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PAPER

Linked Data Entity Resolution System Enhanced by Configuration
Learning Algorithm

Khai NGUYEN†,††a), Nonmember and Ryutaro ICHISE†,††b), Member

SUMMARY Linked data entity resolution is the detection of instances
that reside in different repositories but co-describe the same topic. The
quality of the resolution result depends on the appropriateness of the con-
figuration, including the selected matching properties and the similarity
measures. Because such configuration details are currently set differently
across domains and repositories, a general resolution approach for every
repository is necessary. In this paper, we present cLink, a system that can
perform entity resolution on any input effectively by using a learning al-
gorithm to find the optimal configuration. Experiments show that cLink
achieves high performance even when being given only a small amount of
training data. cLink also outperforms recent systems, including the ones
that use the supervised learning approach.
key words: linked data, entity resolution, schema-independent, supervised,
heuristic

1. Introduction

Finding co-referent instances, which at the same time de-
scribe the same topic, is an important process in data in-
tegration. Because data is created independently in differ-
ent repositories, gathering data from various sources greatly
enriches the information. In linked data publication, mak-
ing co-referent links between the newly published instances
and the existing ones in the web of linked data is an indis-
pensable step. The problem addressed by entity resolution
is finding all co-referent instances residing in two different
repositories: the source and the target. Entity resolution
has been a subject of extensive research [1], [2]; however,
finding the perfect resolution algorithm remains a work in
progress.

The challenge of entity resolution is the difference be-
tween the representation of information in the source and
the target repositories. Although such difficulty also exists
in other sorts of data (e.g., relational database), for linked
data and other web-based data, the open access mechanism
increases the difficulty. In linked data, besides the difference
in values (e.g., many names for one place), the difference in
schemata is also a big issue. Since the schema specifies how
the details of instances are declared, for different domains
or repositories have different schema. Therefore, an entity
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resolution system has to use an appropriate matching con-
figuration designed particularly for the input repositories.
For example, a suitable configuration for two repositories
of ‘people’ domain specifies two comparisons: on ‘name’
and ‘birth date’. However, for other repositories, with other
domain (e.g., ‘place’ and ‘organization’) or even with the
same domain ‘people’ but different in schema (e.g. ‘name’
is replaced by ‘label’), such configuration is no longer ap-
propriate. Therefore, it is important to develop a system that
can adapt to any repository with any schema. Such a system
is called schema-independent.

A schema-independent system finds the matching con-
figuration itself using the observation on the input reposito-
ries. Many techniques have been used, such as pure statis-
tic [3], [4], unsupervised learning [5], and supervised learn-
ing [6]–[11]. Supervised learning requires a number of la-
beled co-referent instances but this requirement is compen-
sated by the achievement of the best accuracy compared to
other techniques. Recently, supervised learning of configu-
ration has been investigated with genetic algorithm [8], [9]
and information-gain based selection [7]. The reported re-
sults of using these methods are promising. Unfortunately,
the genetic algorithm is not supported by a clear strategy
as it is based on random search principle. Meanwhile, the
information-gain based selection ignores the evaluation of
combining different similarity estimation methods. There-
fore, the current achievements of previous supervised sys-
tems can be further improved.

We focus on the problem of entity resolution using
the supervised learning principle. We describe cLink, a
schema-independent entity resolution system, which is en-
hanced by a novel supervised configuration learning algo-
rithm. This algorithm is more effective than other algo-
rithms having the same objective. Given two input repos-
itories, cLink performs a pre-learning stage to generate co-
referent candidates. Some candidates are labeled with posi-
tive and negative labels and input to the learning algorithm,
which uses a heuristic search method to optimize the com-
bination of similarity functions. The learning outcome is
an optimal configuration that is effective for discovering the
co-references from unlabeled candidates. This paper is the
complete version of [12], in which cLink is first proposed.
Here we provide more detailed contents as well as important
experiments.

The remainder of this paper is organized as follows:
Sect. 2 discusses related work. Section 3 describes the de-
tails of cLink. Section 4 reports the experiments. Section 5
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Fig. 1 The workflow of cLink.

summarizes the paper and future work.

2. Related Work

In this section, we review the work focusing on linked data
entity resolution. The early stages of entity resolution are
the systems whose configurations are constructed by user.
SILK [13] is among the pioneers of linked data interlink-
ing frameworks. SILK provides a declarative structure to
represent a user-defined matching configuration. Focusing
on efficiency aspect, LIMES [14] and ScSLINT [15] have a
significant improvement in processing time. cLink is also
implemented as a part of ScSLINT framework. Aggre-
mentMaker [16], RiMOM [17], and Zhishi.Links [18] aimed
at accuracy and scalability. Zhishi.Links includes domain
knowledge to improve matching accuracy. Aggrement-
Maker and RiMOM combine different matching strategies
to leverage multitude of information. RiMOM is also one of
the state-of-art entity resolution systems for linked data.

