PAPER Special Section on Foundations of Computer Science-Developments of the Theory of Algorithms and Computation-
Reconfiguration of Vertex Covers in a Graph*

Takehiro ITO $^{\dagger \dagger)}$, Member, Hiroyuki NOOKA ${ }^{\dagger b}$, Nonmember, and Xiao ZHOU ${ }^{\dagger c}$, Member

SUMMARY Suppose that we are given two vertex covers C_{0} and C_{t} of a graph G, together with an integer threshold $k \geq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}$. Then, the vertex cover reconfiguration problem is to determine whether there exists a sequence of vertex covers of G which transforms C_{0} into C_{t} such that each vertex cover in the sequence is of cardinality at most k and is obtained from the previous one by either adding or deleting exactly one vertex. This problem is PSPACE-complete even for planar graphs. In this paper, we first give a linear-time algorithm to solve the problem for even-hole-free graphs, which include several well-known graphs, such as trees, interval graphs and chordal graphs. We then give an upper bound on k for which any pair of vertex covers in a graph G has a desired sequence. Our upper bound is best possible in some sense.
key words: combinatorial reconfiguration, even-hole-free graph, graph algorithm, vertex cover

1. Introduction

A vertex cover C of a graph G is a vertex subset of G which contains at least one of the two endpoints of every edge in G. (See Fig. 1 which depicts six different vertex covers of the same graph.) Then, the vertex cover problem is a wellknown NP-complete problem [7], defined as follows: Given a graph G and an integer k, it determines whether G has a vertex cover of cardinality at most k.

The vertex cover problem has several applications [15], such as in the SNP assembly problem in computational biochemistry and in a computer network security problem. In the computer network security problem, each

(a) C_{0}

(b) C_{1}

(c) C_{2}

(d) C_{3}

(e) C_{4}

(f) $C_{5}=C_{t}$

Fig. 1 A sequence $\left\langle C_{0}, C_{1}, \ldots, C_{5}\right\rangle$ of vertex covers of the same graph, where the vertices in vertex covers are depicted by large black circles.

[^0]vertex corresponds to a router and each edge corresponds to a link in a computer network, and we wish to pick a subset of routers for monitoring packets flowing on the links; such a subset forms a vertex cover of the corresponding graph.

However, a practical issue in computer network security requires that the formulation be considered in more dynamic situations: in order to maintain routers, we sometimes need to change the current subset of routers to another subset. Of course, we wish to keep monitoring all links even during the transformation. This situation can be formulated by the concept of reconfiguration problems that have been extensively studied in recent literature [2], [4], [8][10], [12], [14].

1.1 Our Problems

Suppose that we are given two vertex covers C_{0} and C_{t} of a graph $G=(V, E)$, together with an integer threshold $k \geq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}$. Then, the vertex cover reconfiguration problem is to determine whether there exists a sequence $\left\langle C_{0}, C_{1}, \ldots, C_{\ell}\right\rangle$ of vertex covers of G such that
(a) $C_{\ell}=C_{t}$, and $\left|C_{i}\right| \leq k$ for all $i, 0 \leq i \leq \ell$; and
(b) for each index $i, 1 \leq i \leq \ell$, the vertex cover C_{i} of G is obtained from the previous one C_{i-1} by either deleting or adding a single vertex $u \in V$, that is, $C_{i-1} \Delta C_{i}=$ $\left(C_{i-1} \backslash C_{i}\right) \cup\left(C_{i} \backslash C_{i-1}\right)=\{u\}$.
Figure 1 illustrates a sequence $\left\langle C_{0}, C_{1}, \ldots, C_{5}\right\rangle$ of vertex covers of the same graph which transforms C_{0} into $C_{t}=C_{5}$, where the vertex which is deleted from (or added to) the previous vertex cover is surrounded by a dotted circle.

The existence of such a transformation clearly depends on the value of a given threshold k. For example, if $k \geq$ 4, then the instance of the two vertex covers C_{0} and C_{t} in Fig. 1 is a yes-instance, because all vertex covers in Fig. 1 have cardinality at most four. On the other hand, if $k \leq 3$, then the instance in Fig. 1 is a no-instance, because there is no transformation between C_{0} and C_{t} that consists only of vertex covers of cardinality at most three.

Therefore, we can get a natural minimization problem, called the minmax vertex cover reconfiguration problem, in which we wish to minimize the maximum cardinality of any vertex cover in a transformation for two given vertex covers C_{0} and C_{t} of a graph G; we denote by $f_{G}^{*}\left(C_{0}, C_{t}\right)$ the optimal value. Then, the answer to vertex cover reconfiguration is "yes" if $k \geq f_{G}^{*}\left(C_{0}, C_{t}\right)$; otherwise "no." (A formal definition will be given in Sect. 2.)

1.2 Related and Known Results

Recently, this type of problems has been studied extensively in the framework of reconfiguration problems [10], which arise when we wish to find a step-by-step transformation between two feasible solutions of a search problem such that all intermediate solutions are also feasible and each step abides by a prescribed reconfiguration rule (i.e., an adjacency relation defined on feasible solutions of the original search problem). For example, in vertex cover reconfiguration, feasible solutions are defined to be all vertex covers of a graph with cardinality at most a given threshold k; and the reconfiguration rule is defined to be the condition (b) in Sect.1.1. (We simply say a reconfiguration problem on a search problem A if the reconfiguration problem considers feasible solutions of A as the intermediate solutions.) This reconfiguration framework has been applied to several well-known problems, including independent set [9], [10], [12], [14], satisfiability [8], clique, matching [10], vertex-coloring [2], [4], etc.

Both vertex cover reconfiguration and minmax vertex cover reconfiguration are known to be PSPACE-complete for planar graphs of maximum degree three [10], and hence it is very unlikely that they are solvable in polynomial time even for planar graphs.

From the viewpoint of approximation, it is known that the optimal value $f_{G}^{*}\left(C_{0}, C_{t}\right)$ can be approximated within a factor 2 in linear time; indeed, this approximation result can be obtained from a linear-time 2 -approximation algorithm for the reconfiguration problem on SET COVER [10, Theorem 6]. However, as far as we know, only this 2approximation is known for the reconfiguration problem on set cover, and hence it is desired to investigate further algorithmic (positive) results for the reconfiguration problems on VERTEX COVER.

