memory when it is not handling an I/O.
This may result in standby delay in MXP unable to respond
immediately to incoming I/Os resulting in low throughput.
In order to avoid low throughput, MXP maintains standby
power condition of 80 mA to be ready for any additional
I/Os after completing an I/O, so that it can perform I/Os
continuously without standby delay. We conclude that MXP
reduces power consumption to the extreme in an idle state,
when it is not handling any I/O, but once an operation is
completed, it consumes more power than needed to be ready

Fig. 15 Power consumption of Samsung MXP for read operations

for future I/Os.
Figure 15 shows power consumption of Samsung MXP

while performing read operations of 4 KB, 32 KB, 36 KB,
and 512 KB in size. The result shows that waveform for
4 KB and 32 KB are the same. For 36 KB, waveform for
32 KB is repeated twice; For 512 KB, waveform for 32 KB
is repeated 16 times. From this result, we can infer that read
I/O unit of MXP is 32 KB which is same as its write I/O
unit.

Samsung MXP has 8 channels and 16 flash memory
packages, and Ndie is 2. Configuration of MXP can be es-
timated as follows: MXP has 8 channels; each channel is
connected to 2 flash memory packages with way; and each
package has two dies. The maximum size that can be pro-
grammed concurrently is 128 KB (16 × 2 × 4 KB) because
MXP allocates one page (4 KB) to each die.

Write I/O unit of MXP is 8 pages (32 KB), which is
allocated to 4 packages (8 dies). There are three ways to
allocate 32 KB, depending on the channel and way usage:
(i) 2-channel 2-way, channel priority allocation method, (ii)
2-channel 2-way, way priority allocation method, (iii) 4-
channel 1-way, channel only allocation method.

When we exploited write I/O unit size, the duration of
peak current was measured at 1.12 ms. Considering that
other NAND flash memories released about the same time
as MXP take about 900 µs [30] to program 4 KB, write speed
of MXP is too fast. Therefore, we assume that MXP allo-
cates 4 KB to 2 dies in each package and programs 8 KB
concurrently by using the internal command [29]. Based on
this assumption, we used 164 µs (82 µs × 2) for register
delay, which is the time it takes to transfer 8 KB, and used
900 µs for page programming time, which is the time it takes
to program 4 KB.

We consider three cases to find the MXP’ page allo-
cation scheme; 2-channel 2-way with channel priority, 2-
channel 2-way with way priority, and 4-channel 1-way with
channel priority. In first case (2-channel 2-way with chan-
nel priority allocation method), when data is received, the
package #0 of first channel is selected and the first chan-
nel is preempted which incurs register transfer delay. When
the package #0 of second channel is selected and the sec-
ond channel is preempted, channel switching delay and reg-
ister transfer delay occur. The package #1 of first channel



1806
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

cannot be selected right away because the package #0 has
preempted the first channel. The package #1 of first chan-
nel must wait 98 µs (164 µs − (33 µs × 2)) before it per-
forms register transfer operation. When the package #1 of
second channel is selected, channel switching delay occurs
but not register transfer delay because channel preemption
by the package #0 of second channel has already finished
(98 µs + (33 µs × 2)). Therefore, the package #1 of second
channel can perform register transfer without waiting. This
case takes 1.261 µs in total.

In second case (2-channel 2-way with way priority al-
location method), the package #0 of first channel preempts
the channel which incurs register transfer delay. The pack-
age #1 of first channel cannot be selected because the pack-
age #0 of first channel preempted the channel. The package
#1 of first channel must wait 131 µs (164 µs − 33 µs) before
it performs register transfer. Channel switching delay oc-
curs to select the package #0 of second channel and register
transfer delay also occurs when the package preempts the
channel. The package #1 of second channel cannot be se-
lected because the package #0 of second channel preempted
the channel. The package #1 of second channel must wait
131 µs (164 µs − 33 µs) before it performs register transfer
operation. This case takes 1.425 µs in total.

In third case (4-channel 1-way with channel only al-
location method), there is no waiting time, unlike first and
second cases. There is only channel switching delay. When-
ever there is waiting, it increases the duration of I/O which
decreases the performance of SSD. Also, since power is
continuously supplied to the device even during the waiting
time, it leads to power inefficiency. This case, which does
not have waiting time, takes 1,163 µs. This value is closest
to experiment result, 1.120 ms. Therefore, we can conclude
that MXP uses 4-channel 1-way to allocate I/O unit sized
data.