As the application of manual approach is limited due
to the diversity of domains and schemata, a large number
of automatic approaches have been proposed. SERIMI [3]
and SLINT+ [4] attempted to eliminate user involvement
by automatically detecting property alignments using over-
lap measure. KnoFuss [5] applies genetic algorithm to find
an optimal matching configuration. The fitness is repre-
sented by a pseudo value of actual accuracy. One advantage
of these systems is that the existing co-references is not re-
quired. However, by not using such labeled data, the quality
of the detected alignments cannot be correctly evaluated. In
other words, the obtained configuration can contain incor-
rect alignments and thus reduces the performance.

Recently, the supervised learning approach has become
practical because of the abundance of existing co-references
in linked data. ADL [7] and ObjectCoref [6] learn discrimi-
native properties for two repositories having the same class.
Rong et al. used Adaboost to train a binary classifier, which
can determine whether a pair of instances is co-referent or
not [11]. The disadvantage of using classifier is that the
similarities of instances are not explicitly defined and thus
a system cannot perform further tasks that need the simi-
larities (e.g., post-filtering in SLINT+ improves the resolu-
tion result). Most related to our work are RAVEN [9], EA-
GLE [10], and ActiveGenLink [8]. These systems use ac-
tive learning to find the optimal link specification, whose
core component is the matching configuration. EAGLE and

ActiveGenLink apply genetic algorithm to improve the effi-
ciency. Genetic algorithm has advantage in learning on data
with many property alignments. However, genetic algorithm
has to check many configurations to reach the convergence.

Other remarkable systems are PARIS [19], Markov
logic-based matcher [20], and ZenCrowd [21]. PARIS and
Markov logic-based matcher are the automatic systems fo-
cusing on probabilistic methods. Zencrowd combines an au-
tomatic algorithm and crowdsourcing. Although these sys-
tems obtained good results in experiment, when the high ac-
curacy is the first priority and the existing co-references are
available, the supervised learning approach is still the first
option.

3. The cLink System

cLink is built upon the general architecture of ScSLINT
framework [15]. cLink consists of six components, prop-
erty alignment generator, similarity function generator, can-
didate generator, configuration learner, similarity aggrega-
tor, and co-reference filter. The workflow of cLink is illus-
trated in Fig. 1. Given two input repositories, Rsource and
Rtarget, cLink first creates the property alignments. Then,
these alignments are used to build the initial similarity func-
tions and to select the possibly co-referent candidates. Us-
ing the known co-references, some candidates are labeled
and input into the configuration learner to find the optimal
configuration. Optimal configuration defines the appropri-
ate similarity functions selected from the initial similarity
functions. Each similarity function computes the similarity
of two instances on one property. The similarity aggrega-
tor combines many similarities into a final matching score.
Finally, co-references filter considers the matching score of
all candidates and produces the final co-references. Next,
we describe the details of each component.

3.1 Property Alignment Generator

This component creates the property alignments between
Rsource and Rtarget. A property alignment is expected to de-
scribe the same attribute of two instances. In linked data, as
properties are represented by RDF predicates, the outputs of
this component are the alignments between RDF predicates.

Property alignments are generated in two steps. First,
cLink selects in the source repository the predicates that sat-
isfy two conditions. Second, cLink aligns each selected
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predicate with the corresponding ones in the target repos-
itory using an overlap measure. The conditions used in
the first step are the discriminative and the coverage, which
are customized from [22]. The discriminability dis(pk) ex-
presses the diversity of the RDF objects declared by pk,
while the coverage cov(pk) represents the instance-wise fre-
quency of pk. Equation (1) and (2) describe dis(pk) and
cov(pk), respectively:

dis(pk) =
|{o|x ∈ Rsource, < s, pk, o >∈ x}|

|{< s, pk, o > |x ∈ Rsource, < s, pk, o >∈ x}|
(1)

cov(pk) =
|{x|x ∈ Rsource, < s, pk, o >∈ x}|

|Rsource|
(2)

where R stands for repository, < s, p, o > is a RDF triple,
and x is an instance, which is a set of RDF triples sharing
the same subject s. We separate the predicates by their data
type: string, number, date, and URI. The type of a predicate
is assigned with the most frequent type of its RDF objects.
For each type, we select the predicates having the discrim-
inability dis higher than α and then retain the Kcov predicates
with the highest coverages cov.

One predicate selected from the source repository can
be aligned with many predicates having the same type in the
target. The confidence con f of an alignment [psource, ptarget]
is measured as follows:

con f ([psource, ptarget]) =
|Opsource ∩ Optarget |
|Opsource |

(3)

Opk = {E(o)|x ∈ Rk, < s, pk, o >∈ x}
where E is a pre-processing function. E is applied for each
RDF object. E works in flexible ways depending on the
property type. For string, E collects the tokens. For number,
E returns the rounded value at two decimal digits. For date,
E keeps the original value. For URI, E extracts the remain-
ing string after stripping away the domain. For each predi-
cate of the source repository, we select the top Kalign align-
ments having the highest con f . In total, this step produces
at most Kcov × Kalign property alignments for each type. In
technical aspect, a very small threshold is applied to con f to
avoid accepting slightly related property alignments. We set
this threshold into 0.01 by default.

