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Visibility Problems for Manhattan Towers∗
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SUMMARY A Manhattan tower is a monotone orthogonal polyhedron
lying in the halfspace z ≥ 0 such that (i) its intersection with the xy-plane is
a simply connected orthogonal polygon, and (ii) the horizontal cross section
at higher levels is nested in that for lower levels. Here, a monotone polyhe-
dron meets each vertical line in a single segment or not at all. We study the
computational complexity of finding the minimum number of guards which
can observe the side and upper surfaces of a Manhattan tower. It is shown
that the vertex-guarding, edge-guarding, and face-guarding problems for
Manhattan towers are NP-hard.
key words: guarding problem, Manhattan towers, NP-hard

1. Introduction

The art gallery problem is to determine the minimum num-
ber of guards who can observe the interior of a gallery.
Chvátal [6] proved that ⌊n/3⌋ guards are the lower and up-
per bounds for this problem; namely, ⌊n/3⌋ guards are al-
ways sufficient and sometimes necessary for observing the
interior of an n-vertex simple polygon. Lee and Lin [12]
studied the computational complexity of the guarding prob-
lem. They proved the NP-hardness of finding the minimum
number of guards in a given polygon.

An interesting variant of the art gallery problem is the
fortress problem, which determines the minimum number
of guards who can observe the exterior of a polygon. It
is known that the lower and upper bounds of vertex guards
are ⌈n/3⌉ for n-vertex polygons [13]. Here, a vertex guard
is a guard that is only allowed to be placed at the vertices
of a polygon. Also, it is known that ⌈n/4⌉ + 1 is both the
lower and upper bounds of the vertex guards for n-vertex
orthogonal polygons [1], [13].

In three dimensions, a similar visibility problem has
been considered for n-vertex triangulated polyhedral ter-
rains. It is known that ⌊n/2⌋ is both the lower bound [4] and
the upper bound [3] of vertex guards of a polyhedral terrain.
Also, the minimum vertex-guard problem is known to be
NP-hard [7].

An edge guard is a guard that is only allowed to be
placed on the edges of a terrain, and the edge guard can
move between the endpoints of the edge. For the edge
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guarding problem for n-vertex triangulated polyhedral ter-
rains, it is known that the lower bound is ⌊(4n − 4)/13⌋ [4],
the upper bound is ⌊n/3⌋ [3], and the minimum edge-guard
problem is NP-hard [2].

A face guard is a guard that is allowed to be placed on
the faces of a terrain, and the face guard can walk around
only on the allocated face. It is known that ⌊(2n − 5)/7⌋ is
the lower bound and ⌊n/3⌋ is the upper bound for the num-
ber of face guards of an n-vertex triangulated polyhedral ter-
rain [10]. After that, both the lower and upper bounds are
shown to be ⌊(n − 1)/3⌋ [11].

In this paper, we study the computational complexity
of the guarding problem for Manhattan towers (see Fig. 1).
A Manhattan tower is a monotone orthogonal polyhedron
lying in the halfspace z ≥ 0 such that (i) its intersection with
the xy-plane is a simply connected orthogonal polygon, and
(ii) the horizontal cross section at higher levels is nested in
that for lower levels (see Fig. 2). Here, a monotone polyhe-
dron meets each vertical line in a single segment or not at
all. We will prove that the vertex-guarding, edge-guarding,

Fig. 1 Manhattan tower T of height 3.

Fig. 2 Horizontal cross sections of Manhattan tower T at height z, where
(a) 0 ≤ z ≤ 1, (b) 1 < z ≤ 2, and (c) 2 < z ≤ 3.
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and face-guarding problems for Manhattan towers are NP-
hard. A previous work on Manhattan towers is reported by
Damian, Flatland, and O’Rourke [8]; they constructed an al-
gorithm for unfolding the surface of a Manhattan tower to a
nonoverlapping planar orthogonal polygon.

