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PAPER

FPGA Hardware Acceleration of a Phylogenetic Tree
Reconstruction with Maximum Parsimony Algorithm

Henry BLOCK†a), Nonmember and Tsutomu MARUYAMA†b), Member

SUMMARY In this paper, we present an FPGA hardware implemen-
tation for a phylogenetic tree reconstruction with a maximum parsimony
algorithm. We base our approach on a particular stochastic local search
algorithm that uses the Progressive Neighborhood and the Indirect Calcu-
lation of Tree Lengths method. This method is widely used for the accel-
eration of the phylogenetic tree reconstruction algorithm in software. In
our implementation, we define a tree structure and accelerate the search
by parallel and pipeline processing. We show results for eight real-world
biological datasets. We compare execution times against our previous hard-
ware approach, and TNT, the fastest available parsimony program, which
is also accelerated by the Indirect Calculation of Tree Lengths method. Ac-
celeration rates between 34 to 45 per rearrangement, and 2 to 6 for the
whole search, are obtained against our previous hardware approach. Ac-
celeration rates between 2 to 36 per rearrangement, and 18 to 112 for the
whole search, are obtained against TNT.
key words: FPGA, hardware acceleration, phylogenetic tree reconstruc-
tion, maximum parsimony

1. Introduction

In biology, phylogenetics is the field that attempts to recon-
struct the evolutionary relationships among entities. These
entities (taxa) can be species, genomes, genes, regions of a
gene, protein sequences, molecule sequences, etc. [1], [2].
The relationships are graphically represented on a tree as
ancestor-descendant relationships in a branching pattern.
The tree starts from a common ancestor, known as the root
of the tree, and branches into distinct lineages that descend
to the taxa that are being analyzed. An example of a phylo-
genetic tree for the true flies is shown in Fig. 1.

Different methods exist to infer a phylogenetic tree, and
they are classified into four main categories: Distance, Max-
imum Likelihood, Bayesian, and Parsimony methods [2]. In
this work, we are concerned with phylogenetic reconstruc-
tion of molecular DNA sequence data with maximum parsi-
mony. Using molecular sequence data has become possible
thanks to advances in DNA sequencing, and is now an im-
portant field with applications in biology and medicine [4].

The maximum parsimony criterion is based on the as-
sumption that the most likely tree is the one that requires the
fewest number of evolutionary changes to explain the given
data [5]. This implies evaluating all possible trees. However,
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Fig. 1 True Flies (Diptera) Tree. [3]

due to the computational complexity [6], heuristic methods
are used to find a suboptimal solution without having to do
a complete search through the tree space. Different heuris-
tic methods have been proposed, and the most well-known
are based on a stochastic local search that uses a neighbor-
hood relation to explore the tree space [7]. Nevertheless, a
software implementation of these methods can still require a
considerable amount of time for a larger phylogenetic prob-
lem.

Hence, FPGA hardware approaches have been pro-
posed to reduce the execution time. For example, in some
previous works [8]–[11], accelerations for the maximum
parsimony problem were proposed. However, in this pre-
vious work [8], the approach is based on the evaluation of
all possible tress, and is limited to a number of only 12 taxa.
In this other previous work [9], the approach is not restricted
by the number of taxa, but it only addresses the parsimony
function, not the whole search algorithm. Next, in our pre-
vious work [10], we proposed an approach for the acceler-
ation of the local search algorithm that uses the Progres-
sive Neighborhood [7]. Although the speedup obtained was
considerable against a software implementation of the same
algorithm, it didn’t exceed TNT, the fastest available parsi-
mony program [12]. Then, in our other previous work [11],
we added to our approach the Indirect Calculation of Tree
Lengths method [14]. This method allowed us to exceed by
far the acceleration rates obtained in our previous work [10],
and surpass those of TNT.

In this work, we continue with the same approach, but
here we focus more on the following points: describing each
of the units involved in the FPGA implementation, evaluat-
ing the approach for even larger problems, and analyzing the
performance in more detail.