Equation (3) works under the assumption that the tar-
get repository contains many co-references with the source
repository. Therefore, the denominator is related only to
the source repository instead of both repositories like a Jac-
card measure, which is used in SERIMI [3] and SLINT+ [4].
Equation (3) is reasonable because currently there are many
large repositories that cover a wide range of instances (e.g.,
DBpedia, Freebase, and Wikidata). Furthermore, as the
predicate alignments are generated using only RDF objects,
cLink does not require the specification of the schemata. In
other words, cLink is schema-independent.

3.2 Similarity Function Generator

This component uses the property alignments generated by

the previous component to create the prototype† of the initial
set of similarity functions. This set is later used to select
the similarity functions for the optimal configuration. Each
similarity function computes the similarity of two instances
on one designated property. Equation (4) is the definition of
a similarity function sim:

sim{[psource,ptarget],sm}(x, y) = max
ox,oy

(sm(E(ox), E(oy))) (4)

< s, psource, ox >∈ x, < s, ptarget, oy >∈ y

A similarity function is specified by two pieces of informa-
tion: a property alignment [psource, ptarget] and a similarity
measure sm. Therefore, given multiple property alignments
and similarity measures, different similarity functions are
created. For two instances: x ∈ Rsource and y ∈ Rtarget, a
similarity function returns the similarity of the most similar
RDF objects declared by psource and ptarget. In other words,
the max operator effects if psource or ptarget appears many
times in x or y. The function E defined in Sect. 3.1 is used
to pre-process the RDF objects.

The similarity measure sm is assigned to the similarity
function in accordance with the type of psource and ptarget.
cLink supports five similarity measures. For ‘date’ and
‘URI’, cLink uses the exact matching, which returns 1.0 if
two values are identical and 0.0 otherwise. For ‘number’,
cLink uses the reversed difference (Eq. (5)), which calcu-
lates how much close two numbers a and b are to each other:

rDi f f (a, b) = (1 + |a − b|)−1 (5)

For string, cLink supports many measures having different
characteristics. For short string, we select Levenshtein be-
cause of its robustness. For long string, we use the well-
known TFIDF-cosine in order to consider the overlap of to-
ken as well as the their weight.

The input of this component is all the generated prop-
erty alignments. In parallel, the alignments of string prop-
erties are also input into the candidate generator, which is
described in the following section.

3.3 Candidate Generator

Basically, every pair of instances between Rsource and Rtarget

need to be compared to find all the co-references. However,
it is impractical to perform all pairwise comparisons, espe-
cially when the repositories are large. The mission of this
component is to reduce the number of comparisons from
|Rsource| × |Rtarget | into a much smaller number. For that mis-
sion, we limit the comparisons to only the potentially co-
referent instances, which are called candidates.

cLink finds the candidates by using a simple token-
based prefix blocking approach. Using this approach, a pair
of two instances is considered as a candidate if they share
at least one first token of the RDF objects declared by any
string property alignment. By using only the first token,
cLink can retain as many correct candidates as possible.

†Only the declaration of similarity functions are created.
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Algorithm 1: cLearn
Input: Training set T , validation set V , list of similarity
functions Isim, list of similarity aggregators Iagg, integer Ktop

Output: Optimal configuration Copt

1 Cagg ← ∅
2 foreach A ∈ Iagg do
3 visited ← ∅
4 foreach sim ∈ Isim do
5 c← Init(Agg← A, Fsim ← sim, δ← 0)
6 [c.δ, F1]← EvaluateAndAssignThreshold(c,T )
7 c.σsim ← c.δ
8 visited ← visited ∪ {[c, F1]}
9 candidate← TopHighestF1(visited,Ktop)

10 while candidate , ∅ do
11 next ← ∅
12 foreach g ∈ candidate do
13 foreach h ∈ candidate do
14 c← Init(Agg← A, Fsim ←

g.c.Fsim ∪ h.c.Fsim, δ← 0)
15 [c.δ, F1]←

EvaluateAndAssignThreshold(c,T )
16 visited ← visited ∪ {[c, F1]}
17 if g.c.Fsim , h.c.Fsim and F1 ≥ g.F1 and

F1 ≥ h.F1 then
18 next ← next ∪ {[c, F1]}

19 candidate← next

20 F1← Evaluate(argmaxv∈visited(v.F1).c,V)
21 Cagg ← Cagg ∪ {[c, F1]}
22 [Copt , F1]← argmaxv∈Cagg (v.F1)
23 return Copt

There are many studies on candidate generation that
use weighting schemes to reduce the number of candi-
dates [4], [23]. However, such reduction is companied with
a drop in the number of correct candidates. For that reason,
we use the simple token-based blocking without weighting.