Another unique feature in MXP is its Read-Modify-
Write operation. Figure 16 shows power consumption of
Samsung MXP while performing 4 KB write operation and
32 KB read operation. The waveforms for the two opera-
tions are almost identical for the first 0.2 ms. The duration
of this identical waveform decreases as the write size in-
creases, until the write size reaches 28 KB. For 32 KB write,
there is no identical waveform with the read operation at the
beginning. However, 36 KB write operation shows similar

Fig. 16 Proof of read-modify-write

beginning waveform with 4 KB write. From this result, we
can estimate that MXP always writes in 32 KB units to flash
memory. If write requested data size is smaller than 32 KB,
then MXP reads data from write address to make up 32 KB,
places the I/O in I/O buffer, and processes it.

6. Breakdown of SSD Energy Consumption

We use data from various cases to make a formal character-
ization method. Experimental results are obvious; however,
our characterization method needs verification to be reliable.
The I/O unit which is discovered with our characterization
method is an important factor that could affect the perfor-
mance and energy consumption of SSDs. We have to verify
the I/O unit by appropriate experiments using the I/O unit.
We expect that SSDs can improve the performance and re-
duce the energy consumption.

We can consider two cases when performing a large
sized write operation in SSDs which has I/O unit: first, per-
forming direct I/O with page size; and second, performing
direct I/O with I/O unit size. Figure 17 (a) shows the first
case. SSDs extend the write data from page size to I/O unit
size in the write cache. The additional data is filled with
read data from the flash memory. Therefore, SSDs write the
I/O unit sized data to the flash memory whenever a page size
write is performed.

Figure 17 (a) shows the second case. SSDs write the
I/O unit sized data to the write cache. There are no addi-
tional read operation and data extension. Therefore, SSDs
will be only consuming the energy of the I/O unit sized write
operation. This case has less energy consumption than first
case. As a result, if aligning the record size with I/O unit
of SSDs in write operation with huge file, we can maximize
the performance and minimize the energy consumption.

We conduct validation experiment for I/O unit as fol-
lows: The record size is increased from 4 KB to 64 KB
and direct I/O is used. We use IOzone as workload gen-
erator. And, we acquire performance and energy consump-
tion. The experiment targets used are two I/O unit SSDs (Q
Pro, MXP) and two non I/O unit SSDs (840, X-25M). Our
workload is as follows: File Size 128 MB, record size is in-

Fig. 17 Power consumption of I/O unit sized write and non I/O unit sized
write



YOO et al.: POWER CONSUMPTION SIGNATURE: CHARACTERIZING AN SSD
1807

Fig. 18 Performance and energy consumption of I/O unit and non I/O unit SSDs

Table 4 Validation result of I/O unit

SSD
Increment/Decrement Ratio

Performance Energy Consump.
(MB/sec) (KJ)

I/O Unit
Q Pro 201% 85%
MXP 123% 71%

Non 840 71% 37%
I/O Unit X-25M 29% 33%

creased from 4 KB to 64 KB in multiples of two, direct I/O,
and sequential write. We expected that the performance is
greatly improved and the energy consumption decrease sig-
nificantly with the increase of the record size in the I/O unit
SSDs (Q Pro, MXP).

Figure 18 shows performance (MB/sec) and energy
consumption (Kilo Joule) of four SSDs. Table 4 shows ra-
tio of performance and energy consumption when the record
size increased from 4KB to I/O unit size. Figure 18 (a) and
Fig. 18 (b) show the result of I/O unit cases, and Fig. 18 (c)
and Fig. 18 (d) show the result of non I/O unit cases. The
I/O unit size of Q Pro and MXP are same as 32 KB.

The result shows that I/O performance of the one with
I/O unit is increased to 162% on the average, and the I/O
performance of the non I/O unit SSDs increased to 50% on
average. In terms of energy consumption, the energy con-
sumption of the I/O unit SSDs reduced to 78% on average,
and the energy consumption of the non I/O unit SSDs re-
duced to only 35% on average. From the result it can be
said that Toshiba Q Pro has the I/O unit.