One may think that some known results for the reconfiguration problem on independent set [9], [10], [12], [14] can be converted into our vertex cover reconfiguration; because, if a vertex subset C is a vertex cover of a graph $G=(V, E)$, then $V \backslash C$ forms an independent set of G, and vice versa. There are three types of reconfiguration problems on independent set which employ different reconfiguration rules. Although one of the three rules corresponds to the one for our vertex cover reconfiguration, almost all (positive) results are given to the other reconfiguration rules; this will be discussed in Sect. 3.

1.3 Our Contribution

In this paper, we investigate algorithmic results for the vERtex cover reconfiguration and minmax vertex cover reconfiguration problems. (An extended abstract of this paper has been presented in [11].)

We first show that both reconfiguration problems can be solved in linear time for even-hole-free graphs. We will define the class of even-hole-free graphs later, but we here
note that this graph class contains several well-known graph classes, such as trees, interval graphs and chordal graphs.

We then give an upper bound on the optimal value $f_{G}^{*}\left(C_{0}, C_{t}\right)$ for two vertex covers C_{0} and C_{t} of a graph G. Our upper bound holds for any graph; as a corollary, we have $f_{G}^{*}\left(C_{0}, C_{t}\right) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+1$ if G is a tree; and $f_{G}^{*}\left(C_{0}, C_{t}\right) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+2$ if G is a cactus. We note that our upper bound is best possible in the following sense: there are instances of cacti such that $f_{G}^{*}\left(C_{0}, C_{t}\right)=$ $\max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+2$. (See Sect. 4.2 for details.)

We finally note that our second result gives an approximation for $f_{G}^{*}\left(C_{0}, C_{t}\right)$ with absolute performance guarantee. For an instance of minmax vertex cover reconfiguRation, let $\mathrm{ap}_{G}\left(C_{0}, C_{t}\right)$ be an objective value computed by an algorithm. Then, for two integers $\rho \geq 1$ and $c \geq$ 0 , we say that the algorithm is a (ρ, c)-approximation if $\mathrm{ap}_{G}\left(C_{0}, C_{t}\right) \leq \rho \cdot f_{G}^{*}\left(C_{0}, C_{t}\right)+c$ holds for any instance. As we have mentioned above, there is a linear-time $(2,0)$ approximation algorithm for $f_{G}^{*}\left(C_{0}, C_{t}\right)$, which follows from the 2-approximation for the reconfiguration problem on SET cover [10]. On the other hand, our second result gives a ($1, \alpha$)-approximation for $f_{G}^{*}\left(C_{0}, C_{t}\right)$, where α is some integer defined later. Although this integer α depends on an input graph G, it is remarkable that α can be obtained only by a local computation: we just focus on a transformation restricted on 2-connected subgraphs of G, and extend it to a transformation on the whole graph G.

2. Preliminaries

In this section, we define some terms which will be used throughout the paper.

2.1 Graph Notation

In this paper, we may assume without loss of generality that graphs are simple and undirected. For a graph G, we sometimes denote by $V(G)$ and $E(G)$ the vertex set and the edge set of G, respectively. For a vertex subset V^{\prime} of a graph G, we denote by $G\left[V^{\prime}\right]$ the subgraph of G induced by V^{\prime}.

A vertex u in a connected graph $G=(V, E)$ is called a cut vertex of G if the induced subgraph $G[V \backslash\{u\}]$ is disconnected. A connected graph G is said to be 2-connected if G has no cut vertex.

A vertex subset C of a graph G is called a vertex cover of G if at least one of $v \in C$ and $w \in C$ holds for every edge $v w \in E(G)$. We say that an edge $v w \in E(G)$ is covered by v if $v \in C$.

2.2 Definitions for Vertex Cover Reconfiguration

Let C_{i} and C_{j} be two vertex covers of a graph G. We say that C_{i} and C_{j} are adjacent if their symmetric difference $C_{i} \Delta C_{j}$ consists of exactly one vertex u, that is, C_{j} can be obtained from C_{i} by either deleting or adding the vertex u. A reconfiguration sequence between two vertex covers C and C^{\prime} of G is a sequence $C=\left\langle C_{1}, C_{2}, \ldots, C_{\ell}\right\rangle$ of vertex covers of G
such that $C_{1}=C, C_{\ell}=C^{\prime}$, and C_{i-1} and C_{i} are adjacent for $i=2,3, \ldots, \ell$. For notational convenience, we write $C_{i} \in C$ if a vertex cover C_{i} appears in a reconfiguration sequence C. Observe that any reconfiguration sequence is reversible, that is, $\left\langle C_{\ell}, C_{\ell-1}, \ldots, C_{1}\right\rangle$ is a reconfiguration sequence from $C_{\ell}=C^{\prime}$ to $C_{1}=C$, because the adjacency relation on vertex covers of G is symmetric.

For a reconfiguration sequence C, let

$$
f(C)=\max \left\{\left|C_{i}\right|: C_{i} \in C\right\}
$$

that is, the maximum cardinality of a vertex cover that appears in C. For two vertex covers C and C^{\prime} of a graph G, we define the reconfiguration index $f_{G}^{*}\left(C, C^{\prime}\right)$, as follows:

$$
\begin{aligned}
f_{G}^{*}\left(C, C^{\prime}\right)=\min \{f(C): & C \text { is a reconfiguration } \\
& \text { sequence between } \left.C \text { and } C^{\prime}\right\} .
\end{aligned}
$$