Given some co-references as labeled data, the label of
some candidates are assigned. If a candidate (x, y) exists in
the input co-references, where x ∈ Rsource and y ∈ Rtarget,
(x, y) is labeled as positive and all other candidates (x, z) are
labeled as negative, where y , z ∈ Rtarget. Furthermore,
the labeled candidates are divided into training set T and
validation set V , which are used by the learning algorithm
in the next step.

3.4 Configuration Learner

In this component, we first initialize the set of different
similarity aggregators Iagg, which are later described in
Sect. 3.5. The similarity aggregators Iagg, the labeled can-
didates (training set T and validation set V), and the initial
similarity functions Isim (Sect. 3.2) are input to the learning
algorithm. The algorithm learns the optimal configuration
Copt that is most suitable to the input repositories. A con-
figuration specifies the combination of similarity functions
Fsim, the similarity aggregator Agg, the parameters δsim as-
sociated with each similarity function sim, and the parame-
ter δ of the co-reference filter (Sect. 3.6).

We propose cLearn, whose initial stage is previously
presented in [24]. cLearn uses a heuristic search method to
optimize the combination of the similarity functions and the
similarity aggregator. The pseudo code of cLearn is given in
Algorithm 1. In this pseudo code, we use dot (‘.’) notation
to indicate the member accessor. Init creates a configuration
by assigning Agg, Fsim, and δ with given values. Evaluate
first executes the similarity aggregator and the co-reference
filter specified by a configuration, on a set of candidates.
Then, based on the label of those candidates, it computes
the performance, F1 score. F1 is the harmonic mean of
the recall rec and the precision pre, which are calculated as
follow:

rec =
Number of correctly detected co-references

Number of actual co-references
(6)

pre =
Number of correctly detected co-references

Number of all detected co-references
(7)

EvaluateAndAssignThreshold works similarly to Evaluate,
but at the same time, it finds a value for the threshold c.δ.
After executing the similarity aggregator and co-reference
filter, we first select the top N candidates from T with high-
est matching score, where N is equal to the number of actual
co-references in T . The N selected candidates can contain
both correct and incorrect co-references. Based on the label
of the N selected candidates, we compute the performance
F1. For c.δ, we assign the lowest matching score of the
correctly selected candidate. Ktop is an integer value that
controls the maximum quantity of similarity functions in the
learned configuration. By default, Ktop is set to 16. In addi-
tion, visited variable is used to count the number of checked
configurations for each similarity aggregator A.

cLearn begins with the consideration of each sin-
gle similarity function and then checks their combinations.
This algorithm works with an underlying heuristic. It is
the direct enhancement assumption (line 17). The per-
formance of using a new combination must not be less
than that of the components. This heuristic is reason-
able as a list of similarity functions that reduces the per-
formance has little possibility of generating a further list
with improvement. In addition, this algorithm is generic
because EvaluateAndAssignThreshold can be replaced by
other functions having the same purpose. Therefore, this al-
gorithm is compatible with any similarity-based matching
system.

The validation set V (line 20) is important. Each itera-
tion controlled by line 2 finds an optimal configuration with
one similarity aggregator A. In other words, there are |Iagg|
configurations in Cagg. In order to select the most optimal
one from Cagg, instead of just selecting the configuration
having the best performance on T , we use V to increase the
generality of the final configuration Copt.

3.5 Similarity Aggregator

A similarity aggregator computes the final matching score
for each candidate using the similarity functions Fsim and
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their parameter δsim specified by a configuration. The com-
putation of the matching score mS core(x, y) for two in-
stances x and y is defined as follows:

mS core(x, y) = weight(y) × combineFsim
(x, y) (8)

where weight is a function weighting the target instance y
and combine is a similarity combination function. cLink
provides non-weighting and weighting versions. For non-
weighting, weight(y) simply returns 1.0. For weighting, the
weight is calculated by Eq.(9):

weight(y) = logmaxt∈Rtarget size(t) size(y) (9)

where size(y) counts the number of RDF triples existing in y.
By using Eq. (9), we assume that instances containing many
triples are more prioritized. The logarithmic scale is used
to reduce the weight of instances whose size is particularly
large. This weighting method is effective when the target
repository is very ambiguous, such as large repositories.

For similarity combination, cLink uses the following
e1quation:

combineFsim
(x, y) =

1
valid(UFsim (x, y))

∑
v∈UFsim (x,y)

vk

(10)

UFsim
(x, y) = {sim(x, y)|sim(x, y) ≥ σsim, sim ∈ Fsim}

where k ∈ {1, 2}, valid is a counting function, and σsim is the
parameter for each similarity function sim, which is deter-
mined automatically by cLearn (line 7). k controls the trans-
formation for each similarity v. When k = 1, combine acts as
a first order aggregation. When k = 2, we have a quadratic
aggregation. There are also two variations of valid, which
return the number of elements in UFsim (x, y) and 1.0 always.
The difference between these variations is that the latter pe-
nalizes the (x, y) pair having similarities sim(x, y) < σsim

while the former does not. In addition, cLink provides a
restriction mechanism to enable or disable σsim. When dis-
abling, all σsim are set to zero instead of their original value.
In total, there are 16 combinations of weight, valid, k, and
restriction. Consequently, there are 16 different aggregators
supported by cLink. All aggregators are used to initialize
Iagg in cLearn and let the configuration learner select the
best one.