We decided to adopt an FPGA rather than a GPU or
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other many-core accelerators, because the algorithm under
consideration involves a lot of memory accesses and de-
tailed low-level hardware operations that are not suit for
high-level languages. In addition, GPUs or other many-core
accelerators impose a fixed programming model, whereas
FPGAs do not; thus, they allow a higher level of customiza-
tion [13]. This means that we can obtain a higher perfor-
mance by designing a specific circuit that best suits the phy-
logenetic tree reconstruction algorithm.

This paper is organized as follows. In the next section,
we give an overview of the main steps involved in the algo-
rithm used for phylogenetic tree reconstruction. In Sect. 3,
we explain the hardware approach taken. In Sect. 4, we
show the implementation and simulation results obtained.
Then, in Sect. 5, we discuss these results. Finally, we end
our work with the conclusions.

2. Overview of the Algorithm for Phylogenetic Tree
Reconstruction

In this section, we explain the main steps involved in the
algorithm for phylogenetic tree reconstruction: the first-pass
optimization, the second-pass optimization, the evaluation
of rearrangement trees by applying the Indirect Calculation
of Tree Lengths method, and the Progressive Neighborhood.
These steps are used in the stochastic local search algorithm
shown at the end of the section.

2.1 Tree Optimization

The tree optimization process comprises two phases. The
first phase is called the first-pass optimization. The second
phase is called the second-pass optimization.

2.1.1 First-Pass Optimization

The first-pass optimization is the phase where the prelimi-
nary ancestral character states of the nodes, along with the
length, i.e the score, are found. There exist two widely used
methods that depend on the algorithm applied: Fitch’s al-
gorithm [15] and Sankoff’s algorithm [16]. Here, we use
Fitch’s, because it is less complex. The first-pass optimiza-
tion proceeds from the tips of the tree (taxa) by formulating
an ancestral character state for each node in the tree, work-
ing backwards, until the character state for the most distant
node (root) has been formulated. In addition, each time an
evolutionary change takes place, the score of the tree is in-
creased by one. An ancestral node state, along with the tree
length, is inferred by using the algorithm in Fig. 2 for each of
the characters in the sequence data matrix: where PA refers
to the preliminary character state of the current node, and
PB and PC to that of its descendant nodes. T L refers to the
length of the tree. The final score of the tree can then be
calculated as the sum of the lengths obtained for each of the
characters in the sequence data matrix. An example of the
first-pass optimization is shown in Fig. 3 for a tree with 5
taxa.

Fig. 2 First-pass Optimization Algorithm [17]

Fig. 3 First-pass optimization example

Fig. 4 Second-pass Optimization Algorithm [17]

Fig. 5 Second-pass optimization example

2.1.2 Second-Pass Optimization

The second-pass optimization is the phase where the final
ancestral character states are found. This pass proceeds in
the reversed order, from the root to the tips of the tree. The
final character state for a node is obtained by applying the al-
gorithm in Fig. 4 for each of the characters in a node: where
FA refers to the final character state of the current node PA,
FD to that of its parent node, and PB and PC to the prelim-
inary character states of its descendants. An example of the
second-pass optimization is shown in Fig. 5 for the previous
tree.
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Fig. 6 Difference Score Calculation [14]

Fig. 7 Rearrangement evaluation example

2.2 Indirect Calculation of Tree Lengths

A first-pass optimization for a tree with T taxa requires vis-
iting each one of the T − 1 internal nodes. Thus, the time
required increases with T . On the other hand, the Indirect
Calculation of Tree Lengths method allows to evaluate all
rearrangements that can be constructed after clipping the
tree without having to visit each internal node. The time
required is approximately 1/T , and does not increase with
T [14]. The score of a rearrangement can be obtained by the
following Eq. (1).