2. Definitions

The definitions of Manhattan towers and visibility are
mostly from [8] and [4], respectively.

Let Zk be the plane {z = k} for k ≥ 0. Consider an
orthogonal polyhedron T . Here, the term polyhedron is used
to denote the union of the boundary and of the interior. The
orthogonal polyhedron T is said to be a Manhattan tower
if the following two conditions are satisfied: (i) T lies in
the halfspace z ≥ 0, and its intersection with Z0 is a simply
connected orthogonal polygon. (ii) For 0 ≤ k < j, T ∩ Zk ⊇
T ∩ Z j (namely, the cross section at higher levels is nested
in that for lower levels).

Manhattan towers are orthogonal polyhedrons in that
they meet each vertical line (parallel to the z-axis) in a single
segment or not at all. Thus, they are monotone with respect
to the z-axis. Manhattan towers may not be monotone with
respect to the x-axis or y-axis. In general, T ∩Zk has several
connected components for k > 0 (see Fig. 2(c)), but the base
layer of T is simply connected.

In this paper, we assume that each vertex of any Man-
hattan tower has integral coordinates. Therefore, a Manhat-
tan tower can be illustrated as a polycube (see Fig. 3), which
is a solid figure formed by joining one or more unit cubes
face-to-face.

Two points p and q on the surface of T are said to be
visible if the line segment pq does not intersect any point
strictly inside T . A vertex guard is a guard that is only al-
lowed to be placed at the vertices of T .

An edge guard is a guard that is only allowed to be
placed on the edges of T , and the edge guard can move be-
tween the endpoints of the edge. A point p on the surface
of T is said to be visible from an edge if there exists a point q
on the edge such that p and q are visible.

A face guard is a guard that is allowed to be placed

Fig. 3 Manhattan tower illustrated as a polycube.

on a face of T ’s side and upper surfaces, and the face guard
can walk around only on the allocated face. A point p on
the surface of T is said to be visible from a face if there
exists a point q on the face such that p and q are visible.
Thus, the visible region from a face guard always contains
the allocated face and its adjacent faces. Here, two faces are
said to be adjacent if they share a vertex.

A set of guards is said to cover a Manhattan tower T
if every point on T ’s upper and side surfaces is visible from
at least one guard in the set. The instance of a guarding
problem is a Manhattan tower T and a positive integer k.
The vertex (resp. edge, face) guarding problem asks whether
there exists a set of vertex (resp. edge, face) guards of size k
that covers T .

In Sects. 3, 4, and 5, we will show that the vertex-
guarding, edge-guarding, and face-guarding problems for
Manhattan towers are NP-hard, respectively.

3. Vertex-Guarding Problem for Manhattan Towers

In this section, we will prove the following theorem.

Theorem 1: The vertex-guarding problem for Manhattan
towers is NP-hard.

In Sect. 3.2, we will present a polynomial-time trans-
formation from the instance C of PLANAR 3SAT problem
to Manhattan tower T1 and integer k1 such that C is satisfi-
able if and only if there exists a vertex set G1 of size k1 that
covers T1.

3.1 PLANAR 3SAT Problem

The definition of PLANAR 3SAT is mostly from [LO1] of
[9]. Let U = {x1, x2, . . . , xn} be a set of Boolean variables.
Boolean variables take on values 0 (false) and 1 (true). If x
is a variable in U, then x and x are literals over U. The value
of x is 1 (true) if and only if x is 0 (false). A clause over U
is a set of literals over U, such as {x1, x3, x4}. It represents
the disjunction of those literals and is satisfied by a truth
assignment if and only if at least one of its members is true
under that assignment.

An instance of PLANAR 3SAT is a collection C =
{c1, c2, . . . , cm} of clauses over U such that (i) |c j| ≤ 3 for
each c j ∈ C and (ii) the bipartite graph G = (V, E), where
V = U∪C and E contains exactly those pairs {x, c} such that
either literal x or x belongs to the clause c, is planar.