It should be noted that the reconfiguration index $f_{G}^{*}\left(C, C^{\prime}\right)$ is well defined, because any pair of vertex covers C and C^{\prime} of G has a trivial reconfiguration sequence C such that $f(C)=$ $\left|C \cup C^{\prime}\right|$, as follows: we add to C the vertices in $C^{\prime} \backslash C$ one by one, and obtain the vertex cover $C \cup C^{\prime}$ of G; and we delete from $C \cup C^{\prime}$ the vertices in $C \backslash C^{\prime}$ one by one. We note in passing that this trivial reconfiguration sequence C gives a 2-approximation for $f_{G}^{*}\left(C, C^{\prime}\right)$ as shown in [10, Theorem 6], because we clearly have

$$
\begin{equation*}
f_{G}^{*}\left(C, C^{\prime}\right) \geq \max \left\{|C|,\left|C^{\prime}\right|\right\} \tag{1}
\end{equation*}
$$

and $f_{G}^{*}\left(C, C^{\prime}\right) \leq\left|C \cup C^{\prime}\right| \leq 2 \cdot \max \left\{|C|,\left|C^{\prime}\right|\right\}$.
Given two vertex covers C_{0} and C_{t} of a graph G and a positive integer k, the vertex cover reconfiguration problem is to determine whether $f_{G}^{*}\left(C_{0}, C_{t}\right) \leq k$; while the minmax vertex cover reconfiguration problem is to compute the reconfiguration index $f_{G}^{*}\left(C_{0}, C_{t}\right)$. Note that both problems do not ask for an actual reconfiguration sequence between C_{0} and C_{t}. We always denote by C_{0} and C_{t} the initial and target vertex covers of G, respectively.

3. Even-Hole-Free Graphs

A graph G is even-hole free if any induced subgraph of G is not a cycle consisting of an even number of vertices [6]. This graph class includes several well-known classes, such as trees, interval graphs and chordal graphs.

Theorem 1: Both vertex cover reconfiguration and minmax vertex cover reconfiguration can be solved in linear time for even-hole-free graphs.

As a proof of Theorem 1, it suffices to give a linear-time algorithm which computes $f_{G}^{*}\left(C_{0}, C_{t}\right)$ for any pair of vertex covers C_{0} and C_{t} of an even-hole-free graph G. Our algorithm employs a nice property of reconfiguration sequences of independent sets, given by Kamiński et al. [12]. We first explain this property in Sect. 3.1, and then give our algorithm in Sect. 3.2.

3.1 Reconfiguration of Independent Sets

Kamiński et al. [12] deeply studied three types of reconfiguration problems on independent set in a graph. In this subsection, we define and explain only one type used for our algorithm, which they call "Token Addition and Removal (TAR) model" [12].

In the TAR-model, two independent sets I_{i} and I_{j} of a graph G are adjacent if their symmetric difference $I_{i} \Delta I_{j}$ consists of a single vertex u, that is, I_{j} can be obtained from I_{i} by either removing or adding the vertex u. Similarly as for vertex covers, a reconfiguration sequence between two independent sets I and I^{\prime} of G is a sequence $\left\langle I_{1}, I_{2}, \ldots, I_{\ell}\right\rangle$ of independent sets of G such that $I_{1}=I, I_{\ell}=I^{\prime}$, and I_{i-1} and I_{i} are adjacent for $i=2,3, \ldots, \ell$. Kamiński et al. [12] gave the following lemma for even-hole-free graphs.
Lemma 1 ([12]): Let I_{0} and I_{t} be any pair of independent sets of an even-hole-free graph G such that $\left|I_{0}\right|=\left|I_{t}\right|$. Then, there exists a reconfiguration sequence I between I_{0} and I_{t} such that $\left|I_{i}\right| \geq\left|I_{0}\right|-1$ for all independent sets $I_{i} \in I$.

Based on Lemma 1, we give the following lemma. In contrast to Lemma 1 in which $\left|I_{0}\right|=\left|I_{t}\right|$ always holds for two independent sets I_{0} and I_{t}, note that two vertex covers C_{0} and C_{t} in Lemma 2 do not necessarily have the same cardinality.

Lemma 2: Let C_{0} and C_{t} be any pair of vertex covers of an even-hole-free graph G. Then,

$$
f_{G}^{*}\left(C_{0}, C_{t}\right) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+1
$$

Proof. We may assume without loss of generality that $\left|C_{0}\right| \geq$ $\left|C_{t}\right|$; recall that any reconfiguration sequence is reversible. Then, we construct a vertex cover C_{t}^{\prime} of G such that $\left|C_{t}^{\prime}\right|=$ $\left|C_{0}\right|$ by adding to C_{t} exactly $\left|C_{0}\right|-\left|C_{t}\right|(\geq 0)$ vertices chosen arbitrarily from $V(G) \backslash C_{t}$. It suffices to show that there is a reconfiguration sequence C between C_{0} and C_{t}^{\prime} such that $f(C) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}^{\prime}\right|\right\}+1=\left|C_{0}\right|+1$, because C_{t} can be obtained from C_{t}^{\prime} by only deleting the vertices in $C_{t}^{\prime} \backslash C_{t}$; and hence $f_{G}^{*}\left(C_{0}, C_{t}\right) \leq f(C)$.

It is well known that, if a vertex subset C is a vertex cover of a graph G, then $V(G) \backslash C$ forms an independent set of G, and vice versa. Let $I_{0}=V(G) \backslash C_{0}$ and $I_{t}^{\prime}=V(G) \backslash C_{t}^{\prime}$, then they are independent sets of G having the same cardinality. Therefore, by Lemma 1 there is a reconfiguration sequence $I=\left\langle I_{0}, I_{1}, \ldots, I_{\ell}\right\rangle$ between I_{0} and $I_{\ell}=I_{t}^{\prime}$ such that $\left|I_{i}\right| \geq$ $\left|I_{0}\right|-1$ for all independent sets $I_{i} \in I$.

Consider the sequence $C=\left\langle C_{0}, C_{1}, \ldots, C_{\ell}\right\rangle$ of vertex covers of G corresponding to I, that is, $C_{i}=V(G) \backslash I_{i}$ for each $i, 0 \leq i \leq \ell$. Since $\left|I_{i-1} \Delta I_{i}\right|=1$ holds for every $i, 1 \leq i \leq \ell$, two vertex covers C_{i-1} and C_{i} are adjacent. Therefore, C is a reconfiguration sequence between C_{0} and $C_{\ell}=C_{t}^{\prime}$. Furthermore, since $\left|I_{i}\right| \geq\left|I_{0}\right|-1$ hold for all $I_{i} \in I$, any vertex cover $C_{i} \in C$ satisfies

$$
\left|C_{i}\right|=|V(G)|-\left|I_{i}\right| \leq|V(G)|-\left|I_{0}\right|+1=\left|C_{0}\right|+1 .
$$

Thus, $f(C)=\max \left\{\left|C_{i}\right|: C_{i} \in C\right\} \leq\left|C_{0}\right|+1$ holds.