RT.S core = MT.S core +CT.S core + D.S core (1)

where RT.S core is the score of the rearrangement tree being
evaluated, MT.S core is that of the main tree, CT.S core is
that of the clipped tree, and D.S core is that of the difference
between the clipped tree’s root and the insertion branch in
the main tree. This difference can be calculated as shown in
Fig. 6: where NZ is the final character state of the root of the
clipped tree, NX is the final character state of a node in the
main tree, and NY is that of its descendant. In other words,
NX and NY form the branch where NZ could be reinserted.
This method is exact, i.e. it will always produce the right
score. However, it requires a second-pass optimization on
top of the first every time the tree is clipped, because the
final states of all nodes are required [14]. An example for
the rearrangement evaluation using the Indirect Calculation
of Three Lengths method is shown in Fig. 7 for a main tree
with 5 taxa and a subtree with 2 taxa.

D.S core(i) is the D.S core when the clipped tree is in-
serted in i. In this particular example, all the possible rear-
rangements that can be generated have the same score equal
to 3, because the score differences of all of them are 0.

2.3 Progressive Tree Neighborhood

The Progressive Neighborhood aims to combine the proper-
ties of large and small neighborhoods by changing its size
as the search progresses. It starts with a large neighborhood
and ends with a small neighborhood. Starting the search
with a large neighborhood allows examining more neigh-
bors, and ensures a more global search. Then, as the search
progresses the neighborhood gets reduced, so the changes
applied to the tree topology are more restricted. A simple
progressive tree neighborhood uses Sub-tree Pruning and
Regrafting (SPR) as the large neighborhood and Nearest
Neighbor Interchange (NNI) as the small neighborhood. To
change the size of the neighborhood during the search, a
distance parameter is used to constrain the distance between
the pruned branch and the branch where it is reinserted [7].
The progressive tree neighborhood that uses SPR and NNI
can be described by Eqs. (2) and (3) [7].

NS PR
dinit
≡ NS PR

NS PR
df inal
≡ NNNI

→
(

dinit

d f inal

)
=

(
maxδ(vi, v j)

1

)
(2)

where vi is the node at which the branch is cut, v j is the node
at which the pruned branch is reinserted, and δ(vi, v j) is the
distance between these two nodes. It is given by

d = dinit(1 − i
M

), i < M (3)

where i is the ith local search iteration and M is the max-
imum number of local search iterations. The distance pa-
rameter starts at dinit and ends at a value close to 1.

2.4 Stochastic Local Search Algorithm

The algorithm is based on the iterative descent, which is
guided by the length of the tree as the score function. It
starts from a randomly generated tree in the search space,
and tries to improve it on each iteration. For the initial tree,
a list for all the branches is created. This list will denote
which rearrangements have to be tried. Then, a first-pass
optimization is done to calculate the initial score of the tree.
Following this, the next steps are performed repeatedly until
the algorithm comes to a stop.

1 A branch to clip from the tree is chosen at random from
the list.

2 The main tree and clipped tree derived from the previ-
ous clipping are created.

3 A first-pass optimization is done on both the main and
clipped tree. If the score of the sum is equal or greater
(worse) than the current score, it proceeds to step 7.

4 A second-pass optimization is done on the main tree.
5 All rearrangements within the neighborhood are eval-

uated. If the score of the best rearrangement found is
equal or greater than the current score, it proceeds to
step 7.
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6 The clipped tree is inserted in the main tree, the cur-
rent score is updated, all branches to the list are added
again, and it proceeds to step 1.

7 The branch is removed from the list. If there are still
branches in the list, it proceeds to step 1.

This algorithm will always converge to a local optimum
after all branches in the list have been tried. In other words,
after it has been found that no rearrangement is better than
the current tree.

3. Our Hardware Approach

In this section, we explain our hardware approach for the
implementation of the algorithm previously stated. First,
we talk about the data structure used to store the phyloge-
netic information of a given problem. Then, we proceed to
show the proposed hardware architecture. It was designed
for parallel and pipeline processing. That is why we divided
the architecture in different units, each of which performs a
particular task of the algorithm. We show how this works.
Finally, we give details of each of the main units of the hard-
ware architecture.

