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and Yasuo KAWAHARA††††, Nonmembers

SUMMARY In this paper we present a novel treatment of cellular au-
tomata (CA) from an algebraic point of view. CA on monoids associated
with Σ-algebras are introduced. Then an extension of Hedlund’s theorem
which connects CA associated with Σ-algebras and continuous functions
between prodiscrete topological spaces on the set of configurations are dis-
cussed.
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1. Introduction

Theory of cellular automata (CA) due to von Neumann and
Ulam has been recognized its importance in many fields of
science [10]. A fascinating aspect of CA is to allow vari-
ous researches by simulation and visual representation with
computers as well as mathematical study. This is originated
from a fact that main feature of CA consists of configura-
tions, i.e., arrays of states on cells, and CA transform the
configurations to new ones according to given local rules.
The game of life is one of the most famous CA. Recently
CA often mean CA on groups, and mathematical theory of
CA has been developed subject to theory of groups [1].

Motivated by [5] and [6], the paper presents three dif-
ferent points of view from traditional researches on CA.
• The first point is to treat with CA on monoids. The
monoids are weaker algebraic systems than groups, and CA
on groups certainly provide richer results. However, our for-
mulation of CA on monoids might serve as a start to seek
new properties of CA on monoids.
• The second point of the paper is concerned with a local
rule for CA, usually defined as a function from a finite set
(called a neighborhood) of cells into the state set. To seek
reversible CA we need the representation of composition
of transition functions of CA. However, the usual defini-
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tion of local rules definition has less power [2] to express
the composition of transition functions. To improve this we
re-formulate local rules as terms of Σ-algebras (or formu-
lae [5], [6] in propositional logic). Then the composition of
transition functions of CA can be simply described by the
multiplication of terms, defined with making use of monoid
action.
• The third intention in the paper gives a wider view of con-
figurations of CA as valuations for variables (or atoms) in
propositional logic or Σ-algebras. This enables us to define
CA associated with Σ-algebras.

The paper is organized as follows. In Sect. 2, as a
preparation of the definition of transition functions of CA,
the formal definitions of Σ-terms and Σ-algebras are re-
viewed and a valuation of Σ-terms is defined. In Sect. 3 we
define shifted configurations and shifted terms as monoid
actions. In Sect. 4 we state a new definition of transition
functions of CA associated with Σ-algebras by using monoid
actions on configurations and the valuation of Σ-term over
monoids. In Sect. 5 we define the multiplication of Σ-terms,
and prove that the composition of transition functions can
be expressed by the multiplication. In Sect. 6 we study
restricted transition functions which will be useful in the
next section. In Sect. 7 we recall the prodiscrete topol-
ogy [1] on the configuration space and prove that all transi-
tion functions of CA associated with Σ-algebras are contin-
uous, which is an extension of Hedlund’s theorem [3, The-
orem 3.1] that every transition function of classical cellular
automata is continuous and commutes with the shift.

2. Σ-Algebras

In the section we will review signatures as sets of opera-
tor symbols and terms constructed as appropriate strings of
variables and operator symbols.

Definition 2.1: LetN be the set of all naturals. A pair (Σ, a)
of a (finite) set Σ and a function a : Σ → N is called the
signature. The function a is called the arity function for Σ.

�

In the following of the paper a signature (Σ, a) is written
Σ for short. Let Σ be a signature and n a natural. An element
σ ∈ Σ such that a(σ) = n is called an n-ary operator symbol
and Σn denotes the set of all n-ary operator symbols in Σ. In
particular, an element c ∈ Σ0 is called a constant (symbol).
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Example 2.2: (1) Let Σ = {⊥,→} with a(⊥) = 0 and
a(→) = 2. Then the terms of the signature are formulae
in propositional logic.
(2) Let Σ = {0,+} with a(0) = 0 and a(+) = 2. Then the sig-
nature is used to formulate algebraic systems with a constant
and a binary operation, such as monoids and groups.

�

Terms constructed as concatenations of variables and
operator symbols form a Σ-algebra of a given signature. The
terms for the signature are formally defined as follows.

Definition 2.3: Let Σ be a signature and X a set. The Σ-
terms over X is inductively defined as follows:

(a) Each x ∈ X is a Σ-term over X,
(b) Each constant c ∈ Σ0 is a Σ-term over X,
(c) If σ ∈ Σn (n > 0) and A1, . . . , An are Σ-terms over X,

then the string σA1 · · · An is a Σ-term over X.
�

The set of all Σ-terms over X will be denoted by Σ(X).

For a Σ-term A over X the set N(A) of variables in A is
defined as follows:

(a) N(x) = {x} for x ∈ X,
(b) N(c) = ∅ for c ∈ Σ0,
(c) N(σA1 · · · An) = ∪n

j=1N(Aj) for σ ∈ Σn (n > 0) and
A1, . . . , An ∈ Σ(X).

By the definition N(A) is a finite subset of X.

Let Σ be a signature in what follows. For a set Q and a
natural n ∈ N the n-th product Qn of Q is defined by Q0 =

{∗} (a singleton set) and Qn+1 = Qn × Q.

Definition 2.4: A set Q is a Σ-algebra if Q is equipped
with an element c	 ∈ Q for each constant c ∈ Σ0 and a
function σ	 : Qn → Q for each operator symbol σ ∈ Σn

(n > 0). �

Many algebraic structures may be formulated as Σ-
algebras. We show two typical examples of Σ-algebras de-
fined on a set Q = {0, 1}.