3.2 Linear-Time Algorithm

We now give our linear-time algorithm. Let C_{0} and C_{t} be two given vertex covers of an even-hole-free graph G. We may assume without loss of generality that $\left|C_{0}\right| \geq\left|C_{t}\right|$. Then, $\max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}=\left|C_{0}\right|$. Note that Lemma 2 and Eq. (1) imply that $f_{G}^{*}\left(C_{0}, C_{t}\right) \in\left\{\left|C_{0}\right|,\left|C_{0}\right|+1\right\}$.

A vertex cover C of a graph G is said to be minimal if there is no vertex $u \in C$ such that $C \backslash\{u\}$ is a vertex cover of G. We can easily check whether a vertex cover of G is minimal or not in linear time. Then, our algorithm is described as follows:

1. if C_{0} is minimal, then return $f_{G}^{*}\left(C_{0}, C_{t}\right)=\left|C_{0}\right|+1$;
2. else if C_{t} is minimal, then return

$$
f_{G}^{*}\left(C_{0}, C_{t}\right)=\max \left\{\left|C_{0}\right|,\left|C_{t}\right|+1\right\}
$$

3. otherwise return $f_{G}^{*}\left(C_{0}, C_{t}\right)=\left|C_{0}\right|$.

The algorithm above clearly runs in linear time, because it just checks the minimality of vertex covers C_{0} and C_{t}. Therefore, to complete the proof of Theorem 1, we now prove the correctness of our algorithm.
Case (1): C_{0} is a minimal vertex cover of G.
In this case, our algorithm returns $f_{G}^{*}\left(C_{0}, C_{t}\right)=\left|C_{0}\right|+1$. Lemma 2 says that $f_{G}^{*}\left(C_{0}, C_{t}\right) \leq\left|C_{0}\right|+1$, and hence we will prove that $f_{G}^{*}\left(C_{0}, C_{t}\right) \geq\left|C_{0}\right|+1$.

Let $C^{*}=\left\langle C_{0}, C_{1}^{*}, C_{2}^{*}, \ldots, C_{\ell-1}^{*}, C_{\ell}^{*}\right\rangle$ be an arbitrary reconfiguration sequence between C_{0} and $C_{\ell}^{*}=C_{t}$ such that $f\left(C^{*}\right)=f_{G}^{*}\left(C_{0}, C_{t}\right)$. Since C_{0} is a minimal vertex cover of G, the vertex cover C_{1}^{*} must be obtained by adding some vertex to C_{0}. Therefore, we have $\left|C_{1}^{*}\right|=\left|C_{0}\right|+1$, and hence $f_{G}^{*}\left(C_{0}, C_{t}\right)=f\left(C^{*}\right) \geq\left|C_{1}^{*}\right|=\left|C_{0}\right|+1$, as claimed.
Case (2): C_{0} is not minimal, but C_{t} is minimal.
In this case, our algorithm returns $f_{G}^{*}\left(C_{0}, C_{t}\right)=$ $\max \left\{\left|C_{0}\right|,\left|C_{t}\right|+1\right\}$. We prove this case according to the following two sub-cases.

First, consider the sub-case where $\left|C_{0}\right|=\left|C_{t}\right|$. Then, our algorithm returns $f_{G}^{*}\left(C_{0}, C_{t}\right)=\max \left\{\left|C_{0}\right|,\left|C_{t}\right|+1\right\}=\left|C_{t}\right|+$ 1. Since C_{t} is minimal, the symmetric argument of Case (1) above proves the correctness of this sub-case.

Second, consider the sub-case where $\left|C_{0}\right|>\left|C_{t}\right|$. Then, $\left|C_{0}\right| \geq\left|C_{t}\right|+1$, and hence our algorithm returns $f_{G}^{*}\left(C_{0}, C_{t}\right)=$ $\left|C_{0}\right|$. By Eq. (1) it suffices to prove that $f_{G}^{*}\left(C_{0}, C_{t}\right) \leq\left|C_{0}\right|$, that is, there exists a reconfiguration sequence C between C_{0} and C_{t} such that $f(C)=\left|C_{0}\right|$. Since C_{0} is not minimal, there exists a vertex $u \in C_{0}$ such that $C_{0} \backslash\{u\}$ forms a vertex cover of G. Let $C_{1}=C_{0} \backslash\{u\}$, then C_{0} and C_{1} are adjacent and $\left|C_{1}\right|=\left|C_{0}\right|-1$. Then, Lemma 2 implies that $f_{G}^{*}\left(C_{1}, C_{t}\right) \leq \max \left\{\left|C_{1}\right|,\left|C_{t}\right|\right\}+1$, and hence there is a reconfiguration sequence $C^{\prime}=\left\langle C_{1}, C_{2}, \ldots, C_{\ell}\right\rangle$ between C_{1} and $C_{\ell}=C_{t}$ such that $f\left(C^{\prime}\right) \leq \max \left\{\left|C_{1}\right|,\left|C_{t}\right|\right\}+1$. Since $\left|C_{1}\right|=\left|C_{0}\right|-1$ and $\left|C_{0}\right|-1 \geq\left|C_{t}\right|$, we have

$$
f\left(C^{\prime}\right) \leq \max \left\{\left|C_{1}\right|,\left|C_{t}\right|\right\}+1=\left(\left|C_{0}\right|-1\right)+1=\left|C_{0}\right|
$$

As our reconfiguration sequence C between C_{0} and C_{t}, we put C_{0} in front of C^{\prime}, that is, let $C=\left\langle C_{0}, C_{1}, C_{2}, \ldots, C_{\ell}\right\rangle$. Then, $f(C)=\max \left\{\left|C_{0}\right|, f\left(C^{\prime}\right)\right\}=\left|C_{0}\right|$, as claimed.