3.6 Co-Reference Filter

This component uses the matching scores of the candidates
to construct the final co-references. In cLink, we reuse
the adaptive filter implemented in SLINT+ [4]. This fil-
ter follows the idea of the stable marriage problem [25].
A pair of instances (x, y) is co-referent if its matching
score mS core(x, y), satisfies the conditional statement of
Eq. (11):

mS core(x, y)

≥ max( max
z∈Rsource

mS core(z, y), max
t∈Rtarget

mS core(x, t)) (11)

where x ∈ Rsource and y ∈ Rtarget. This filtering strategy
is specially effective on highly ambiguous data, when many
candidates are very similar but only the most similar one is
the expected co-references.

In addition, this component uses a cut-off filter to elim-
inate the incorrect candidates but satisfying Eq. (11). A
threshold δ is used for this task. δ is assigned by the learning
algorithm. Only instance pairs whose scores satisfy the con-
dition statement of the filter and threshold δ are promoted to
be a final co-reference.

Above we have described the details of cLink. The
next section reports the experiments and the results.

4. Experiment

We report in total four experiments. The first experi-
ment evaluates the candidate generator. The second exper-
iment evaluates the effectiveness of the learning algorithm
of cLink. The third experiment compares cLink with other
systems, including the systems that use supervised learning
approach. The fourth experiment analyzes the impact of the
size of training data on the performance of cLink. In addi-
tion, we discuss the effectiveness of similarity functions and
similarity aggregators. The details of the experiments are
described from Sect. 4.3 to 4.7.

We implement cLink using C++ language and conduct
all experiments on a FreeBSD computer equipped with two
Intel E5-2690 CPUs and 256 GB memory. The source code
of cLink and all datasets can be downloaded at http://ri-
www.nii.ac.jp/ScSLINT.

4.1 Datasets

We use the standard real-world benchmarks provided by
the entity resolution track of OAEI 2010 and OAEI 2012.
The OAEI 2010 dataset contained five repositories related
to healthcare domain: Sider, Diseasome, Drugbank, Dai-
lymed, and DBpedia. The OAEI 2012 dataset contains
four repositories: NYTimes (NYT), DBpedia, Freebase, and
Geonames, with three domains: location (loc), organization
(org) and people (peo). There are a few slight inconsisten-
cies between the ground-truth provided by OAEI 2012 and
our downloaded dump data, because of the difference in the
release dates †. Therefore, we exclude 130 (0.298%) source
instances which are related to such inconsistencies. The de-
tails of these subsets are given in Table 1.

These datasets are chosen because the purpose of this
experiment is to know the performance of cLink on the real
data with large size. Although there are few newer datasets
provided by OAEI, they do not focus on real-world resolu-
tion problem, contain small size, or are designed for testing
entity resolution systems with some special challenges (e.g.,
unusual string distortion, language translation). In addition,
using these datasets offer comparisons between cLink and

†We use DBpedia 3.7, Freebase 2013/09/23, and Geonames
2014/02.
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Table 1 Summary of OAEI 2010 (D1 to D5) and OAEI 2012 (D6 to D12) datasets

ID Source repository Target repository Co-
Name #Instances #Properties #RDF Triples Name #Instances #Properties #RDF Triples references

D1 Sider 2,670 10 96,269 Drugbank 19,689 118 507,495 1,142
D2 Sider 2,670 10 96,269 Diseasome 8,149 18 69,544 344
D3 Sider 2,670 10 96,269 Dailymed 10,002 27 131,064 3,225
D4 Sider 2,670 10 96,269 DBpedia 4,183,461 45,858 232,957,729 1,449
D5 Dailymed 10,002 27 131,064 DBpedia 4,183,461 45,858 232,957,729 2,454
D6 NYT loc-db 3,837 22 42,998 DBpedia 4,183,461 45,858 232,957,729 1,917
D7 NYT org-db 5,967 20 54,404 DBpedia 4,183,461 45,858 232,957,729 1,922
D8 NYT peo-db 9,944 20 103,341 DBpedia 4,183,461 45,858 232,957,729 4,964
D9 NYT loc-fr 3,840 22 43,037 Freebase 40,358,162 2,455,627 912,845,965 1,920
D10 NYT org-fr 6,045 20 59,111 Freebase 40,358,162 2,455,627 912,845,965 3,001
D11 NYT peo-fr 9,958 20 103,496 Freebase 40,358,162 2,455,627 912,845,965 4,979
D12 NYT loc-gn 3,785 22 42,302 Geonames 8,514,201 14 112,643,369 1,729

recent systems, which were tested on the same benchmarks.