3.1 Data Structure for Phylogenetic Tree Information

For a given phylogenetic tree reconstruction problem con-
sisting of N taxa, each of which has a sequence of L
nucleotides, the sequence data matrix is an N rows × L
columns matrix. The characters in the sequences include not
only the DNA nucleobases Adenine (A), Cytosine (C), Gua-
nine (G) and Thymine (T), but also the ‘-’ character, which
represents a gap, and the ‘?’ character, which represents an
undefined character. These are the six basic characters, but
a combination of them is also possible due to the five-bit bi-
nary representation used [18]. Hence, a memory of N × L
× 5 bits is required to store the sequence data matrix. On
the other hand, the tree topology shows the connections be-
tween the internal nodes of the tree and the leaves. A tree
with N taxa has N − 1 nodes, including the root node. Since
the tree is a binary tree, each node has a left branch and a
right branch. And it has a parent node. Thus, the size of
the memory required to store the tree topology is (N − 1)
× 3[log2(N)] bits. Finally, the size of the memory required
to store the node states is of (N − 1) × L × 5 bits. For ex-
ample, the tree topology, the sequence data matrix and the
node data matrix memories of a tree with six taxa can be
represented as shown in Fig. 8.

Taxa are labeled according to their memory position on
the Sequence Data Matrix Memory. Likewise, nodes are la-
beled according to their memory position on the Tree Topol-
ogy Memory. Since both nodes and taxa appear on the same,
we use an additional bit to distinguish between the two of
them: 0 for a node and 1 for a taxon (leaf). The root node
doesn’t have a parent. Instead, a full sequence of 1s can be
used to identify it.

Fig. 8 Example. Tree Topology Memory, Sequence and Node Memory

Fig. 9 General Block Diagram of the Proposed Architecture

3.2 Proposed Hardware Architecture

Our system consists of the following four main units.

1. Tree Topology Update (TTU)
2. Progressive Neighborhood Listing (PNL)
3. Node Order Listing (NOL)
4. First-, Second-pass optimization and Rearrangement

evaluation (FSR)

The TTU unit is in charge of updating the tree topol-
ogy memory to reflect the changes produced by the clipping
and reinserting process. The PNL unit is in charge of listing
all possible nodes in the main tree where the clipped branch
could be reinserted. The NOL unit has the task of listing the
nodes of the given tree for a post-order tree traversal. The
FSR unit has the most important tasks, which are doing a
first, and second-pass optimization, and evaluating all pos-
sible rearrangements. A simplified general block diagram of
the architecture is shown in Fig. 9.

It consists of the following elements: the dual-port Tree
Topology Memory (TTM), the dual-port Sequence Data
Matrix Memory (SDM), the dual-port Node Data Matrix
Memory (NDM), two Node Order Memories (NOM), the
Branch List Memory (BLM), the TTU unit, the PNL unit,
the NOL unit, the FSR unit, and a Global Control unit with
some registers. Black bars on the diagram make reference
to multiplexers.
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Fig. 10 Parallel Processing of the four units

3.3 Parallel and Pipeline Processing

The four units run using the memory banks as shown in
Fig. 10, where FSR-FP refers to the first-pass optimization,
FSR-SP to the second-pass optimization, and FSR-RE to the
rearrangement evaluation. This explains the use of a dual-
port Tree Topology Memory and two Node Order Memo-
ries as shown in Fig. 9. NOL and FSR-FP, PNL and FSR-SP
work in parallel.

Other than this parallel processing, pipeline is used in-
side the FSR unit to further accelerate the performance. This
unit has L processing elements, which allow processing all
L characters in the taxa in parallel.

3.4 Details of the Four Main Units

3.4.1 TTU Unit

This unit is in charge of updating the tree topology memory
to reflect the changes produced by the clipping and reinsert-
ing process. It has three main tasks:

1. Clip the whole tree to create the main tree and sub tree.
2. Insert the clipped tree in the chosen insertion branch.
3. Rebuilt the whole tree.