Case (3): neither C_{0} nor C_{t} are minimal.
In this case, our algorithm returns $f_{G}^{*}\left(C_{0}, C_{t}\right)=\left|C_{0}\right|$. By Eq. (1) it suffices to prove that $f_{G}^{*}\left(C_{0}, C_{t}\right) \leq\left|C_{0}\right|$, that is, there exists a reconfiguration sequence C between C_{0} and C_{t} such that $f(C)=\left|C_{0}\right|$.

Since C_{0} is not minimal, there exists a vertex cover C_{1} of G such that $\left|C_{1}\right|=\left|C_{0}\right|-1$ and C_{0} and C_{1} are adjacent. Similarly, since C_{t} is not minimal, there exists a vertex cover C_{t-1} of G such that $\left|C_{t-1}\right|=\left|C_{t}\right|-1$ and C_{t-1} and C_{t} are adjacent. Then, Lemma 2 implies that

$$
\begin{aligned}
f_{G}^{*}\left(C_{1}, C_{t-1}\right) & \leq \max \left\{\left|C_{1}\right|,\left|C_{t-1}\right|\right\}+1 \\
& =\max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\} \\
& =\left|C_{0}\right| .
\end{aligned}
$$

Therefore, there is a reconfiguration sequence $C^{\prime}=$ $\left\langle C_{1}, C_{2}, \ldots, C_{\ell-1}\right\rangle$ between C_{1} and $C_{\ell-1}=C_{t-1}$ such that $f\left(C^{\prime}\right) \leq\left|C_{0}\right|$. As our reconfiguration sequence C between C_{0} and C_{t}, let $C=\left\langle C_{0}, C_{1}, C_{2}, \ldots, C_{\ell-1}, C_{t}\right\rangle$. We then have $f(C)=\max \left\{\left|C_{0}\right|, f\left(C^{\prime}\right),\left|C_{t}\right|\right\}=\left|C_{0}\right|$, as claimed.

This completes the proof of Theorem 1.

4. Upper Bound on the Reconfiguration Index

In this section, we give an upper bound on the reconfiguration index $f_{G}^{*}\left(C_{0}, C_{t}\right)$.

4.1 Definitions

For a vertex cover C_{i} of a graph G and a subgraph G^{\prime} of G, we denote by $C_{i, G^{\prime}}=C_{i} \cap V\left(G^{\prime}\right)$ the restriction of C_{i} to G^{\prime}. Observe that $C_{i, G^{\prime}}$ is a vertex cover of G^{\prime}, because C_{i} is a vertex cover of G and G^{\prime} is a subgraph of G.

Let C_{i} and C_{j} be two vertex covers of a graph G, and let D be any vertex subset of $C_{i} \cap C_{j}$. Then, we introduce the reconfiguration index $f_{G}^{*}\left(C_{i}, C_{j} ; D\right)$ under the constraint of D, as follows:

$$
\begin{align*}
f_{G}^{*}\left(C_{i}, C_{j} ; D\right)=\min \{ & f\left(C_{D}\right): C_{D} \text { is a reconfiguration } \\
& \text { sequence between } C_{i} \text { and } C_{j} \text { such } \\
& \text { that } \left.D \subseteq C_{k} \text { for all } C_{k} \in C_{D}\right\} . \tag{2}
\end{align*}
$$

Note that $f_{G}^{*}\left(C_{i}, C_{j} ; D\right)$ is well defined for any vertex subset $D \subseteq C_{i} \cap C_{j}$; recall the trivial reconfiguration sequence C_{D} between C_{i} and C_{j} via the vertex cover $C_{i} \cup C_{j}$ (in Sect. 2), then $D \subseteq C_{k}$ holds for every $C_{k} \in C_{D}$. We clearly have

$$
\begin{equation*}
f_{G}^{*}\left(C_{i}, C_{j}\right)=f_{G}^{*}\left(C_{i}, C_{j} ; \emptyset\right) \tag{3}
\end{equation*}
$$

Furthermore, we have the following lemma.
Lemma 3: Let C_{i} and C_{j} be any pair of vertex covers of a graph G, and let D and D^{\prime} be any vertex subsets such that $D \subseteq D^{\prime} \subseteq C_{i} \cap C_{j}$. Then, $f_{G}^{*}\left(C_{i}, C_{j} ; D\right) \leq f_{G}^{*}\left(C_{i}, C_{j} ; D^{\prime}\right)$.

Proof. Let $C_{D^{\prime}}$ be any reconfiguration sequence between C_{i} and C_{j} such that $f\left(C_{D^{\prime}}\right)=f_{G}^{*}\left(C_{i}, C_{j} ; D^{\prime}\right)$ and $D^{\prime} \subseteq C_{k}$ for all vertex covers $C_{k} \in C_{D^{\prime}}$. Since $D \subseteq D^{\prime}$, we have $D \subseteq C_{k}$ for all $C_{k} \in C_{D^{\prime}}$. Therefore, $C_{D^{\prime}}$ is a reconfiguration sequence such that $D \subseteq C_{k}$ for all vertex covers $C_{k} \in C_{D^{\prime}}$. By Eq. (2) we thus have $f_{G}^{*}\left(C_{i}, C_{j} ; D\right) \leq f\left(C_{D^{\prime}}\right)=f_{G}^{*}\left(C_{i}, C_{j} ; D^{\prime}\right)$, as claimed.

Lemma 3 and Eq. (3) imply that, for any vertex subset $D \subseteq C_{0} \cap C_{t}$,

$$
\begin{equation*}
f_{G}^{*}\left(C_{0}, C_{t}\right) \leq f_{G}^{*}\left(C_{0}, C_{t} ; D\right) \tag{4}
\end{equation*}
$$

4.2 Our Upper Bound

We now give our upper bound, whose proof will be given in Sect. 4.3.