The PLANAR 3SAT problem asks whether there exists
some truth assignment for U that simultaneously satisfies all
the clauses in C. This problem is known to be NP-complete.
For example, U = {x1, x2, x3, x4}, C = {c1, c2, c3, c4}, and
c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, and
c4 = {x2, x3, x4} provide an instance of PLANAR 3SAT. In
this instance, the answer is “yes,” since there is a truth as-
signment (x1, x2, x3, x4) = (1, 0, 1, 1) satisfying all clauses.
It is known that PLANAR 3SAT is NP-complete even if each
variable occurs exactly once positively and exactly twice
negatively in C [5].
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Fig. 4 (a) Variable gadget for xi. (b) Simplified illustration of (a). If a
guard is placed at p (resp. q), then the 2× 4 hole and the left channel (resp.
upper and right channels) can be observed.

3.2 Transformation from 3SAT-instance to Manhattan
Tower

Each variable xi ∈ {x1, x2, . . . , xn} is transformed to a vari-
able gadget shown in Fig. 4(a). Figure 4(b) is the simpli-
fied illustration of Fig. 4(a). This gadget has a 2 × 4 hole of
depth 2, which are connected with two horizontal and one
vertical channels. Each channel has depth 1 and width 2.
The left horizontal channel (see the blue arrow) in Fig. 4
corresponds to literal xi, and the remaining two channels
(with red arrows) correspond to literal xi. Note that the in-
stances of 3SAT considered in this paper have the restriction
explained just before Sect. 3.2.

In order to observe the interior of the 2 × 4 hole, we
need at least one vertex guard on this gadget. If a guard is
placed at blue vertex p (resp. red vertex q) of Fig. 4, then the
hole and the left channel (resp. upper and right channels)
can be observed. Later, one can see that a blue guard on p
(resp. red guard on q) implies xi = 1 (resp. xi = 1).

Each clause c j ∈ {c1, c2, . . . , cm} is transformed to a
clause gadget shown in Fig. 5. This gadget has a 10×1 hole
of depth 2, which is connected with three horizontal chan-
nels. Horizontal channels are labeled with xi1 , xi2 , and xi3 if
c j is composed of those literals.

In order to observe the interior of the 10 × 1 hole, we
need at least one vertex guard on this gadget. If a guard is
placed at one of the three positions r, s, and t, then the hole
is observed. (If clause c j consists of two literals (resp. one
literal), then the corresponding clause gadget has a 7×1 hole
(resp. 4 × 1 hole) of depth 2, which is connected with two
horizontal channels (resp. one horizontal channel).)

Figure 6 is called a right-and-left turn gadget. From
the shape of the gadget, one can see that two guards are nec-
essary and sufficient for observing the interior of the chan-
nel. For example, guards on vertices u and v can observe
the channel. Note that if there is a guard g which observes
the channel from the right side of the gadget (see Fig. 6(c)),
then the two guards can be placed at positions u′ and v′. A
left-and-right turn gadget is defined similarly. (Yellow cells

Fig. 5 (a) Clause gadget for c j = {xi1 , xi2 , xi3 }. (b) Simplified illustration
of (a). If a guard is placed at one of the three positions r, s, and t, then the
10 × 1 hole is observed.

Fig. 6 (a) Right-and-left turn gadget. (b) Simplified illustration of (a).
Guard set {v, u} can observe the interior of the channel. (c) If there is a
guard g which is observing the channel from the right side of the gadget,
then the two guards can be placed at positions u′ and v′.

of Figs. 6(b) and 6(c) are used later in this section.)
The right-and-left turn gadgets are used for connecting

the horizontal channels of a variable gadget to clause gad-
gets. (For example, in Fig. 9, x4 is connected to c3 with a
right-and-left turn gadget, and to c2 with a left-and-right turn
gadget.) There are several variant forms of the left-and-right
turn gadget. (For example, one can find the “right-and-right
turn gadget” from x3 to c3 in Fig. 9.) In order to connect a
variable gadget to a clause gadget, each turn gadget can be
stretched.