Example 2.5: (1) Let Σ = {⊥,→} be a signature in 2.2 (1).
Then Q = {0, 1} is a Σ-algebra (algebra of classical truth
values) by ⊥	 = 0, 0 →	 0 = 0 →	 1 = 1 →	 1 = 1 and
1→	 0 = 0.
(2) Let Σ = {0,+} be a signature in 2.2 (2). Then Q = {0, 1}
is a Σ-algebra (commutative group) by 0	 = 0, 0 +	 0 =
1 +	 1 = 0 and 0 +	 1 = 1 +	 0 = 1. �

The valuation of terms is a natural extension of a func-
tion of variables into a Σ-algebra. Formally we define the
valuation of terms as follows.

Definition 2.6: Let Q be a Σ-algebra and A ∈ Σ(X). For
a function m : X → Q the value m[[A]] ∈ Q of A by m is

inductively defined as follows.

(a) m[[x]] = m(x) for all x ∈ X.
(b) m[[c]] = c	 for all constants c ∈ Σ0.
(c) m[[σA1 · · · An]] = σ	(m[[A1]], . . . ,m[[An]]) for σ ∈ Σn

(n > 0) and A1, . . . , An ∈ Σ(X). �

Strictly speaking the valuation m[[A]] defined above de-
pends on Σ-algebra Q. However we use the notation for the
sake of simplicity.

For two Σ-terms A and B over X we write as A ≡ B, if
m[[A]] = m[[B]] for all functions m : X → Q.

In the paper a function m : X → Q will be called a con-
figuration of Q over X according to a context of CA theory,
and the set of all configurations m : X → Q is denoted by
QX . In other words, the set QX presents the configuration
space of Q over X. Remark that a function m : X → Q is
often called a valuation (or interpretation) of X into Q in a
context of logic and universal algebras.

Projections are basic functions for a product space QX .
Let x ∈ X and V ⊆ W ⊆ X. A projection px : QX → Q is
a function such that ∀m ∈ QX . px(m) = m(x). An extended
projection pW

V : QW → QV is defined by ∀q ∈ QW ∀x ∈
V. pW

V (q)(x) = q(x). Note that pX
V will be written as pV , for

short. It is obvious that pW
V ◦ pW = pV (if V ⊆ W), where

the composition g ◦ f of a function f : X → Y followed by
a function g : Y → Z is defined as usual:

∀x ∈ X. (g ◦ f )(x) = g( f (x)).

In the following sections, suppose that M is a monoid
with a unit e and Q is a finite Σ-algebra.

3. Monoid Actions

The ordinary definition [1] of CA on groups makes use of
group action on configurations. In this section we introduce
monoid actions on configurations and terms to redefine CA
using terms over monoid. (Cf. [5], [6])

The multiplication of subsets V and W of M denotes
the subset

VW = {xy ∈ M | x ∈ V ∧ y ∈ W}

of M. A multiplication {x}W will be written as xW for short.
The monoid action naturally defines shift functions on the
configuration space QM .

Definition 3.1: For each x ∈ M two functions x∗, x∗ :
QM → QM are defined as follows:

x∗(m)(y) = m(xy) and x∗(m)(y) = m(yx)

for all m ∈ QM and y ∈ M. We call x∗ and x∗ the left shift
and the right shift (functions) by x ∈ M, respectively �

It is trivial that x∗ = x∗ if M is a commutative monoid.
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Example 3.2: Let N be the additive monoid of all naturals
and Q = {0, 1} the Σ-algebra in 2.5 (2). Take a configuration
m ∈ QN defined by m(n) = 1 if n is a square number, and
m(n) = 0 otherwise. Also set x = 2. Then two configura-
tions m and x∗(m) are illustrated in the table below.

N e = 0 1 2 3 4 5 6 7 8 9 10 · · ·
m 1 1 0 0 1 0 0 0 0 1 0 · · ·

x∗(m) 0 0 1 0 0 0 0 1 0 0 0 · · ·

In what follows we will write x∗(m) and x∗(m) as x∗m
and x∗m, respectively. The following states the basic prop-
erties of shift functions.

Proposition 3.3: Let x, y ∈ M and m ∈ QM . Then

(a) e∗m = m, e∗m = m
(b) (xy)∗m = y∗(x∗m), (xy)∗m = x∗(y∗m),
(c) py ◦ x∗ = pxy, py ◦ x∗ = pyx.

Proof. (a∗) e∗m = m :

∀z ∈ M. (e∗m)(z) = m(ez) { 3.1 }
= m(z). { e : unit }

(a∗) e∗m = m :

∀z ∈ M. (e∗m)(z) = m(ze) { 3.1 }
= m(z). { e : unit }

(b∗) (xy)∗m = y∗(x∗m) :

∀z ∈ M. ((xy)∗m)(z) = m((xy)z) { 3.1 }
= m(x(yz))

{associative law }
= (x∗m)(yz) { 3.1 }
= (y∗(x∗m))(z). { 3.1 }

(b∗) (xy)∗m = x∗(y∗m) :

∀z ∈ M. ((xy)∗m)(z) = m(z(xy)) { 3.1 }
= m((zx)y)

{associative law }
= (y∗m)(zx) { 3.1 }
= (x∗(y∗m))(z). { 3.1 }

(c∗) py ◦ x∗ = pxy :

∀m ∈ QM . (py ◦ x∗)(m) = py(x∗m)
= (x∗m)(y)
= m(xy)
= pxy(m).