And two sub tasks:

1. Keep track of the clipped branch and reinsertion
branch.

2. Keep track of the whole, main and sub tree roots.

The clipping process involves updating at most three
nodes. Since it takes two clock cycles to update a node from
the tree topology memory, the execution time is of 6 clock
cycles at most. Similarly, inserting the clipped tree involves
updating at most 4 nodes. Thus, it takes 8 clock cycles at
most. Rebuilding the tree is equivalent to revert the clipping
process; hence, it takes also 6 clock cycles at most.

3.4.2 PNL Unit

This unit is in charge of listing all possible nodes in the main
tree where the clipped branch could be reinserted. It takes
into account that the distance between the clipped branch
and that where it could be reinserted is restricted by the
distance parameter according to the progressive neighbor-
hood relation (refer to section 2.3). The resulting listing is
stored in one of the two node order memories. The PNL
unit requires an execution time that depends on the number
of nodes that have to be listed. However, since it requires
two clock cycle to list each node at maximum, its execution
time never exceeds 2 × (N − 2) clock cycles for the worst-
case scenario where all nodes except one have to be listed.
Moreover, this unit works in parallel with FSR-FP, so its ex-
ecution time does not add any delay.

3.4.3 NOL Unit

This unit has the task of listing the nodes of the given tree
for a post-order tree traversal. This order is used for the
score calculation in the first-pass optimization. It can gener-
ate the post-order of the whole, main or sub tree depending
on the root node chosen. The listing is stored in one of the
two node order memories. It uses an internal stack memory
as a temporal storage. It works by following the next algo-
rithm, where LB refers to the left branch and RB to the right
branch:

1. Read the memory position of the given root node from
the tree topology memory.

2. Repeat:

2.1 Push current memory position into Node Order
Memory

2.2 Case (LB, RB)
(Node, Node): Push RB, and go to memory posi-
tion of LB
(Node, Leaf): Go to memory position of LB
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Fig. 11 General Block Diagram of FSR Unit

(Leaf, Node): Go to memory position of RB
(Leaf, Leaf): If stack is not empty: pop a node,
and go to that memory location Else: break

The NOL Unit takes one clock cycle to list each node,
so it requires n − 1 clock cycles to list all n nodes.

3.4.4 FSR Unit

This unit is the most important unit. It has three main tasks:

1. Do a first-pass optimization following the order saved
in the Node Order Memory (post-order).

2. Do a second-pass optimization following the order
saved in the Node Order Memory (reversed).

3. Evaluate all the possible rearrangements following the
order saved in the Node Order Memory (PNL-order).

Its general block diagram is shown in Fig. 11. It is com-
posed of L processing elements (PE), a tree adder, a stack
memory, and a control logic unit along with a data path.
The inputs of the FSR Unit are two taxa (leaves) from the
Sequence Data Matrix Memory, two nodes from the Node
Data Matrix Memory, and the node order from one of the
Node Order Memories. These L PEs allow to process all the
characters of two nodes or leaves in parallel.

The block diagram of a PE is shown in Fig. 12. This
unit implements the three main tasks of the FSR unit de-
scribed previously, but for a single character. Depending on
a control signal (ctrl in Fig. 12) the PE changes its function-
ality. The idea behind this is to share the same resources for
the first, second-pass optimization, and for the rearrange-
ment evaluation, since they need not to work at the same
time. Each of these tasks works using pipeline. Now, we
will describe in general lines how they work.

FSR-FP:
The FSR-FP uses a 4-stage pipelined algorithm, as

shown in the next listing:

Stg01 Take a node from NOM; read that node from TTM
Stg02 Read LB and RB from SDM1/SDM2
Stg03 Optimize the node (first-pass)
Stg04 Save resulting sequence into NDM1

Fig. 12 Block Diagram of a PE

It finishes when all nodes in the Node Order Memory
have been evaluated. Then, the score is obtained after sum-
ming the individual results from all the PEs using the tree
adder. The total execution time will approximate n + T
clock cycles, where n is the number of nodes of the main
or clipped tree, and T the length of the tree adder.