Theorem 2: Let α be a fixed integer, and let G be any graph. Suppose that

$$
f_{G^{\prime \prime}}^{*}\left(C_{0, G^{\prime \prime}}, C_{t, G^{\prime \prime}} ; C_{0, G^{\prime \prime}} \cap C_{t, G^{\prime \prime}}\right) \leq \max \left\{\left|C_{0, G^{\prime \prime}}\right|,\left|C_{t, G^{\prime \prime}}\right|\right\}+\alpha
$$

for every 2-connected subgraph $G^{\prime \prime}$ of G. Then,

$$
f_{G}^{*}\left(C_{0}, C_{t} ; C_{0} \cap C_{t}\right) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+\alpha .
$$

A graph G is a cactus if every edge is part of at most one cycle in G [5]. Using Theorem 2, we give the following corollary.

Corollary 1: Let C_{0} and C_{t} be any pair of vertex covers of a graph G. Then,
(a) $f_{G}^{*}\left(C_{0}, C_{t}\right) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+1$ if G is a tree; and
(b) $f_{G}^{*}\left(C_{0}, C_{t}\right) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+2$ if G is a cactus.

Proof. (a) Every 2-connected subgraph $G^{\prime \prime}$ of a tree G consists of a single edge $v w$. Then, any vertex cover of G contains at least one of v and w, and hence $\max \left\{\left|C_{0, G^{\prime \prime}}\right|\right.$, $\left.\left|C_{t, G^{\prime \prime}}\right|\right\} \geq 1$. Note that $V\left(G^{\prime \prime}\right)=\{v, w\}$ forms a vertex cover of $G^{\prime \prime}$, and hence there always exists a reconfiguration sequence between $C_{0, G^{\prime \prime}}$ and $C_{t, G^{\prime \prime}}$ via the vertex cover $V\left(G^{\prime \prime}\right)$. Furthermore, $C_{0, G^{\prime \prime}} \cap C_{t, G^{\prime \prime}} \subseteq V\left(G^{\prime \prime}\right)$ holds. Therefore,

$$
\begin{aligned}
& f_{G^{\prime \prime}}^{*}\left(C_{0, G^{\prime \prime}}, C_{t, G^{\prime \prime}} ; C_{0, G^{\prime \prime}} \cap C_{t, G^{\prime \prime}}\right) \leq\left|V\left(G^{\prime \prime}\right)\right| \\
& \quad \leq \max \left\{\left|C_{0, G^{\prime \prime}}\right|,\left|C_{t, G^{\prime \prime}}\right|\right\}+1 .
\end{aligned}
$$

Then, Theorem 2 implies that $f_{G}^{*}\left(C_{0}, C_{t} ; C_{0} \cap C_{t}\right) \leq$ $\max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+1$. By Eq. (4) we thus have

$$
f_{G}^{*}\left(C_{0}, C_{t}\right) \leq f_{G}^{*}\left(C_{0}, C_{t} ; C_{0} \cap C_{t}\right) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+1
$$

if G is a tree.
(b) Every 2-connected subgraph $G^{\prime \prime}$ of a cactus G consists of either a single edge or a cycle. Similarly as in (a) above, we have $f_{G^{\prime \prime}}^{*}\left(C_{0, G^{\prime \prime}}, C_{t, G^{\prime \prime}} ; C_{0, G^{\prime \prime}} \cap C_{t, G^{\prime \prime}}\right) \leq \max \left\{\left|C_{0, G^{\prime \prime}}\right|,\left|C_{t, G^{\prime \prime}}\right|\right\}+$ 1 if $G^{\prime \prime}$ is a single edge.

We thus consider the case where $G^{\prime \prime}$ is a cycle. We choose an arbitrary vertex u in $C_{t, G^{\prime \prime}}$, and let $P=G\left[V\left(G^{\prime \prime}\right) \backslash\right.$ $\{u\}]$. Since P is a path (and hence a tree), by the proof of

Corollary 1(a) we have

$$
f_{P}^{*}\left(C_{0, P}, C_{t, P} ; C_{0, P} \cap C_{t, P}\right) \leq \max \left\{\left|C_{0, P}\right|,\left|C_{t, P}\right|\right\}+1
$$

Therefore, there is a reconfiguration sequence C between $C_{0, P}$ and $C_{t, P}$ such that $f(C) \leq \max \left\{\left|C_{0, P}\right|,\left|C_{t, P}\right|\right\}+1$ and $C_{0, P} \cap C_{t, P} \subseteq C_{i}$ for all vertex covers $C_{i} \in C$ of P. For each vertex cover $C_{i} \in C$ of P, notice that $C_{i} \cup\{u\}$ forms a vertex cover of $G^{\prime \prime}$. Since $C_{0, G^{\prime \prime}} \cap C_{t, G^{\prime \prime}} \subseteq\left(C_{0, P} \cap C_{t, P}\right) \cup\{u\} \subseteq$ $C_{i} \cup\{u\}$, we have

$$
\begin{aligned}
& f_{G^{\prime \prime}}^{*}\left(C_{0, G^{\prime \prime}}, C_{t, G^{\prime \prime}} ; C_{0, G^{\prime \prime}} \cap C_{t, G^{\prime \prime}}\right) \leq f(C)+|\{u\}| \\
& \quad \leq \max \left\{\left|C_{0, P}\right|,\left|C_{t, P}\right|\right\}+2 .
\end{aligned}
$$

Since $C_{0, P} \subseteq C_{0, G^{\prime \prime}}$ and $C_{t, P} \subseteq C_{t, G^{\prime \prime}}$, we have $\left|C_{0, P}\right| \leq\left|C_{0, G^{\prime \prime}}\right|$ and $\left|C_{t, P}\right| \leq\left|C_{t, G^{\prime \prime}}\right|$. Therefore,

$$
f_{G^{\prime \prime}}^{*}\left(C_{0, G^{\prime \prime}}, C_{t, G^{\prime \prime}} ; C_{0, G^{\prime \prime}} \cap C_{t, G^{\prime \prime}}\right) \leq \max \left\{\left|C_{0, G^{\prime \prime}}\right|,\left|C_{t, G^{\prime \prime}}\right|\right\}+2
$$