(c∗) py ◦ x∗ = pyx :

∀m ∈ QM . (py ◦ x∗)(m) = py(x∗m)
= (x∗m)(y)
= m(yx)
= pyx(m).

�

We now define the monoid action on the set Σ(M) of
Σ-terms over M.

Definition 3.4: For a term A ∈ Σ(M) and x ∈ M, the shifted
term xA ∈ Σ(M) is inductively defined as follows:

(a) The shifted term xA for A ∈ M is the monoid multipli-
cation xA in M,

(b) xA = A for A ∈ Σ0,
(c) xA = σ(xA1) · · · (xAn) for A = σA1 · · · An where σ ∈
Σn (n > 0) and A1, . . . , An ∈ Σ(M). �

The following shows the basic properties of the monoid
action on Σ(M).

Proposition 3.5: Let A, B ∈ Σ(M), x, y ∈ M and m ∈ QM .
Then

(a) eA = A,
(b) (xy)A = x(yA),
(c) N(xA) = xN(A).
(d) (x∗m)[[A]] = m[[xA]],
(e) A ≡ B implies xA ≡ xB.

Proof. (a) eA = A :

ex = x, { e : unit }

ec = c, { 3.4 (b) }

e(σA1 · · · An) = σ(eA1) · · · (eAn) { 3.4 (c) }
= σA1 · · · An.
{ IH (Induction hypothesis) }

(b) (xy)A = x(yA) :

(xy)z = x(yz), { associativity }

(xy)c = c { 3.4 (b) }
= xc { 3.4 (b) }
= x(yc), { 3.4 (b) }

(xy)(σA1 · · · An)
= σ((xy)A1) · · · ((xy)An) { 3.4 (c) }
= σ(x(yA1)) · · · (x(yAn)) { IH }
= x(σ(yA1) · · · (yAn)) { 3.4 (c) }
= x(y(σA1 · · · An)). { 3.4 (c) }

(c) N(xA) = xN(A) :

N(xy) = {xy}
= xN(y),

N(xc) = N(c) { 3.4 (b) }
= ∅
= xN(c), { N(c) = ∅ }

N(x(σA1 . . . An)) = N(σ(xA1) . . . (xAn))
= ∪n

j=1N(xAj)
= ∪n

j=1xN(Aj) { IH }
= x(∪n

j=1N(Aj))
= xN(A).

(d) (x∗m)[[A]] = m[[xA]] :
Induction on A.



INOKUCHI et al.: CELLULAR AUTOMATA ASSOCIATED WITH Σ-ALGEBRAS
591

∀z ∈ M. (x∗m)[[z]] = (x∗m)(z) { 2.6 (a) }
= m(xz) { 3.1 }
= m[[xz]], { 2.6 (a) }

(x∗m)[[c]] = c	 { 2.6 (b) }
= m[[c]] { 2.6 (b) }
= m[[xc]], { 3.1 (b) }

(x∗m)[[σA1 · · · An]]
= σ	((x∗m)[[A1]], . . . , (x∗m)[[An]]) { 2.6 (c) }
= σ	(m[[xA1]], . . . ,m[[xAn]]) { IH }
= m[[σ(xA1) · · · (xAn)]]. { 2.6 (c) }
= m[[x(σA1 · · · An)]]. { 3.1 (c) }

(e) Assume A ≡ B. Then

m[[xA]] = (x∗m)[[A]] { (c) }
= (x∗m)[[B]] { A ≡ B }
= m[[xB]]. { (c) }

�

4. Transition Functions of CA

Transition functions of CA on a monoid are formulated [5]
by using monoid actions on configuration defined in Sect. 3
and the valuation of Σ-terms over a monoid reviewed in
Sect. 2.

Definition 4.1: For a term A ∈ Σ(M) define a function TA :
QM → QM by

TA(m)(x) = m[[xA]]

for all m ∈ QM and x ∈ M. The function TA is called the
transition function (global map or parallel map) defined by
A. �

The transition system (QM ,TA) is called a CA defined
by A. The following example suggests that CA defined
above contain ordinary CA [1] defined with local functions
on neighborhoods.

Example 4.2: Let Σ = {σ} be a signature consisting of only
one operator symbol σ with arity n, and N = {x1, . . . , xn} a
finite subset of M. Also suppose that Q is a Σ-algebra with
a structure function σ	 : Qn → Q. The transition function
TA : QM → QM defined by a Σ-term A = σx1 · · · xn on M is
nothing else the transition function of a CA usually defined
with a local rule σ	.

TA(m)(x)
= m[[xA]]
= m[[σ(xx1) · · · (xxn)]] { A = σx1 · · · xn }
= σ	(m[[xx1]], . . . ,m[[xxn]])
= σ	(m(xx1), . . . ,m(xxn)) { xxi ∈ M }
= σ	((x∗m)(x1), . . . , (x∗m)(xn))
� σ	(pN(x∗m)). { xi ∈ N }

The last identity � is given by an isomorphism Qn � QN . �

The following example shows that any elementary CA

can be represented in the formulation of CA defined in the
paper.