In general purpose systems, aligning I/O requests to the
I/O unit size of SSD is not possible because internal configu-
rations of SSDs are proprietaries of manufacturers and they
are not willing to disclose the information. The proposed
method in this paper provides a technique to expose the in-
ternal configuration of SSD that is I/O unit size, which can
be exploited in RAID storage system. Typically, the stripe
size of RAID is carefully determined after thorough analy-
sis of given workload and I/O characteristics. Although the
process of optimizing the RAID is tedious, but the fact that
it is a one-time effort relieves management and deployment
overhead. Our method of finding the I/O unit size also needs
to be performed only once. As shown in Fig. 18, the use of
the proposed method not only allows increasing the perfor-
mance by aligning the stripe size to I/O unit size of SSD but
also decreases the overall operation cost of storage systems.

Fig. 19 Power budget and feasible page allocations

7. Power Budget

In previous work, we warned excessive use of channel and
way of SSDs [15]. As we can see in related works, the peak
current is increased excessively when the program operation
is performed concurrently in too many NAND chip. The ex-
cessive peak current can cause supply voltage drop, ground
bounce, signal noise, black-out, and etc, which can lead
to unreliable SSD operation [43]. Therefore, we propose a
metric called Power Budget, which specifies the maximum
tolerable peak current for SSDs’ operations.

The previous version of Power Budget only served the
purpose to prevent the excessive simultaneous parallel use
of resources. However, it is possible to have better perfor-
mance and lower energy consumption while using less par-
allel resources by exploiting the I/O unit aligning in Sect. 6.
Therefore, it is able to apply more strict criteria in the Power
Budget. Figure 19 shows the new Power Budget. The x-axis
is the number of way, and the y-axis is the number of chan-
nel. The new Power Budget proposes not only the use of
balanced parallelism level also to use the appropriate size of
I/O unit.



1808
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

8. Conclusion

This paper presents the SSD characterization algorithm to
infer characteristics of SSDs that are not disclosed by the
vendors, such as internal parallelism, I/O unit, and page al-
location scheme, by measuring current with an oscilloscope
and high-resolution current probe.

These characterization algorithms are applied to the
four real SSDs. We found the internal parallelism which
is the number of dies in a flash memory package, and the
I/O unit which is the read/write unit larger than a page size.
From these two characteristics of SSDs, its page allocation
scheme is inferred.

Internal parallelism, I/O unit, and page allocation
scheme are characteristics of SSDs that are not made public
by the vendors. Yet, they affect I/O performance of SSDs,
which is the biggest competitive factor in SSDs. If the OS
knows these characteristics, the I/O performance can be im-
proved by file system tuning. In addition, vendors will be
able to devote more efforts in developing more energy effi-
cient SSDs.

Currently, it is possible to implement SSDs whose per-
formance is close to the limit of interface performance by
placing large-sized I/O buffers and using heavy internal par-
allelism; however, this implementation causes a significant
level of power consumption. The required design direction
of SSDs is a balance between achieving I/O performance
improvement and energy efficiency.

Acknowledgments

This work is supported by IT R&D program MKE/KEIT
(No. 10041608, Embedded System Software for New-
memory based Smart Device), by ITRC support program
(IITP-2016-H8501-16-1006) and by ICT R&D program of
MSIP/IITP (R0601-15-1063, Software Platform for ICT
Equipments).

References

[1] K. Takeuchi, “Highly reliable low power solid-state drives (SSDs),”
Proc. IEEE International Meeting for Future of Electron Devices,
Kansai, Japan, pp.1–2, May 2012.

[2] L.M. Grupp, J.D. Davis, and S. Swanson, “The bleak future of
NAND flash memory,” Proc. 10th USENIX Conf. on File and Stor-
age Technologies, San Jose, CA, USA, no.2, pp.1–8, Feb. 2012.

[3] R.E. Frickey III and J.M. Hughes, “Method and system to improve
the performance of a multi-level cell (MLC) NAND flash memory,”
US Patent, pp.1–8, Dec. 2012.

[4] Y. Koh, “NAND Flash Scaling Beyond 20nm,” Proc. 9th IEEE In-
ternational Memory Workshop, Monterey, CA, USA, pp.1–3, May
2009.

[5] E. Yaakobi, L. Grupp, P.H. Siegel, S. Swanson, and J.K. Wolf,
“Characterization and error-correcting codes for TLC flash memo-
ries,” Proc. 1st IEEE International Conf. on Computing, Networking
and Communications, Maui, Hawaii, USA, pp.486–491, Jan. 2012.