In this way, $f_{G^{\prime \prime}}^{*}\left(C_{0, G^{\prime \prime}}, C_{t, G^{\prime \prime}} ; C_{0, G^{\prime \prime}} \cap C_{t, G^{\prime \prime}}\right) \leq$ $\max \left\{\left|C_{0, G^{\prime \prime}}\right|,\left|C_{t, G^{\prime \prime}}\right|\right\}+2$ holds for any 2 -connected subgraph $G^{\prime \prime}$ of a cactus G. Then, Theorem 2 implies that $f_{G}^{*}\left(C_{0}, C_{t} ; C_{0} \cap C_{t}\right) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+2$. By Eq. (4) we thus have

$$
f_{G}^{*}\left(C_{0}, C_{t}\right) \leq f_{G}^{*}\left(C_{0}, C_{t} ; C_{0} \cap C_{t}\right) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+2
$$

if G is a cactus.
We note that Corollary 1(a) gives another proof of Lemma 2 for trees. Conversely, Corollary 1(b) cannot be obtained from Lemma 2, because a cactus is not always evenhole free.

Furthermore, we note that our upper bound on $f_{G}^{*}\left(C_{0}, C_{t}\right)$ is best possible in some sense. For example, consider an even-length cycle G and its two vertex covers C_{0} and C_{t}, each of which forms an independent set of G. (See Fig. 2.) Since G is a cycle (and hence a cactus), by Corollary 1 (b) we have $f_{G}^{*}\left(C_{0}, C_{t}\right) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+2$. Indeed, we have to add at least two vertices to C_{0} in order to delete any vertex in C_{0}. Therefore, $f_{G}^{*}\left(C_{0}, C_{t}\right)=\max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+2$.

4.3 Proof of Theorem 2

In this subsection, as a proof of Theorem 2, we construct a reconfiguration sequence C between C_{0} and C_{t} such that $f(C) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+\alpha$ and $C_{0} \cap C_{t} \subseteq C_{i}$ for all vertex covers $C_{i} \in C$. Then, the theorem follows, because $f_{G}^{*}\left(C_{0}, C_{t} ; C_{0} \cap C_{t}\right) \leq f(C)$ holds for such a reconfiguration sequence C.

Roughly speaking, our idea is as follows. We first decompose a graph G into its 2 -connected subgraphs, and then

(a) C_{0}

(b) C_{t}

Fig. 2 Instance for a cycle G such that $f_{G}^{*}\left(C_{0}, C_{t}\right)=\max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+2$.
separately construct a reconfiguration sequence for each 2connected subgraph $G^{\prime \prime}$ which transforms the vertex cover $C_{0} \cap V\left(G^{\prime \prime}\right)$ into the target one $C_{t} \cap V\left(G^{\prime \prime}\right)$. Of course, we need to extend the reconfiguration sequence for $G^{\prime \prime}$ to one for the whole graph G. Furthermore, we need to find a clever ordering of 2-connected subgraphs of G to be transformed so that all intermediate vertex covers C_{i} of G satisfy $\left|C_{i}\right| \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+\alpha$.

Therefore, we first introduce some notions and properties of vertex covers in subgraphs, and then give our reconfiguration sequence.

4.3.1 Notions and Properties

Let C_{i} and C_{j} be two vertex covers of a graph G. Then, for a subgraph G^{\prime} of G, we define the difference $\delta\left(G^{\prime}, C_{i}, C_{j}\right)$ from C_{i} to C_{j}, as follows:

$$
\begin{equation*}
\delta\left(G^{\prime}, C_{i}, C_{j}\right)=\left|C_{j, G^{\prime}}\right|-\left|C_{i, G^{\prime}}\right|, \tag{5}
\end{equation*}
$$

that is, the cardinality of the vertex cover of G^{\prime} is increased by $\delta\left(G^{\prime}, C_{i}, C_{j}\right)$ if we transform the vertex cover $C_{i} \cap V\left(G^{\prime}\right)$ into $C_{j} \cap V\left(G^{\prime}\right)$. Clearly,

$$
\delta\left(G^{\prime}, C_{i}, C_{j}\right)=-\delta\left(G^{\prime}, C_{j}, C_{i}\right)
$$

Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be any induced subgraph of a graph $G=(V, E)$. Let u be an arbitrary cut vertex of G^{\prime}, and suppose that the induced subgraph $G\left[V^{\prime} \backslash\{u\}\right]$ consists of p connected components $G_{1}^{\prime}, G_{2}^{\prime}, \ldots, G_{p}^{\prime}$. Note that $p \geq 2$ since u is a cut vertex of G^{\prime}. Let $G_{a}^{\prime}=\left(V_{a}^{\prime}, E_{a}^{\prime}\right)$ be the connected component in $G\left[V^{\prime} \backslash\{u\}\right]$ such that

$$
\begin{equation*}
\delta\left(G_{a}^{\prime}, C_{0}, C_{t}\right)=\min \left\{\delta\left(G_{i}^{\prime}, C_{0}, C_{t}\right): 1 \leq i \leq p\right\} \tag{6}
\end{equation*}
$$

Then, the bipartition $\left(G_{L}^{\prime}, G_{R}^{\prime}\right)$ of G^{\prime} with a cut vertex u is to decompose G into two subgraphs G_{L}^{\prime} and G_{R}^{\prime}, defined as follows (see Fig. 3):

$$
G_{L}^{\prime}= \begin{cases}G_{a}^{\prime} & \text { if } u \in C_{0} ; \tag{7}\\ G\left[V_{a}^{\prime} \cup\{u\}\right] & \text { if } u \notin C_{0},\end{cases}
$$

and $G_{R}^{\prime}=G\left[V^{\prime} \backslash V\left(G_{L}^{\prime}\right)\right]$. Therefore, $V\left(G_{L}^{\prime}\right)$ and $V\left(G_{R}^{\prime}\right)$ form a partition of $V\left(G^{\prime}\right)$, that is, $V\left(G_{L}^{\prime}\right) \cup V\left(G_{R}^{\prime}\right)=V\left(G^{\prime}\right)$ and $V\left(G_{L}^{\prime}\right) \cap V\left(G_{R}^{\prime}\right)=\emptyset$.