Example 4.3: Let M be the additive monoid of all integers,
Σ = {σ} a signature of one operator symbol σ with arity 3,
and N = {x1, x2, x3} a subset consisting of three elements
of M. Also suppose that Q = {0, 1} is a Σ-algebra with a
structure function σ	 : Q3 → Q. The transition system
(QM ,TA) defined by a Σ-term A = σx1x2x3 and it is a 1-
dimensional CA with a triplet local rule on neighborhood
N. Moreover, if x1 = −1, x2 = 0, x3 = 1, and σ	 : Q3 → Q
is defined by

σ	(a, b, c) = a + b + c (mod 2)

then the transition system (QM ,TA) is the elementary CA
with Wolfram rule 150. �

For q ∈ Q the constant configuration q̂ ∈ QM is defined
by q̂(x) = q for all x ∈ M. The following states the basic
properties of transition functions and (d) is an extension of
commutability with the shift in Hedlund’s theorem.

Proposition 4.4: Let x, y ∈ M, m ∈ QM , A, B, A1, . . . , An ∈
Σ(M), c ∈ Σ0 and σ ∈ Σn (n > 0). Then

(a) Tx(m)(y) = m(yx). In particular Te = idQM (the identity
function on QM).

(b) Tc(m) = ĉ	,
(c) TσA1···An (m)(x) = σ	(TA1 (m)(x), . . . ,TAn (m)(x)),
(d) TA(x∗m) = x∗(TA(m)),
(e) TA = TB iff A ≡ B.

Proof. (a) First we have Tx(m)(y) = m[[yx]] = m(yx). In
particular, Te(m)(y) = m(ye) = m(y) and so Te = idQM .
(b) Tc(m)(y) = m[[yc]] = m[[c]] = c	 for all y ∈ M. Hence
Tc(m) = ĉ	.
(c) TσA1···An (m)(x) = σ	(TA1 (m)(x), . . . ,TA1 (m)(x)) :

TσA1···An (m)(x)
= m[[x(σA1 · · · An)]] { 4.1 }
= m[[σ(xA1) · · · (xAn)]] { 3.4 (c) }
= σ	(m[[xA1]], . . . ,m[[xAn]]) { 2.6 (c) }
= σ	(TA1 (m)(x), . . . ,TAn (m)(x)). { 4.1 }

(d) TA(x∗m) = x∗(TA(m)) :

TA(x∗m)(z) = (x∗m)[[zA]] { 4.1 }
= m[[x(zA)]] { 3.3 (c) }
= m[[(xz)A]] { 3.5 (b) }
= TA(m)(xz) { 4.1 }
= (x∗(TA(m)))(z). { 3.1 }

(e) TA = TB iff A ≡ B :
First assume TA = TB. Then for all m ∈ QM we have

m[[A]] = TA(m)(e) { 4.1 }
= TB(m)(e) { TA = TB }
= m[[B]], { 4.1 }

which implies A ≡ B. Conversely assume A ≡ B. Then
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TA(m)(x) = m[[xA]]
= m[[xB]] { A ≡ B, 3.3 (d) }
= TB(m)(x).

�

The statement 4.4 (d) claims that a transition function
TA commutes with shifts, that is, x∗ ◦ TA = TA ◦ x∗ for all
x ∈ M.

5. Multiplication of Terms

Using the monoid action the multiplication of terms can be
defined as well as shifted terms. Consequently it turns out
that the multiplication of terms dominates the composition
of transition functions of CA on monoids.

Definition 5.1: Let A and B be terms over a monoid M.
The multiplication AB ∈ Σ(M) of A and B is defined by
induction on A.

(a) AB is the shifted term for A ∈ M,
(b) AB = A for A ∈ Σ0,
(c) AB = σ(A1B) · · · (AnB) for A = σA1 · · · An where σ ∈
Σn (n > 0) and A1,. . ., An ∈ Σ(X). �

The following states the basic properties of the multi-
plication of terms.

Proposition 5.2: Let A, B,C ∈ Σ(M), x ∈ M and m ∈ QM .
Then

(a) Ae = A,
(b) (AB)C = A(BC),
(c) N(AB) = N(A)N(B),
(d) (x∗m)[[A]] = m[[Ax]].

Proof. (a) Ae = A : By induction.

xe = x, { e : unit }

ce = c, { 5.1 (b) }

(σA1 · · · An)e = σ(A1e) · · · (Ane) { 5.1 (c) }
= σA1 · · · An. { IH }

(b) (AB)C = A(BC) : By induction.
(xB)C = x(BC) :

(xy)C = x(yC), { 3.5 (b) }

(xc)C = cC { 3.4 (b) }
= c { 5.1 (b) }
= xc { 3.4 (b) }
= x(cC), { 5.1 (b) }

(x(σB1 · · · Bn))C
= (σ(xB1) · · · (xBn))C { 3.4 (c) }
= σ((xB1)C) · · · ((xBn)C) { 5.1 (c) }
= σ(x(B1C) · · · (x(BnC)) { IH }
= x(σ(B1C) · · · (BnC)) { 3.4 (c) }
= x((σB1 · · · Bn)C). { 5.1 (c) }

(AB)C = A(BC) :

(xB)C = x(BC) { above }

(cB)C = cC = c = c(BC) { 5.1 (b) }

((σA1 · · · An)B)C
= ((σ(A1B) · · · (AnB))C { 5.1 (c) }
= σ((A1B)C) · · · ((AnB)C) { 5.1 (c) }
= σ(A1(BC)) · · · (An(BC)) { IH }
= (σA1 · · · An)(BC). { 5.1 (c) }

(c) N(AB) = N(A)N(B) : By induction on A.