[6] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M.S. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,” Proc.
14th USENIX Annual Technical Conf., Boston, Massachusetts,

USA, pp.57–70, June 2008.
[7] E. Seo, S.Y. Park, and B. Urgaonkar, “Empirical analysis on energy

efficiency of flash-based SSDs,” Proc. 1st USENIX Workshop on
Power Aware Computing and Systems, San Diego, CA, USA, pp.1–
5, Dec. 2008.

[8] E.D. Rejowski, P. Mordente Sr, M.F. Pillis, and T. Casserly, “Appli-
cation of DLC Coating in Cylinder Liners for Friction Reduction,”
Proc. SAE Technical Paper, April 2012.

[9] W. Butler, Huang, H. Yao, and R. Lloyd Jr, “Disk drive including
surface coated disk clamp screws with reduced coefficient of friction
for mitigating disk clamp movement,” US Patent, pp.1–8, Oct. 2002.

[10] S.W. Schlosser, W. Steven W, J. Schindler, S. Papadomanolakis,
M. Shao, A. Ailamaki, C. Faloutsos, and G.R. Ganger, “On Mul-
tidimensional Data and Modern Disks,” Proc. 4th USENIX Conf.
on File and Storage Technologies, San Francisco, CA, USA, no.1,
pp.1–14, Dec. 2005.

[11] J. Gim and Y. Won, “Extract and infer quickly: Obtaining sector geo-
metry of modern hard disk drives,” Proc. ACM Trans. on Storage,
vol.6, no.2, pp.1–26, July 2010.

[12] O. Mesut and N. Lambert, “HDD characterization for A/V streaming
applications,” Proc. IEEE Trans. on Consumer Electronics, vol.48,
no.3, pp.802–807, Aug. 2002.

[13] N. Talagala, R. Arpaci-Dusseau, and D. Patterson, “Microbench-
mark-based Extraction of Local and Global Disk Characteristics,”
Proc. University of California at Berkeley, CA, USA, no.UCB/CSD-
99-1063, pp.1–26, 1999.

[14] J. Schindler, J.L. Griffin, C.R. Lumb, and G.R. Ganger, “Track-
aligned Extents: Matching Access Patterns to Disk Drive Character-
istics,” Proc. 1st USENIX Conf. on File and Storage Technologies,
Monterey, CA, USA, vol.2, pp.259–274, Jan. 2002.

[15] B. Yoo, Y. Won, J. Choi, S. Yoon, S. Cho, and S. Kang, “SSD charac-
terization: from energy consumption’s perspective,” Proc. USENIX
3rd Conf. on Hot topics in storage and file systems, Portland, OR,
USA, p.3, June 2011.

[16] O. Mesut and N. Lambert, “HDD characterization for A/V streaming
applications,” Proc. IEEE Trans. on Consumer Electronics, vol.48,
no.3, pp.802–807, Aug. 2002.

[17] R. Pitchumani, A. Hospodor, A. Amer, Y. Kang, E.L. Miller,
and D.D.E. Long, “Emulating a Shingled Write Disk,” Proc. 20th
IEEE International Symposium on Modeling, Analysis Simulation
of Computer and Telecommunication Systems, Arlington, Virginia,
USA, pp.339–346, Aug. 2012.

[18] S. Park and H. Shin, “Rigorous Modeling of Disk Performance
for Real-Time Applications,” Proc. 9th International Conf. on Real-
Time and Embedded Computing Systems and Applications, Tainan
City, Taiwan, pp.486–498, Feb. 2003.

[19] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Per-
formance impact and interplay of SSD parallelism through ad-
vanced commands, allocation strategy and data granularity,” Proc.
International Conf. on Supercomputing, Tucson, Arizona, USA,
pp.96–107, May 2011.

[20] T. Xie and J. Koshia, “Boosting random write performance for en-
terprise flash storage systems,” Proc. IEEE 27th Symposium on
Mass Storage Systems and Technologies, Denver, Colorado, USA,
pp.1–10, May 2011.

[21] S. Boboila and P. Desnoyers, “Performance models of flash-based
solid-state drives for real workloads,” Proc. IEEE 27th Sympo-
sium on Mass Storage Systems and Technologies, Denver, Colorado,
USA, pp.1–6, May 2011.

[22] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “FlashSim: A sim-
ulator for NAND flash-based solid-state drives,” Proc. IEEE 1st In-
ternational Conference on Advances in System Simulation, Porto,
Portugal, pp.125–131, Sept. 2009.