Figures 7 and 8 are the right turn and right-left-right
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Fig. 7 Right turn gadget.

Fig. 8 Right-left-right turn gadget.

Fig. 9 Manhattan tower T1 transformed from C = {c1, c2, c3, c4}, where
c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, and c4 = {x2, x3, x4}. C
is satisfiable if and only if Manhattan tower T1 is covered by k1 = 30 vertex
guards.

turn gadgets, which are used for connecting the vertical
channels of variable gadgets to clause gadgets. (For exam-
ple, a right turn (resp. right-left-right turn) gadgets can be
found between x3 and c4 (resp. between x4 and c4) in Fig. 9.)

Finally, let k1 = n + t1 + 2, where n is the number of
variables, t1 is the number of “turns” of the turn gadgets
(see green and yellow areas), and the last 2 is the number of
guards observing the outer walls (see green vertices at the
right-upper and left-lower corners of Fig. 9). From this con-
struction, C is satisfiable if and only if Manhattan tower T1

is covered by k1 vertex guards.
Note that k1 vertex guards can observe all of n red areas

(see a variable gadget of Fig. 4(b)), all of t1 yellow/green ar-
eas (see turn gadgets of Figs. 6(b) and 8(a)), and all outer
walls. If C is satisfiable, every clause c j is satisfied by
at least one of c j’s literals. Thus, every blue area (see a
clause gadget of Fig. 5(b)) is observed by at least one ver-
tex guard. On the other hand, if Manhattan tower T1 is
covered by k1 vertex guards, then positions of the n vertex
guards observing red areas indicate the truth assignment for
(x1, x2, . . . , xn) which satisfies all clauses {c1, c2, . . . , cm}.

Figure 9 is a Manhattan tower T1 transformed from C =
{c1, c2, c3, c4}, where c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 =

{x1, x3, x4}, and c4 = {x2, x3, x4}. One can see that T1 can be
observed by k1 guards, where k1 = n+t1+2 = 4+24+2 = 30.
From the positions of the four guards observing 2× 4 holes,
one can see that (x1, x2, x3, x4) = (1, 0, 1, 1) satisfies all the
clauses.

4. Edge-Guarding Problem for Manhattan Towers

An edge guard is a guard that is only allowed to be placed on
the edges of a terrain, and the edge guard can move between
the endpoints of the edge.

Theorem 2: The edge-guarding problem for Manhattan
towers is NP-hard.

In the following, we will present a polynomial-time
transformation from the instance C of PLANAR 3SAT prob-
lem to Manhattan tower T2 and integer k2 such that C is sat-
isfiable if and only if there exists an edge set G2 of size k2

that covers T2.
The outline of the proof is similar to the previous sec-

tion. Each variable xi ∈ {x1, x2, . . . , xn} is transformed to a
variable gadget shown in Fig. 10. This gadget has a 3 × 3
hole of depth 2, which are connected with two horizontal
and one vertical channels. Channels are of depth 1 and
width 1. The vertical channel corresponds to literal xi, and
the two horizontal channels correspond to literal xi.

In order to observe the interior of the 3 × 3 hole, we
need at least one edge guard on this gadget. If a guard is
placed on blue edge p (resp. red edge q) of Fig. 10, then the
hole and the vertical channel (resp. horizontal channels) can
be observed.

Each clause c j ∈ {c1, c2, . . . , cm} is transformed to a
clause gadget shown in Fig. 11. This gadget has a 3×3 hole
of depth 2, which is connected with three channels. In order
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Fig. 10 (a) Variable gadget for xi. (b) Simplified illustration of (a).