4.2 Experimental Settings

4.2.1 Parameter Settings

For property alignment generator, we set Kcov = 4, and
Kalign = 4 uniformly for all property types so that the max-
imum number of property alignments are 64. We set Kcov

and Kalign to high values because we expect to get many sim-
ilarity functions in order to know the system’s capability of
finding the optimal similarity functions combination. After
that, we gradually reduce α from 1.0 until there is at least
one string property alignment is selected for each subset.
We observe that using α = 0.5 satisfies such an expectation
and use this value uniformly for all tests. We do not tune
α for each subset because we are interested in testing the
system using the same parameters for many different input.

Furthermore, varying α in the large ranges of [0.2, 0.7]
and [0.1, 0.5] does not change the property alignments on
OAEI 2010 and OAEI 2012 dataset, respectively. It implies
that this component is not sensitive to parameters on tested
real datasets and thus potentially remains the same advan-
tage on other datasets.

4.2.2 Candidate Splitting

When splitting a set of candidates into smaller sets, we ran-
domly separate the candidates with the constraint that all the
candidates sharing the source instance are put together. In
other words, each separated set does not share any source
instance with each other.

For all experiments, we first split the candidates into
two sets. The size of these sets is determined differently
for each experiment. The first set is reserved for learning,
and the second set (test set) is used for evaluating the per-
formance. After that, the first set is split into training set T
(80%) and validation set V (20%). Furthermore, since the
source repository contains instances that are not co-referent
with any instance in the target, an unmanaged randomiza-
tion may not reflect the actual distribution of the data. Let
r be the ratio between the number of the source instances

Table 2 Result of candidate generation.

D1 D2 D3 D4
#cans 5,771 4,258 5,013 482,605

rec 0.9721 0.9535 0.9939 0.9538

D5 D6 D7 D8
#cans 987,856 38,201,823 61,702,166 46,942,099

rec 0.9780 0.9718 0.9880 0.9970

D9 D10 D11 D12
#cans 222,686,524 357,365,003 620,073,101 32,161,659

rec 0.9875 0.9770 0.9912 0.9676

having a co-reference and the ones that do not have any co-
reference. We remain the ratio r for every separated set.

Our separation strategy is reasonable because it is com-
patible with the practical annotation process. Given an in-
stance from source repository, a ranked list of instance pairs
is created using a simple matching method. Annotators are
asked to assign the positive labels for the top ranked pairs.
Because the list is sorted, the remaining pairs can be as-
sumed to be negative. By following this manner, such pos-
itive label assignments have tiny possibility to be incorrect.
That is, the quality of training data is guaranteed.

4.3 Experiment 1: Candidate Generation

In this experiment, we measure the number of the gener-
ated candidates and their recall, which reflects the percent-
age of the correct candidates over all actual co-references.
Because the objective of candidate generator is to retain as
many correct candidates as possible, the recall metric is very
important. This metric also indicates the maximum recall
that cLink can obtain for the final resolution result. For
computing the recall, we replace the numerator of Eq. (6)
by the correct candidates. Table 2 reports the number of
the generated candidates #cans and the recall rec. Although
cLink uses only the first token for blocking method in the
candidate generator, according to this table, the recall can-
not reach to 1.0. Meanwhile, the number of candidates is
already very large compared to the expected co-references
(Table 1), especially on OAEI 2012 dataset (D6 to D12).
However, compared to the number of all possible instance
pairs between the source and the target repository, more than
99.9% of them are excluded. Obviously, candidate genera-



NGUYEN and ICHISE: LINKED DATA ENTITY RESOLUTION SYSTEM ENHANCED BY CONFIGURATION LEARNING ALGORITHM
1527

Table 3 F1 score of cLink when using cLearn and other algorithms.

cLearn genetic gain naive none
D1 0.9365 0.9375 0.8204 0.8767 0.8137
D2 0.8679 0.8450 0.8341 0.8733 0.8430
D3 0.8686 0.7665 0.6841 0.6741 0.6841
D4 0.6676 0.6673 0.6651 0.6407 0.5535
D5 0.4725 0.4727 0.3065 0.3100 0.2080
D6 0.8835 0.8249 0.8760 0.8289 0.7336
D7 0.9058 0.9058 0.8409 0.8594 0.4508
D8 0.9645 0.9635 0.9625 0.9581 0.9506
D9 0.8781 0.8781 0.8615 0.8609 0.1934
D10 0.9116 0.9089 0.8198 0.8105 0.2223
D11 0.9465 0.9477 0.9260 0.9325 0.4640
D12 0.9163 0.9106 0.8848 0.8908 0.8852

H.Mean 0.8191 0.8022 0.7220 0.7236 0.4249

tor considerably reduces the complexity of further compo-
nents, such as the similarity aggregator and the configura-
tion learner.