FSR-SP:
The FSR-SP uses a 5-stage pipelined algorithm, as

shown in the next listing:

Stg01 Take a node from NOM; read that node from TTM
Stg02 Read LB and RB from SDM1/SDM2 and/or

NDM1/NDM2
Stg03 Decode and store temporal results into the registers;

read node from NDM1
Stg04 Optimize node (second-pass)
Stg05 Save resulting sequence into NDM2

These pipeline works in two phases. In phase one,
stages 1, 3 and 5 work in parallel. In the other phase, stages
2 and 4 work in parallel. It was divided in two phases, be-
cause not all operands can be read at the same time from
the memories. The execution time approximates 2 clock cy-
cles per node as the number of nodes increases. Since the
tree adder is not used for this task, the total execution time
approximates 2n.

FSR-RE:
The FSR-RE uses a 4-stage pipelined algorithm, as

shown in the next listing:

Ini Read subtree root from NDM1 or SDM1 (NZ)
Stg01 Take a node from NOM; read that node from TTM
Stg02 Read node from NDM1 and read LB from SDM2 or

NDM2
Stg03 Read node from NDM2 and read RB from SDM2

or NDM2; Evaluate first rearrangement (NX=Node,
NY=LB)

Stg04 Evaluate second rearrangement (NX=Node, NY=RB)

This unit also works in two phases. In phase one, stages
1 and 3 work. In the other, stages 2 and 4 work. Further-
more, the difference score is summed using the tree adder.
Finally, the rearrangement with the lowest score is kept as
the reinsertion branch. For this purpose, a line buffer and
some comparison registers in the FSR Datapath are used.
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Table 1 Datasets used [19]

ID M972 M2355 M3452 M3875
#taxa 155 150 116 228
#characters 355 829 1157 1435
ID M17200 M2616 M21001 M24084
#taxa 326 330 364 414
#characters 1434 1711 4119 4584

Table 2 Implementation Results on a Kintex-7

Logic Utilization Used Available Utilization
Number of Slices 23610 50950 46%
Number of Slice Registers 55174 407600 13%
Number of Slice LUTs 94442 203800 46%
Number of BRAMs (36 Kb) 402 445 90%
Maximum Frequency 163.826MHz

Since two rearrangements are evaluated consecutively, the
execution time will approximate 1 clock cycle per rearrange-
ment as the number of nodes increases. The total execution
time will be n + T .

4. Implementation and Simulation Results

In this section we show implementation and simulation re-
sults for eight real-word biological datasets. The last two
were not evaluated in our previous work [11]. The datasets
were obtained from the repository of phylogenetic informa-
tion TreeBASE [19], see Table 1. Results for the first four
datasets were obtained from the implementation of our sys-
tem on a Kintex-7 XC7K325T-FF2-900 FPGA. Results for
the last four problems were obtained from simulation only,
because the required resources exceed those available on the
FPGA used. Though, a larger FPGA, e.g. XC7VX690T,
could be used if their implementation is required.

Evaluating more datasets would be ideal, but due to
reasons of time, we limited our evaluation to only these eight
datasets. However, we consider them enough and adequate
to measure the performance of our approach. Each dataset
was chosen carefully based on its number of taxa and char-
acters. As can be seen from Table 1 the number of characters
increases from one dataset to the other, starting at 355 and
ending at 4, 584. The number of taxa also has a tendency to
increase (except for problems M2355 and M3452). These
datasets can be considered of medium to large size, which is
an optimal size for evaluating the performance.

4.1 Logic Resources and Performance Results

The hardware resources/performance results are shown in
Table 2. This implementation covers any of the first four
datasets, as mentioned previously. Problems up to N =

1, 024 and L = 1, 500 can be processed. The number of
LUTs is almost proportional to L, the number of BRAMS to
L × N.