Fig. 11 (a) Clause gadget for c j = {xi1 , xi2 , xi3 }. (b) Simplified illustra-
tion of (a). If a guard is placed on one of the three edges r, s, and t, then
the 3 × 3 hole is observed.

to observe the interior of the 3 × 3 hole, we need at least
one edge guard on this gadget. If a guard is placed on one
of the three edges r, s, and t, then the hole is observed. (If
clause c j consists of two literals (resp. one literal), then the
3 × 3 hole of depth 2 is connected with two channels (resp.
one channel).)

Figure 12 is a right-turn gadget, which has a 3 × 1 hole
and a 1 × 1 hole of depth 2. A left turn gadget is defined
similarly. Suppose that literal xi appears in c j, and xi ap-
pears in ck and cl (see Fig. 13). We connect variable gad-
get xi to three clause gadgets c j, ck, and cl with right-turn
and left-turn gadgets. In order to connect a variable gadget
to a clause gadget, each turn gadget can be stretched (see
Fig. 14).

In Fig. 13(a), if a guard is placed on edge p for ob-
serving the 3 × 3 hole xi, then two guards can be placed on
edges r and s. The guard on edge s can observe the hole c j.
In this case, two guards must be placed on edges t and u;
thus hole ck or cl cannot be observed by any guard in the
figure.

In Fig. 13(b), on the other hand, if a guard is placed on
edge q, then two guards can be placed on edges t′ and u′.
Thus, those two guards can observe holes ck and cl. In this
case, hole c j cannot be observed by any guard in the figure.

Finally, let k2 = n + t2 + 2, where n is the number of
variables, t2 is the number of “turns” of the left-turn and
right-turn gadgets, and the last 2 is the number of guards
which observe the outer walls (see green edges at the top and
bottom of Fig. 14). From this construction, C is satisfiable

Fig. 12 (a) Right turn gadget. (b) Simplified illustration of (a). This
gadget can be observed by one guard u. (c) If there is a guard g which can
move to the border of the 3 × 1 hole (to observe its interior), then a guard
can be placed on edge u′. Left turn gadget is defined similarly.

Fig. 13 Suppose literal xi appears in c j, and xi appears in ck and cl. (a) If
a guard is placed on edge p for observing the 3 × 3 hole, then guard s can
observe hole c j. (b) If a guard is placed on edge q, then guards t′ and u′

can observe holes ck and cl, respectively.

if and only if Manhattan tower T2 is covered by k2 edge
guards.

Note that k2 edge guards can observe all of n red areas
(see a variable gadget of Fig. 10(b)), all of t2 green holes (see
turn gadgets of Fig. 12(b)), and all outer walls. If C is satis-
fiable, every clause c j is satisfied by at least one of c j’s liter-
als. Thus, every blue area (see a clause gadget of Figs. 11(b)
and 13) is observed by at least one edge guard. On the other
hand, if Manhattan tower T2 is covered by k2 edge guards,
then positions of the n edge guards observing red areas indi-
cate the truth assignment for (x1, x2, . . . , xn) which satisfies
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all clauses {c1, c2, . . . , cm}.
Figure 14 is a Manhattan tower T2 transformed from

C = {c1, c2, c3, c4}, where c1 = {x1, x2, x3}, c2 = {x1, x2, x4},
c3 = {x1, x3, x4}, and c4 = {x2, x3, x4}. One can see that
T2 can be observed by k2 guards, where k2 = n + t2 + 2 =
4 + 18 + 2 = 24.

Fig. 14 Manhattan tower T2 transformed from C = {c1, c2, c3, c4}, where
c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, and c4 = {x2, x3, x4}. C
is satisfiable if and only if Manhattan tower T2 is covered by k2 = 24 edge
guards.

5. Face-Guarding Problem for Manhattan Towers

A face guard is a guard that is allowed to be placed on the
faces of a terrain, and the face guard can walk around only
on the allocated face. The visible region from a face guard
always contains the allocated face and its adjacent faces,
where two faces are said to be adjacent if they share a vertex.