[23] L. Bouganim, B. Jónsson, and P. Bonnet, “uFLIP: Understanding
flash IO patterns,” Proc. 4th Biennial Conf. on Innovative Data Sys-
tems Research, Asilomar, CA, USA, Jan. 2009.

[24] Y.J. Seong, E.H. Nam, J.H. Yoon, H. Kim, J.-Y. Choi, S. Lee, Y.H.

http://dx.doi.org/10.1109/imfedk.2012.6218564
http://dx.doi.org/10.1109/imw.2009.5090600
http://dx.doi.org/10.1109/iccnc.2012.6167470
http://dx.doi.org/10.4271/2012-01-1329
http://dx.doi.org/10.1145/1807060.1807063
http://dx.doi.org/10.1109/tce.2002.1037078
http://dx.doi.org/10.1109/tce.2002.1037078
http://dx.doi.org/10.1109/mascots.2012.46
http://dx.doi.org/10.1007/978-3-540-24686-2_30
http://dx.doi.org/10.1145/1995896.1995912
http://dx.doi.org/10.1109/msst.2011.5937226
http://dx.doi.org/10.1109/msst.2011.5937227
http://dx.doi.org/10.1109/simul.2009.17
http://dx.doi.org/10.1109/tc.2010.63


YOO et al.: POWER CONSUMPTION SIGNATURE: CHARACTERIZING AN SSD
1809

Bae, J. Lee, Y. Cho, and S.L. Min, “Hydra: A Block-Mapped Paral-
lel Flash Memory Solid-State Disk Architecture,” Proc. IEEE Trans.
on Computers, vol.59, no.7, pp.905–921, July 2010.

[25] V. Mohan, S. Gurumurthi, and M.R. Stan, “FlashPower: A Detailed
Power Model for NAND Flash Memory,” Proc. of DATE, Dresden,
Germany, no.6, pp.502–507, March 2010.

[26] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P.H. Siegel, and J.K. Wolf, “Characterizing flash memory: Anoma-
lies, observations, and applications,” Proc. ACM 42nd Internal Sym-
posium on MICRO-42, New York, New York, USA, pp.24–33, Dec.
2009.

[27] C. Park, P. Talawar, D. Won, M.J. Jung, J.B. Im, S. Kim, and Y.
Choi, “A high performance controller for NAND flash-based solid
state disk (NSSD),” Proc. IEEE 21th Non-Volatile Semiconductor
Memory Workshop, pp.17–20, Feb. 2006.

[28] G. Wu, X. He, and B. Eckart, “An adaptive write buffer management
scheme for flash-based ssds” Proc. ACM Trans. on Storage, vol.8,
no.1, pp.1–24, Feb. 2012.

[29] SAMASUNG Electronics, “2g x 8 bit/4g x 8 bit nand flash memory
(k9xxg08uxm),” 2006.

[30] Intel, “Intel MD332B NAND Flash Memory Specification,” 2009.
[31] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting in-

ternal parallelism of flash memory based solid state drives in high-
-speed data Processing,” Proc. IEEE 17th International Symposium
on High Performance Computer Architecture, San Antonio, Texas,
USA, pp.266–277, Feb. 2011.

[32] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: locality-aware sector
translation for NAND flash memory-based storage systems,” Proc.
ACM SIGOPS Operating Systems Review, vol.42, no.6, pp.36–42,
Oct. 2008.

[33] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, and Y. Cho, “A space-effi-
cient flash translation layer for CompactFlash systems,” Proc. IEEE
Trans. on Consumer Electronics, vol.48, no.2, pp.366–375, May
2002.

[34] S.-W. Lee, W.-K. Choi, and D.-J. Park, “FAST: An efficient flash
translation layer for flash memory,” Proc. Emerging Directions
in Embedded and Ubiquitous Computing, vol.4097, pp.879–887,
Springer Berlin Heidelberg, Berlin, 2006.

[35] W. Bux and I. Iliadis, “Performance of greedy garbage collection
in flash-based solid-state drives,” Proc. Performance Evaluation,
vol.67, no.11, pp.1172–1186, 2010.

[36] B. Peleato, R. Agarwal, and J. Cioffi, “On the distribution of
valid pages with greedy garbage collection for NAND flash,” Proc.
IEEE Statistical Signal Processing Workshop, Ann Arbor, Michigan,
USA, pp.500–503, Aug. 2012.