4.4 Experiment 2: Compare cLearn with Other Algo-
rithms

In order to evaluate the effectiveness of our proposed learn-
ing algorithm, we compare the result of cLink when us-
ing cLearn and when replacing it with other algorithms.
We compare cLearn with two baseline algorithms: non-
optimization (none) and naive (naive). We also compare
cLearn with the recent information gain based selection
(gain), and the state-of-the-art genetic algorithm (genetic).
none works similarly to SLINT+ [4] and SERIMI [3], by
accepting all the generated similarities functions (Sect. 3.2)
without learning. naive selects the Ktop similarity func-
tions that obtain highest F1. gain implements the idea
of ADL [7], which selects the most discriminative property
alignments by measuring the information gain of each prop-
erty. genetic follows the idea of EAGLE [10] and ActiveG-
enLink [8], which use genetic algorithm to learn the match-
ing configuration. We use binary array representation for the
combination of similarity functions. We choose exponential
ranking for fitness selection, 0.7 for single point cross-over
probability, 0.1 for single point mutation probability, and 50
for the population size. In order to implement other algo-
rithms, we replace the lines from 3 to 19 of Algorithm 1
with the new algorithms. In other words, the mechanism
of determining σsim, δ, and Agg remains the same of all al-
gorithms. We are interested in reimplementing other algo-
rithms because it offers more elaborate comparisons. Con-
cretely, it enables using the same input of similarity func-
tions and other settings (e.g., similarity aggregators), which
affects the final result. In addition, other algorithms are in-
stalled in the systems that are not scalable to large datasets,
so that we cannot directly compare cLink with those sys-
tems.

We use 5-folds cross validation for this experiment.
We choose cross-validation so that all candidates are in turn
used for training. Table 3 reports the average F1 scores on
each subset of the tested algorithms. According to this ta-
ble, in overall, cLearn consistently outperforms gain, naive,

Table 4 F1 score of cLink and other systems on OAEI 2010.

Training data System D1 D2 D3 D4 D5

5%
cLink 0.911 0.824 0.777 0.6414 0.424
Adaboost 0.903 0.794 0.733 0.641 0.375

Variable
cLink 0.894 0.829 0.722
ObjectCoref 0.464 0.743 0.708

Reference systems
RiMOM 0.504 0.458 0.629 0.576 0.267
PARIS 0.649 0.108 0.149 0.502 0.219

and none. Considers each fold separately, so that there are
60 tests for 12 subsets, the paired t-test over all tests at
0.05 significant level shows that cLearn is significantly bet-
ter than all of naive, gain, none, and genetic. Compared
to gain, cLearn consistently outperforms this algorithm for
all subsets. Also, although genetic is slightly better than
cLearn on five subsets, the efficiency of genetic is much
lower than cLearn. genetic spends averagely 7,231 seconds
for learning on one subset of OAEI 2012 cLearn only needs
2,977 seconds. The average numbers of configurations that
cLearn and genetic have to check are 126 and 263, respec-
tively. That is, almost 50% configurations are skipped by
using cLearn compared to genetic. This fact supports the
efficiency of using our heuristic against the random conver-
gence principle of genetic algorithm.

4.5 Experiment 3: Compare cLink with Other Systems

We use OAEI 2010 dataset to compare cLink with Object-
Coref [6] and the work in [11], which uses Adaboost to train
a classifier. Adaboost uses 5% candidates for training and
ObjectCoref uses 20 actual co-references, which is equiva-
lent to 2.3%, 11.6% and 1.2% candidates on D1, D2, and
D3, respectively†. Therefore, we use the same amount of
training data with each other system for cLink, on each re-
spective subset for the comparisons. For each subset, we run
cLink 10 times with random selection for training data. Af-
ter that, we take the average result. In addition, we collect
the result of RiMOM and PARIS [17] as two state-of-the-art
systems of non-learning based approach for reference.

As shown in Table 4, cLink consistently outperforms
other systems. Compared with ObjectCoref, cLink drasti-
cally improves the results. Compared with Adaboost, cLink
is remarkably better on D3 and D5, which are related to
DailyMed, a repository contains the highest number of co-
references inside. In overall, learning based systems in-
cluding cLink, Adaboost, and ObjectCoref are much better
than RiMOM and PARIS. This fact confirms the necessity
of learning based systems for improving the effectiveness.

For OAEI 2012 datasets, we cannot directly compare
with other learning-based systems because none of them
supports a large scale dataset like this. The reported re-
sult of ADL [7], Knofuss [5], and ActiveGenLink [8] on this
dataset is based on a much smaller dataset simplified from

†Only the results on D1, D2, and D3 are available for Object-
Coref [26].
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Table 5 F1 score of cLink and other systems on OAEI 2012.

cLink Zhishi.Links AggrementMaker SERIMI
D6 0.88 0.92 0.69 0.68
D7 0.90 0.91 0.74 0.88
D8 0.96 0.97 0.88 0.94
D9 0.87 0.88 0.85 0.91
D10 0.90 0.87 0.80 0.91
D11 0.95 0.93 0.96 0.92
D12 0.88 0.91 0.85 0.80
H.mean 0.903 0.912 0.816 0.853

the original data due to the scalability issue. Using the sim-
ple version of this dataset is not difficult to obtain near per-
fect results, as reported in [4]. However, considering that the
learning algorithm is the core of those supervised systems,
the results of Experiment 2 partly show the improvement of
cLink against these systems.