Theorem 3: The face-guarding problem for Manhattan
towers is NP-hard.

In the following, we will present a polynomial-time
transformation from the instance C of PLANAR 3SAT prob-
lem to Manhattan tower T3 and integer k3 such that C is sat-
isfiable if and only if there exists a face set G3 of size k3 that
covers T3.

Each variable xi ∈ {x1, x2, . . . , xn} is transformed to
a variable gadget shown in Fig. 15. This gadget has a T-
shaped wall and a U-shaped wall of height 2 (see blue and
red arrows in the figure), which are connected with two 1×2
walls of height 1. This gadget also has a 2× 2 holes (see the
red area labeled with xi of Fig. 15(b)).

In order to observe the interior of the 2 × 2 hole, we
need at least one face guard on this gadget. If a guard is
placed at the blue node p or red node q of Fig. 15, then the
2 × 2 hole can be observed.

Each clause c j ∈ {c1, c2, . . . , cm} is transformed to a
clause gadget shown in Fig. 16. This gadget has a 4 × 4
square-shaped wall of height 1 and three walls of height 2.
In the square-shaped wall, there is a 2 × 2 hole of depth 2.
If a face guard is placed at one of the three nodes r, s, and t,
then the 2 × 2 hole is observed. (If clause c j consists of two
literals (resp. one literal), then the 4 × 4 square-shaped wall
of height 1 has two walls (resp. one wall) of height 2.)

Variable gadgets are connected to clause gadgets with
walls of height 2 (see white cells of Fig. 17). Here a simple
but important property is that connections between variable
and clause gadgets can be turned arbitrarily based on the
property of the face guards.

For simplicity, we explain the construction of Manhat-
tan tower T3 by using the following 3SAT-instance C =

{c1, c2, c3, c4}, where c1 = {x1, x2, x3}, c2 = {x1, x2, x4},

Fig. 15 (a) Variable gadget for xi. (b) Simplified illustration of (a).
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Fig. 16 (a) Clause gadget for c j = {xi1 , xi2 , xi3 }. (b) Simplified illustra-
tion of (a). If a guard is placed on one of the three positions r, s, and t, then
the 2 × 2 hole of depth 2 is observed.

Fig. 17 Manhattan tower T3 transformed from C = {c1, c2, c3, c4}, where
c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, and c4 = {x2, x3, x4}.
Each of the six gray areas has a green square hole of depth 3. Six green
nodes are guards which observe the interior of the green square holes and
all side faces of walls. C is satisfiable if and only if Manhattan tower T3 is
covered by k3 = 10 face guards.

c3 = {x1, x3, x4}, and c4 = {x2, x3, x4}.
Figure 17 is a Manhattan tower T3 transformed from

C. In each of the six gray areas of the figure, there are a
green square hole of depth 3 and a green guard. Note that
the bottom of the green square hole of depth 3 cannot be
observed by any guard on the walls. The six green guards
observe the interior of the green square holes and all side
faces of walls. One of the green guards (see the upper right
green guard of Fig. 17) observes the four side faces of the
outer gray area.

Finally, let k3 = n + t3 (= 4 + 6 = 10), where n is the
number of variables, and t3 is the number of green square
holes. From this construction, C is satisfiable if and only if
Manhattan tower T3 is covered by k3 face guards.

Note that k3 vertex guards can observe all of n red ar-
eas (see a variable gadget of Fig. 15(b)) and all of t3 green

holes (see Fig. 17). If C is satisfiable, every clause c j is
satisfied by at least one of c j’s literals. Thus, every blue
area (see a clause gadget of Fig. 16(b)) is observed by at
least one guard. On the other hand, if Manhattan tower T3

is covered by k3 face guards, then positions of the n face
guards observing red areas indicate the truth assignment for
(x1, x2, . . . , xn) which satisfies all clauses {c1, c2, . . . , cm}.
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