[37] M. Murugan and D.H.C. Du, “Rejuvenator: A static wear leveling
algorithm for NAND flash memory with minimized overhead,” Proc.
IEEE 27th Symposium on Mass Storage Systems and Technologies,
Denver, Colorado, USA, pp.1–12, May 2011.

[38] L.-P. Chang, “On efficient wear leveling for large-scale flash-mem-
ory storage systems,” Proc. ACM symposium on Applied comput-
ing, Seoul, Korea, pp.1126–1130, March 2007.

[39] C. Dirik and B. Jacob, “The performance of PC solid-state disks
(SSDs) as a function of bandwidth, concurrency, device architec-
ture, and system organization,” Proc. ACM SIGARCH Computer
Architecture News, vol.37, no.3, pp.279–289, June 2009.

[40] M. Wei, L.M. Grupp, F.E. Spada, and S. Swanson, “Reliably erasing
data from flash-based solid state drives,” Proc. USENIX 9th Conf.
on File and Stroage Technologies, San Jose, California, USA, pp.8–
8, Feb. 2011.

[41] Linux Journal Staff, “upFront,” Linux J., vol.2005, no.129, p.22, Jan.
2005.

[42] H.-T. Lue, T.-H. Hsu, S.-Y. Wang, E.-K. Lai, K.-Y. Hsieh, R. Liu,
and C.-Y. Lu, “study of incremental step pulse programming (ISPP)
and STI edge effect of BE-SONOS NAND Flash,” Proc. 46th IEEE
International Symposium on Reliability Physics, Phoenix, Arizona,
USA, pp.693–694, April 2008.

[43] G. Hong, “Analysis of peak current consumption for large-scale, par-
allel flash memory,” Proc. Workshop for Operating System Support
for Non-Volatile RAM, Jeju, Korea, April 2011.

Balgeun Yoo received the BS degree in
Computer Engineering from Dankook Univer-
sity in 2008. He is currently working towards his
PhD degree in the Division of Computer Science
and Engineering at Hanyang University, Seoul,
Korea. His research interests include deduplica-
tion systems and operating systems.

Seongjin Lee is a PostDoc. at Embed-
ded Software Systems Laboratory in Depart-
ment of Computer Software at Hanyang Uni-
versity, Seoul Korea. He did his BS and MS
in Department of Electronics and Computer En-
gineering, Hanyang University, Seoul Korea in
2006 and 2008, respectively. He received his Ph.
D in Computer Engineering in the same univer-
sity in 2015. His research interests include sys-
tem performance, measurements, analysis, char-
acterization, and classification.

Youjip Won is currently Professor at Di-
vision of Electrical and Computer Engineering,
Hanyang University, Seoul Korea. He is lead-
ing Embedded Software System Lab. He did
his BS and MS in Dept. of Computer Science,
Seoul National University, Seoul, Korea in 1990
and 1992, respectively. He received his Ph. D
in Computer Science from University of Min-
nesota in 1997. Before joining Hanyang Univer-
sity in 1999, he worked at Intel Corp. as Server
Performance Analyst. His research interests in-

clude Network Traffic Modeling, Analysis and Characterization, Multime-
dia system and networking, File and Storage subsystem, Lower power Stor-
age System. In 2006, Multimedia File System Project funded by Samsung
Electronics was awarded “Best Academy-Industry Collaboration Practice
in Samsung Electronics”. In 2007, he was awarded “National Research
Lab” grant which is highly selective and prestigeous governmental grant.

http://dx.doi.org/10.1109/tc.2010.63
http://dx.doi.org/10.1109/date.2010.5457154
http://dx.doi.org/10.1145/1669112.1669118
http://dx.doi.org/10.1109/.2006.1629477
http://dx.doi.org/10.1145/2093139.2093140
http://dx.doi.org/10.1109/hpca.2011.5749735
http://dx.doi.org/10.1145/1453775.1453783
http://dx.doi.org/10.1109/tce.2002.1010143
http://dx.doi.org/10.1007/11807964_88
http://dx.doi.org/10.1016/j.peva.2010.07.003
http://dx.doi.org/10.1109/ssp.2012.6319743
http://dx.doi.org/10.1109/msst.2011.5937225
http://dx.doi.org/10.1145/1244002.1244248
http://dx.doi.org/10.1145/1555815.1555790
http://dx.doi.org/10.1109/relphy.2008.4558992