For reference, we report the comparison on OAEI
2012 dataset between cLink and three non learning-based
systems, including the state-of-the-art Zhishi.Links [18],
AgreementMaker [16], and SERIMI [3]. In order to mini-
mize the different of input knowledge, we feed only 5% can-
didates into the learning algorithm. Table 5 reports this com-
parison. According to this table, in general, cLink clearly
outperforms AgreementMaker and SERIMI and is compet-
itive to Zhishi.Links. Note that Zhishi.Links is specially
customized for this dataset as this system applies 19 uni-
fication rules for matching difficult strings that frequently
appear in this dataset (e.g., ‘Co’ and ‘Company’, ‘Manhat-
tan’ and ‘NYC’). Therefore, considering the importance of
generality cLink reveals its strengths against Zhishi.Links.

From above comparisons, cLink is competitive or ob-
tains better performance against other systems by using a
very limited amount of labeled candidates for training. In
the next experiment, we evaluate more detail on the perfor-
mance of cLink with different amount of training data.

4.6 Experiment 4: Size of Training Data

Previous experiment has shown that cLink does not need
much training data to outperform other systems. However,
it is important to know the optimal size of training data from
that cLink can benefit. We vary the size of training data
from 1% to 20% of all candidates and analyze the changing
trend of performance. At each ratio, we repeat the random
split 10 times for each subset and then measure the aver-
age result on the test sets. Figure 2 and Fig. 3 illustrate the
results of this experiment. According to these figures, the
optimal size of training data is different for each subset. The
smallest optimal size is 6% on D8 and the largest is 14%
on D6. In overall, consider the harmonic mean, cLink only
needs 11% candidates for training as after this point, the F1
score does not considerably increase. Although the optimal
size of training data is larger than that of Experiment 3, it
still can be concluded that cLink does not require a large
amount of labeled data. This result confirms the practicality
of cLink and supports the application of supervised learning
approach for entity resolution problem.

Fig. 2 F1 scores on OAEI 2010.

Fig. 3 F1 scores on OAEI 2012.

4.7 Discussion on Similarity Functions and Similarity Ag-
gregators

In order to know which similarity aggregators and similarity
measures are most effective and whether they can be univer-
sally used or not, we conduct some statistics on the optimal
configuration produced by the configuration learning algo-
rithms. We reuse all the results of Experiment 2 and 3, ex-
cept for Experiment 3, we skip the result of none because
this algorithm does not perform any similarity function se-
lection.

The selected similarity aggregators are diverse. The
most frequently selected similarity aggregators are the
two ones with quadratic aggregation (k = 2), enabled
restriction, and weighting. Together, these aggregators ap-
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pear with 45% out of all cases. Among them, valid =
|UFsim(x, y)| is most frequent on OAEI 2010 (30%) and
valid = 1.0 is most frequent on OAEI 2012 (28.3%). Sim-
ilarly, the measures for string similarity are also varied by
subset. For Experiment 3, all algorithms produce totally
1,505 similarity functions. Among them, TFIDF Cosine is
the most important as its frequency is 41% and is selected
for almost every subset. In addition, rDi f f is very impor-
tant for the subsets related to location domain as it is always
selected on D6, D9, and D12. The variety of learning re-
sults in general and the weak dominance of the most fre-
quent similarity aggregators and similarity measures, show
that for particular input, it is difficult for user to define a
perfect matching configuration like an automatic system can
do.

Another interesting finding is observed for D6. When
the size of training data is 80%, only longitude, one of two
important geographic properties, is selected. While both
longitude and latitude are considered as important for D9,
D12, and even in human thinking, the learning algorithm re-
turns a different recommendation. This example, together
with the variety of learning results as discussed above, con-
firm the necessity of automatic learning algorithms.

5. Conclusion and Future Work

In this paper, we presented an effective and efficient super-
vised instance matching system named cLink. cLink is de-
signed based on the configuration-based instance matching
architecture and is enhanced by cLearn, a novel heuristic
algorithm. cLearn can effectively optimize the matching
configuration using a small amount of training data. The
experimental results show that cLearn is significantly better
than other algorithms, including the ones that are used by
other state-of-the-art systems. Compared to recent systems,
cLink also drastically improves the performance.

The candidate generator while delivering high recall,
creates many unnecessary candidates. We will investigate
learning algorithms for the learning of candidate generator
in order to obtain the optimal candidate set. In addition,
a study on the stability of the learned configuration would
be useful for enabling the utility of transfer learning, from
which a configuration can be applied for similar reposito-
ries [11]. We also plan to apply active learning to reduce
annotation effort for the practical usage of cLink.
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