N(xB) = xN(B) { 3.5 (c) }
= N(x)N(B),

N(cB) = ∅ { cB = c }
= N(c)N(B),

N((σA1 . . . An)B)
= N(σ(A1B) . . . (AnB)) { 5.1 (c) }
= ∪ jN(AjB)
= ∪ jN(Aj)N(B) { IH }
= (∪ jN(Aj))N(B) { IH }
= N(σA1 . . . An)N(B).

(d) (x∗m)[[A]] = m[[Ax]] : By induction on A.

∀z ∈ M. (x∗m)[[z]] = (x∗m)(z) { 2.6 (a) }
= m(zx) { 3.1 }
= m[[zx]], { 2.6 (a) }

(x∗m)[[c]] = c	 { 2.6 (b) }
= m[[c]] { 2.6 (b) }
= m[[cx]], { 5.1 (b) }

(x∗m)[[σA1 · · · An]]
= σ	((x∗m)[[A1]], . . . , (x∗m)[[An]]) { 2.6 (c) }
= σ	(m[[A1x]], . . . ,m[[Anx]]) { IH }
= m[[σ(A1x) · · · (Anx)]]. { 2.6 (c) }
= m[[(σA1 · · · An)x]]. { 5.1 (c) }

�

Remark. It is clear that xA = Ax if M is a commutative
monoid. However a transition function TA need not com-
mute with all right shifts x∗, because (TA ◦ x∗)(m)(y) =
m[[yAx]] by 5.2 (d) and (x∗ ◦ TA)(m)(y) = m[[yxA]].

Ordinarily transition functions [1] of CA are defined
with local rules r : QN → Q. The composition [2] of lo-
cal rules which corresponds to the composition of transition
functions has been extensively studied by [4]. However the
multiplication of Σ-terms directly represents the composi-
tion of transition functions of CA.

Theorem 5.3: For all terms A, B ∈ Σ(M) the identity

TA ◦ TB = TAB

holds.

Proof. We need to show the following.

(a) Tx ◦ TB = TxB for x ∈ M,
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(b) Tc ◦ TB = Tc B for c ∈ Σ0,
(c) TσA1···An ◦ TB = T(σA1···An)B for σ ∈ Σn (n > 0) and

A1, . . . , An ∈ Σ(M).

(a) Tx ◦ TB = TxB :

(Tx ◦ TB)(m)(y) = Tx(TB(m))(y)
= TB(m)(yx) { 4.4 (a) }
= m[[(yx)B]] { 4.1 }
= m[[y(xB)]] { 5.2 (b) }
= TxB(m)(y). { 4.1 }

(b) Tc ◦ TB = Tc :

(Tc ◦ TB)(m) = Tc(TB(m))
= ĉ	 { 4.4 (b) }
= Tc(m). { 4.4 (b) }

(c) TσA1···An ◦ TB = T(σA1···An)B :

(TσA1···An ◦ TB)(m)(x)
= TσA1···An (TB(m))(x)
= σ	(TA1 (TB(m))(x), . . . ,TAn (TC(m))(x))

{ 4.4 (f) }
= σ	((TA1 ◦ TB)(m)(x), . . . , (TAn ◦ TB)(m)(x))
= σ	(TA1 B(m)(x), . . . ,TA1 B(m)(x)) { IH }
= σ	(m[[x(A1B)]], . . . ,m[[x(AnB)]]) { 4.1 }
= m[[σ(x(A1B)) · · · (x(AnB))]] { 2.6 (c) }
= m[[x(σ(A1B) · · · (AnB))]] { 3.4 (c) }
= Tσ(A1 B)···(An B)(m)(x) { 4.1 }
= T(σA1···An)B(m)(x). { 5.1 (c) }

This completes the proof. �

Remark. By 5.2 (c) it holds that

T(AB)C = TAB ◦ TC { 5.3 }
= (TA ◦ TB) ◦ TC { 5.3 }
= TA ◦ (TB ◦ TC) { associative law }
= TA ◦ TBC { 5.3 }
= TA(BC), { 5.3 }

which implies (AB)C ≡ A(BC) from 4.4 (e).

Let A be a term on a monoid M. A transition function
TA : QM → QM is called reversible if it is bijective and
T−1

A = TB for some term B. Also A is reversible if there
exists a term B on M such that BA ≡ e and AB ≡ e. By the
virtue of 4.4 (a), (e) and the last theorem 5.3, TA is reversible
iff A is reversible.

Corollary 5.4: Let A, A′, B, B′ ∈ Σ(M) and m ∈ QM . Then
the following holds.

(a) TA(m)[[B]] = m[[BA]],
(b) A ≡ A′ and B ≡ B′ imply AB ≡ A′B′.