Table 3 Results for the Local Search

Dataset [10] Our Approach TNT
Total time (ms) 62.2 11.27 890

M972 Time/tree (μs) 1.243 0.031 0.065
Visited trees 50,031 364,177 13,637,086
Best score 1548 1533 1543
Total time (ms) 55.5 9.9 500

M2355 Time/tree (μs) 1.109 0.025 0.059
Visited trees 50,032 400,368 8,497,522
Best score 2749 2724 2771
Total time (ms) 49.9 9.64 180

M3452 Time/tree (μs) 0.997 0.029 0.103
Visited trees 50,046 329,025 1,749,117
Best score 3633 3632 3624
Total time (ms) 82.8 27.76 510

M3875 Time/tree (μs) 1.65 0.037 0.021
Visited trees 50,172 760,180 23,818,061
Best score 605 567 564
Total time (ms) No Data 53.56 2260

M17200* Time/tree (μs) No Data 0.019 0.046
Visited trees No Data 2798944 49662276
Best score No Data 4344 4340
Total time (ms) No Data 42.25 4700

M2616* Time/tree (μs) No Data 0.027 0.09
Visited trees No Data 1564515 53330179
Best score No Data 10003 10004
Total time (ms) No Data 99.54 3060

M21001* Time/tree (μs) No Data 0.02 0.45
Visited trees No Data 4,930,362 6,805,502
Best score No Data 118,734 118,468
Total time (ms) No Data 114.18 7850

M24084* Time/tree (μs) No Data 0.017 0.3
Visited trees No Data 6,656,788 26,185,821
Best score No Data 103,516 103,684

4.2 Execution Times for Phylogenetic Tree Reconstruc-
tion Problems

Here, we compare our hardware implementation with our
previous approach [10], one of the fastest FPGA systems to
the best of our knowledge, and with TNT version 1.1 of
March 2014 [12], the fastest available parsimony program.
Our previous approach didn’t use the Indirect Calculation
of Tree Lengths method. Each rearrangement tree was eval-
uated by using a complete first-pass optimization. On the
other hand, TNT does make use of the Indirect Calculation
of Tree Lengths method. Furthermore, it uses multi-core
processing (4 cores in this evaluation) with SIMD instruc-
tions. To make the comparison as fair as possible, we use
the traditional search of TNT based on SPR, and start from
a random tree. This is the closest setting of TNT that resem-
bles our algorithm, and the one proposed in our previous
work [10]. Moreover, since the total number of examined
trees is not the same, we also show the average execution
time required for each tree. The CPU used is an Intel Core
i7 860@2.80GHz with 4 GB RAM. The targeted FPGA runs
at 156.25 MHz. The results are summarized in Table 3.
(*Note: results for these datasets are simulation results).

Now using these results, we show the speedups ob-
tained for the whole local search, and for the evaluation of a
single tree in Fig. 13 and 14, respectively.
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Fig. 13 Speedup for the Local Search

Fig. 14 Speedup for the Evaluation of a Tree

5. Discussion

Compared to our previous work [10], our current approach
provides a speedup between 2 and 6 for the whole local
search, and between 34 and 45 for the evaluation of a single
tree. Although our approach evaluates more trees than our
previous work [10], there is a speedup for the whole local
search. Moreover, the speedup for the evaluation of a sin-
gle tree is considerable. This is thanks to having applied the
Indirect Calculation of Tree Lengths Method. On the other
hand, in comparison to TNT, our approach yields a speedup
between 18 and 112 for the whole local search, and between
2 and 23 for the evaluation of a single tree, except for prob-
lem M3875, for which there is no speedup. We think that
the reason for this might lie in the particularities of prob-
lem M3875 itself, which make it easier for TNT. Naturally,
there is a high speed up for the whole local search, because
our approach evaluates fewer trees. However, it should be
noted that our approach reaches a similar score (see Table 3)
in much less time. For problems M972, M2355, M2616
and M24084 the score is better, and for problems M3452,
M3875, M17200 and M21001 it is worse. The speedup
for the evaluation of a single tree grows roughly with the
number of characters. As can be seen from Fig. 14, our ap-
proach reaches a speed up of 22.5 and 17.6 for the last two
problems, which are the ones with more characters, 4119
and 4584, respectively. The speedup should increase theo-
retically with the number of characters, because in our ap-

proach we process all characters in parallel. On the contrary,
a software approach like TNT requires to process characters
serially; thus, taking more time as its number increases.