Proof. (a) TA(m)[[B]] = m[[BA]] :

m[[BA]] = m[[e(BA)]] { 3.5 (a) }
= TBA(m)(e) { 4.1 }
= (TB ◦ TA)(m)(e) { 5.3 }
= TB(TA(m))(e)
= TA(m)[[eB]] { 4.1 }
= TA(m)[[B]]. { 3.5 (a) }

(b) Assume A ≡ A′ and B ≡ B′. Then

m[[AB]] = TB(m)[[A]] { (a) }
= TB′ (m)[[A]] { B ≡ B′, 4.4 (i) }
= TB′ (m)[[A′]] { A ≡ A′ }
= m[[A′B′]]. { (a) }

TAB = TA ◦ TB

= TA′ ◦ TB′

= TA′B′ ,

which proves AB ≡ A′B′. �

6. Restricted Transition Functions

In this section we will formulate restricted valuations of
terms by partial configurations, called patterns, and re-
stricted transition functions defined on suitable patterns. In
fact the valuation m[[A]] of a term A ∈ Σ(M) by a configu-
ration m ∈ QM depends on values m(x) only for x ∈ N(A).
This suggests that terms may be evaluated by patterns.

Definition 6.1: Let A ∈ Σ(M) and V a subset of M such
that N(A) ⊆ V . For a pattern d ∈ QV the value d[[A]]V ∈ Q
of A by d can be defined by the analogous way with 2.6 :

(a) d[[x]]V = d(x) for all x ∈ V .
(b) d[[c]]V = c	 for all constants c ∈ Σ0.
(c) d[[σA1 · · · An]]V = σ	(d[[A1]]V , . . . , d[[An]]V ) if N(σA1

· · · An) ⊆ V . �

The following proposition states the basic property of
restricted valuations.

Proposition 6.2: Let m,m′ ∈ QM , V ⊆ M and A ∈ Σ(M)
such that N(A) ⊆ V . Then

(a) pV (m)[[A]]V = m[[A]],
(b) If pV (m) = pV (m′), then m[[A]] = m′[[A]].

Proof. (a) It is clear from the definition.
(b)

m[[A]] = pV (m)[[A]] { (a) }
= pV (m′)[[A]] { pV (m) = pV (m′) }
= m′[[A]]. { (a) }

�

The transition function TA : QM → QM can be re-
stricted as follows: Let V ⊆ M and set N = N(A). The
restricted transition function RV : QVN → QV is defined by

RV (d)(x) = d[[xA]]V

for all d ∈ QVN and x ∈ V . Remark that d[[xA]]V is well-
defined since N(xA) = xN ⊆ VN.

The following lemma will be useful to show the conti-
nuity of TA in the next section.

Lemma 6.3: Let A ∈ Σ(M), N = N(A) and V ⊆ M. Then
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the square

QM TA ��

pVN

��

QM

pV

��
QVN

RV

�� QV

commutes, that is, RV ◦ pVN = pV ◦ TA.

Proof. For m ∈ QM and x ∈ V we have

(RV ◦ pVN)(m)(x)
= RV (pVN(m))(x)
= pVN(m)[[xA]]VN { N(xA) ⊆ VN }
= m[[xA]] { 6.2 (a) }
= TA(m)(x) { 4.1 }
= (pV (TA(m))(x) { x ∈ V }
= (pV ◦ TA)(m)(x).

�

7. Prodiscrete Topology

In this section we will review the prodiscrete topology [1] on
the configuration space QM and extend so-called Hedlund’s
theorem [3] that transition functions of CA are continuous.

First we recall two fundamental operations of families
of sets introduced by a function f : X → Y of a set X into a
set Y . For a subset Y of the power set ℘(Y) define a subset
f −1(Y) of ℘(X) by

A ∈ f −1(Y)↔ ∃B ∈ Y. A = f −1(B).

For a subset X of ℘(X) define a subset f∗(X) of ℘(Y) by

B ∈ f∗(X)↔ f −1(B) ∈ X.

Proposition 7.1: Let f : X → Y and g : Y → Z be func-
tions, and let X ⊆ ℘(X), Y ⊆ ℘(Y) andZ ⊆ ℘(Z). Then

(a) If Y is a topology on Y , then f −1(Y) is a topology on
X,

(b) If X is a topology on X, then f∗(X) is a topology on Y ,
(c) (g ◦ f )−1(Z) = f −1(g−1(Z)),
(d) f −1(Y) ⊆ X ↔ Y ⊆ f∗(X).

Proof. (d) (→) Assume f −1(Y) ⊆ X. Then

B ∈ Y → f −1(B) ∈ f −1(Y)
→ f −1(B) ∈ X { f −1(Y) ⊆ X }
→ B ∈ f∗(X),

which shows Y ⊆ f∗(X).
(←) Assume Y ⊆ f∗(X). Then

A ∈ f −1(Y)
→ ∃B ∈ Y. A = f −1(B)
→ B ∈ f∗(X) ∧ A = f −1(B) { Y ⊆ f∗(X) }
→ f −1(B) ∈ X ∧ A = f −1(B)
→ A ∈ X,

which shows f −1(Y) ⊆ X. �

Let (X,X) and (Y,Y) be topological spaces, that is, X
and Y are topologies on X and Y , respectively. Recall that a
function f : (X,X)→ (Y,Y) is continuous iff f −1(Y) ⊆ X.

The prodiscrete topologyT0 on QX is the least topology
such that for all x ∈ X the projection px : QX → Q is
continuous, where the set Q has the discrete topology ℘(Q).
Formally we define the prodiscrete topology as follows:

Definition 7.2: The prodiscrete topology T0 on QX is a
topology such that for all topologies T on QX the follow-
ing equivalence holds:

T0 ⊆ T ↔ ∀x ∈ X. p−1
x (℘(Q)) ⊆ T .

�

Since Q is finite, Q is compact. Thus the product space
QX with the prodiscrete topology T0 is compact Hausdorff
and totally disconnected [1].

Proposition 7.3: If X is a finite set, then the prodiscrete
topology on QX is the discrete topology, that is, T0 = ℘(QX).

Proof. We need to see that every point c ∈ QX is open. It
is well-known that the identity c = ∩x∈X p−1

x (px(c)). Hence
c is open, because Q is discrete and all projections px are
continuous and X is finite. �

Note. c = ∩x∈X p−1
x (px(c)) :

c′ ∈ ∩x∈X p−1
x (px(c)) ↔ ∀x ∈ X. c′ ∈ p−1

x (px(c))
↔ ∀x ∈ X. px(c′) = px(c)
↔ ∀x ∈ X. c′(x) = c(x)
↔ c′ = c.

�

The following is a well-known property of product
topologies.

Proposition 7.4: A function f : (Z,O) → (QX ,T0) is con-
tinuous iff for all x ∈ X the composite px ◦ f : (Z,O) →
(Q, ℘(Q)) is continuous.

Proof.

f −1(T0) ⊆ O
↔ T0 ⊆ f∗(O) { 7.1 (d) }
↔ ∀x ∈ X. p−1

x (℘(Q)) ⊆ f∗(O) { 7.1 (b),7.2 }
↔ ∀x ∈ X. f −1(p−1

x (℘(Q))) ⊆ O { 7.1 (d) }
↔ ∀x ∈ X. (px ◦ f )−1(℘(Q)) ⊆ O. { 7.1 (b) }

�

We now prove an extension of a fundamental theorem
for CA due to Hedlund [3, Theorem 3.1] that every transi-
tion function of CA is continuous.

Theorem 7.5: Let V ⊆ M, x ∈ M and A ∈ Σ(M). Then
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(a) The projection pV : QM → QV is continuous,
(b) The shift functions x∗ and x∗ : QM → QM are continu-

ous,
(c) The transition function TA : QM → QM is continuous.

Proof. (a)

→ ∀x ∈ M. px : conti { 7.2 }
→ ∀x ∈ V. px : conti { V ⊆ M }
→ ∀x ∈ V. pV

x ◦ pV : conti { pV
x ◦ pV = px }

→ pV : conti. { 7.4 }

(b∗)

→ ∀y ∈ M. py : conti { 7.2 }
→ ∀y ∈ M. pxy : conti { xy ∈ M }
→ ∀y ∈ M. py ◦ x∗ : conti

{ 3.3 (c) py ◦ x∗ = pxy }
→ x∗ : conti. { 7.4 }

(b∗)

→ ∀y ∈ M. py : conti { 7.2 }
→ ∀y ∈ M. pyx : conti { yx ∈ M }
→ ∀y ∈ M. py ◦ x∗ : conti

{ 3.3 (c) py ◦ x∗ = pyx }
→ x∗ : conti. { 7.4 }

(c) Set V = x in 6.3. Then we have a commutative square

QM TA ��

pxN

��

QM

px

��
QxN

Rx

�� Q.

Also the projection pxN is continuous by (a) and the re-
stricted transition function Rx : QxN → Q is continuous,
because xN is a finite subset of M and so QxN is a discrete
space by 7.3. Hence

→ ∀x ∈ M. pxN : conti ∧ Rx : conti
→ ∀x ∈ M. Rx ◦ pxN : conti { 7.4 }
→ ∀x ∈ M. px ◦ TA : conti

{ Rx ◦ pxN = px ◦ TA }
→ TA : conti. { 7.4 }

�

The converse statement of 7.5 (c) does not always hold
for CA associated with (fixed) Σ-algebras. More precisely,
for a continuous function T : QM → QM which commutes
with all shifts x∗, there may exist no Σ-term A such that T =
TA. We give a counter example.

Example 7.6: Let Σ = {0,+} be a signature in 2.2 (2) and
Q = {0, 1} a Σ-algebra in 2.5 (2). It is readily checked (by
induction) that 0̂[[A]] = 0 and so TA(0̂) = 0̂ for all A ∈
Σ(M). Consider the constant function T : QM → QM such
that T (m) = 1̂ for all m ∈ QM . Then T is continuous and
commutes with shifts x∗, but there is no Σ-term A such that

T = TA. �

Finally we discuss a particular case that a continuous
functions on QM commuting with shifts is a transition func-
tion of CA associated with Σ-algebras.

We will denote a finite subset V of M by the notation
V ⊆∗ M. A subset A ⊆ QM is called a basic subset of QM

if there exist V ⊆∗ M and D ⊆ QV such that A = p−1
V (D).

Remark that QV is a finite set. The set of all basic subsets
of QM will be denoted by B. Clearly p−1

x (℘(Q)) ⊆ B for all
x ∈ M. Note that B ⊆ T0 : For V ⊆∗ M and D ⊆ QV we
have

p−1
V (D) = p−1

V (∪d∈Dd) { D = ∪d∈Dd }
= ∪d∈D p−1

V (d)
= ∪d∈D(∩x∈V p−1

x (pV
x (d)))

{ d = ∩x∈V (pV
x )−1(pV

x (d)) }
∈ T0. { p−1

x (℘(Q)) ⊆ T0 }

Also define a subset T1 of ℘(QM) as follows:

C ∈ T1 ↔ ∀c ∈ C ∃B ∈ B. c ∈ B ⊆ C.