We believe that our FPGA implementation is the best
approach to achieve the highest performance. We think that
the performance that could be obtained by implementing the
algorithm on a GPU or other many-core accelerators such
as CUDA-implementation would be poor for the following
reasons. First, the amount of shared memory (on-chip fast-
access memory) available on a GPU or other many-core ac-
celerators is much limited. For example, the GTX 980 Ti
GPU has a total of 1,152kB of shared memory, which is
much less than the 6,615kB of the Virtex-7 690T FPGA.
Thus, using a GPU would either limit the size of phyloge-
netic datasets that can be processed or it would decrease
the performance significantly by having to use the global
memory. Second, to calculate the score of a tree, we simply
add up the individual results from each processing element
(PE) by using a tree adder that has a latency equal to its
depth. However, in the case of a GPU, the individual results
from each thread block, which would be stored in the shared
memory, would have to be written first into the global mem-
ory before they can all be added. This would signify a great
delay that would reduce the overall performance. Third,
the first- and second-pass optimization algorithms are com-
posed of some conditional clauses and low-level hardware
operations. In the FPGA we implemented them as a group
of logical gates and multiplexers inside the processing ele-
ments (PEs). Thus, it only takes one or two clock cycles at
most to obtain the desired output. However, in a GPU this
would not be possible. It would take more clock cycles to
calculate the output, since the conditional clauses cannot be
flattened and the low-level hardware operations cannot be
directly implemented.

Regarding logic resources, we estimate that by using
the Virtex-7 XC7VX690T FPGA, problems that have up
to 1, 024 taxa and 4, 900 characters could be implemented.
This estimation is based on the number of BRAMs needed
to store the phylogenetic information in memories inside the
FPGA. For example, problem M24084 takes 1, 277 BRAMs
(86%) on the Virtex-7 FPGA. This maximum capability
woud allow us to process 7, 624 of the 8, 609 DNA-type
datasets (88.56%) from TreeBASE. Moreover, we estimate
that by using the latest Virtex UltraScale XCVU190 FPGA,
problems that have up to 1, 024 taxa and 13, 000 charac-
ters could be implemented. This new maximum capabil-
ity would allow us to process 8, 290 datasets (96.26%) from
TreeBASE. If datasets cannot be held in FPGA on-chip
memory, our approach would not be able to outperform the
CPU implementation TNT. Nonetheless, we think that our
approach has a huge practical contribution since most of the
datasets from TreeBASE can be processed with it. And, we
believe that in the near future, the number of datasets that
can be processed inside one FPGA will continue to grow.
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6. Conclusions

In conclusion, we showed implementation results for four,
and simulation results for four other real-world biological
datasets, which consist of hundreds of taxa and hundreds or
thousands of characters. Our hardware approach can be ap-
plied for even larger problems as long as there are enough
BRAM resources. We compared execution times against
our previous approach [10] and TNT. Compared to our pre-
vious approach [10], our current approach was faster for
all the problems. Compared to TNT our current approach
was shown to be faster for all problems, except for prob-
lem M3875. The implementation of Indirect Calculation of
Tree Lengths method and the parallel and pipeline process-
ing used served to exceed by far our previous approach [10]
and TNT.

Implementing other search strategies or different ver-
sions of the Indirect Calculation of Tree Lengths method,
such as those described in these works [14], [18], is part of
our future work. Furthermore, we think that an array of FP-
GAs can be used for phylogenetic tree reconstruction, since
the computation of the first- and second-pass optimization,
as well as the rearrangement evaluation is performed inde-
pendently for each column of the data matrix. Thus, each
FPGA could hold a portion of the data memory, and the in-
dividual results could be added to obtain the score of the
tree. This would allow evaluating even larger datasets with
current FPGAs. This is also part of our future work.
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