It is easy to verify that T1 is a topology on QM . The next
proposition suggests that B is a basis of the prodiscrete
topology T0.

Proposition 7.7: T0 = T1.

Proof. T0 ⊆ T1 :

→ B ⊆ T1

→ ∀x ∈ M. p−1
x (℘(Q)) ⊆ T1 { p−1

x (℘(Q)) ⊆ B }
→ T0 ⊆ T1. { 7.2 }

T1 ⊆ T0 :

C ∈ T1 → C = ∪k p−1
Vk

(Dk) { Def. of T1 }
→ C ∈ T0. { B ⊆ T0 }

�

The following proposition is a well-known property of
continuous functions from prodiscrete spaces into discrete
spaces.

Proposition 7.8: A function t : QM → Q is continuous iff
there exist a finite subset V ⊆∗ M and a function f : QV →
Q such that t = f ◦ pV .

Proof. (←) Let V ⊆∗ M and f : QV → Q a function. The
projection pV is continuous by 7.5 (a). Since V is finite, QV

is discrete. Hence f is continuous and the composite f ◦ pV

is continuous.
(→) Assume that a function t : QM → Q is continuous. For
all m ∈ QM it is obvious that m ∈ t−1(t(m)) and t−1(t(m))
is open in QM , since Q is discrete. By 7.7 there exist a
finite subset Vm ⊆∗ M and a subset Dm ⊆ QVm such that
m ∈ p−1

Vm
(Dm) ⊆ t−1(t(m)). The collection of all open sets

p−1
Vm

(Dm) is an open covering of QM . Since QM is compact,
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the covering has a finite subcovering, that is,

∃m1, . . . ,mk ∈ QM . ∪k
j=1 p−1

Vm j
(Dmj ) = QM .

Set V = ∪k
j=1Vmj . Then V is also finite. For all m ∈ QM

there is a j (1 ≤ j ≤ k) such that m ∈ p−1
Vm j

(Dmj ) ⊆ t−1(t(mj)).

Hence we have

p−1
V (pV (m))

⊆ p−1
Vm j

(pVm j
(m)) { Vmj ⊆ V }

⊆ p−1
Vm j

(Dmj ) { m ∈ p−1
Vm j

(Dmj ) }
⊆ t−1(t(mj)) { p−1

Vm j
(Dmj ) ⊆ t−1(t(mj)) }

= t−1(t(m)), { m ∈ t−1(t(mj)) }

which means that pV (m′) = pV (m) implies t(m′) = t(m).
Of course the projection pV is a surjection. Therefore there
exists a unique function f : QV → Q such that t = f ◦ pV . �

Let T : QM → QM be a continuous function such that
x∗ ◦ T = T ◦ x∗ for all x ∈ M. Then by the virtue of the last
proposition ∃V ⊆∗ M ∃A ∈ Σ(M). pe◦T = f ◦pV . Moreover,
we assume that ∀d ∈ QV . f (d) = d[[A]]V for some Σ-term A
with N(A) ⊆ V . Then T = TA holds, because

T (m)(x) = (px ◦ T )(m) { px(m) = m(x) }
= (pe ◦ x∗ ◦ T )(m) { px = pe ◦ x∗ }
= (pe ◦ T ◦ x∗)(m) { x∗ ◦ T = T ◦ x∗ }
= ( f ◦ pV ◦ x∗)(m) { pe ◦ T = f ◦ pV }
= f (pV (x∗m))
= pV (x∗m)[[A]]V { f (d) = d[[A]]V }
= (x∗m)[[A]] { 6.2 (a) }
= m[[xA]] { 3.5 (d) }
= TA(m)(x). { 4.1 }

8. Conclusion

The paper presented a novel treatment of CA: cells are ele-
ments of monoids rather than of groups, local rules are terms
of Σ-algebras rather than functions from neighborhoods to
state sets, and configurations are valuations for variables in
Σ-algebras. And then Hedlund’s theorem for CA associated
with Σ-algebras was proved.

CA treated in the paper is not on groups but on
monoids. Monoids are weaker algebraic systems than
groups because of loss of existence of inverse elements.
Since a group is also a monoid, the class of CA on monoids
might include CA on groups. Consequently the paper pro-
vides a wider overview for CA.

Cell spaces on groups are invariant in a sense that group
action (shift) translates the whole cell space onto itself by
the existence of inverse elements. On the other hand, cell
spaces on monoids are not always invariant under transla-
tion and have a certain difficulty to manipulate. Moore’s
theorem [7] for CA on the additive monoid N of all natu-
rals fails by the reason why monoid action does not pre-
serve erasable patterns, but Myhill’s theorem [8] holds for

CA on N. Richardson [9] studied nondeterministic CA on
Euclidean lattices Zk and extended Hedlund’s theorem to
those CA. We have left to study nondeterministic CA on
monoids as a future work. For example studying an exten-
sion of Richardson’s theorem which connects CA and con-
tinuous relations between prodiscrete topological spaces on
the set of configurations might be one of interesting research
candidates. Also, it is open if there exists a universal CA on
monoids like the game of life or CA-110.
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