Based on the bipartition $\left(G_{L}^{\prime}, G_{R}^{\prime}\right)$ of a subgraph G^{\prime} with a cut vertex u, we construct a reconfiguration sequence from $C_{0, G^{\prime}}$ to $C_{t, G^{\prime}}$, as follows:

Fig. 3 The bipartition $\left(G_{L}^{\prime}, G_{R}^{\prime}\right)$ of a subgraph G^{\prime} with a cut vertex u for the cases where (a) $u \in C_{0}$ and (b) $u \notin C_{0}$.
(1) transform $C_{0, G_{L}^{\prime}}$ into $C_{t, G_{L}^{\prime}}$ without adding/deleting any vertex in G_{R}^{\prime}; and
(2) transform $C_{0, G_{R}^{\prime}}$ into $C_{t, G_{R}^{\prime}}$ without adding/deleting any vertex in G_{L}^{\prime}.
The following lemma will be used in Lemma 6 for proving that any vertex subset appearing in the reconfiguration sequence above is a vertex cover of G^{\prime}. For notational convenience, let $C_{i, L}=C_{i, G_{L}^{\prime}}$ and $C_{i, R}=C_{i, G_{R}^{\prime}}$.
Lemma 4: Let $\left(G_{L}^{\prime}, G_{R}^{\prime}\right)$ be the bipartition of G^{\prime} with a cut vertex u. Then,
(a) for any vertex cover C_{L}^{\prime} of G_{L}^{\prime}, the vertex subset $C_{L}^{\prime} \cup$ $C_{0, R}$ forms a vertex cover of G^{\prime}; and
(b) for any vertex cover C_{R}^{\prime} of G_{R}^{\prime} such that $C_{0, R} \cap C_{t, R} \subseteq$ C_{R}^{\prime}, the vertex subset $C_{t, L} \cup C_{R}^{\prime}$ forms a vertex cover of G^{\prime}.

Proof. (a) Since $C_{0, R}$ is a vertex cover of G_{R}^{\prime}, every edge in $E\left(G_{R}^{\prime}\right)$ is covered by some vertex in $C_{0, R}$. Similarly, every edge in $E\left(G_{L}^{\prime}\right)$ is covered by some vertex in C_{L}^{\prime}. Therefore, it suffices to show that every edge e in $E\left(G^{\prime}\right) \backslash\left(E\left(G_{L}^{\prime}\right) \cup E\left(G_{R}^{\prime}\right)\right)$ is covered by some vertex in $C_{L}^{\prime} \cup C_{0, R}$. Note that such an edge e is incident to the cut vertex u; let $e=u w$. (See the thin dotted edges in Fig. 3.)

We first consider the case where $u \in C_{0}$. Then, by Eq. (7) we have $u \in V\left(G_{R}^{\prime}\right)$, and hence $u \in C_{0, R} \subseteq C_{L}^{\prime} \cup C_{0, R}$. (See Fig. 3(a).) Therefore, e is covered by $u \in C_{L}^{\prime} \cup C_{0, R}$.

We then consider the case where $u \notin C_{0}$. By Eq. (7) we have $u \in V\left(G_{L}^{\prime}\right)$, and hence $w \in V\left(G_{R}^{\prime}\right)$. Since $u \notin C_{0}$ and $C_{0, G^{\prime}}$ is a vertex cover of G^{\prime}, the other endpoint w must be in C_{0}. Therefore, $w \in C_{0, R}$, and hence e is covered by $w \in C_{L}^{\prime} \cup C_{0, R}$.

In this way, $C_{L}^{\prime} \cup C_{0, R}$ forms a vertex cover of G^{\prime}.
(b) Every edge in $E\left(G_{L}^{\prime}\right) \cup E\left(G_{R}^{\prime}\right)$ is covered by some vertex in $C_{t, L} \cup C_{R}^{\prime}$ because $C_{t, L}$ and C_{R}^{\prime} are vertex covers of G_{L}^{\prime} and G_{R}^{\prime}, respectively. We thus show that every edge $e=u w$ in $E\left(G^{\prime}\right) \backslash\left(E\left(G_{L}^{\prime}\right) \cup E\left(G_{R}^{\prime}\right)\right)$ is covered by some vertex in $C_{t, L} \cup C_{R}^{\prime}$.

We first consider the case where $u \in C_{0}$. (See Fig. 3(a).) Then, $u \in V\left(G_{R}^{\prime}\right)$ and $w \in V\left(G_{L}^{\prime}\right)$. If $u \in C_{t}$, then u is contained in both C_{0} and C_{t} and hence $u \in C_{0, R} \cap C_{t, R}$. By the assumption that $C_{0, R} \cap C_{t, R} \subseteq C_{R}^{\prime}$ holds, the edge e is covered by $u \in C_{t, L} \cup C_{R}^{\prime}$ if $u \in C_{t}$. If $u \notin C_{t}$, then the other endpoint w must be in C_{t}. Since $w \in V\left(G_{L}^{\prime}\right)$, we have $w \in C_{t} \cap V\left(G_{L}^{\prime}\right)=C_{t, L}$ and hence the edge e is covered by $w \in C_{t, L} \cup C_{R}^{\prime}$.

We then consider the case where $u \notin C_{0}$. (See Fig. 3(b).) Then, $u \in V\left(G_{L}^{\prime}\right)$ and $w \in V\left(G_{R}^{\prime}\right)$. If $u \in C_{t}$, then u is contained in $C_{t, L}$ and hence e is covered by $u \in C_{t, L} \cup C_{R}^{\prime}$. If $u \notin C_{t}$, then w must be in both C_{0} and C_{t}. Therefore, $w \in C_{0, R} \cap C_{t, R}$. By the assumption that $C_{0, R} \cap C_{t, R} \subseteq C_{R}^{\prime}$ holds, the edge e is covered by $w \in C_{t, L} \cup C_{R}^{\prime}$.

In this way, $C_{t, L} \cup C_{R}^{\prime}$ forms a vertex cover of G^{\prime}.
Let $C_{q}^{\prime}=C_{t, L} \cup C_{0, R}$. Lemma 4(a) implies that C_{q}^{\prime} is a vertex cover of G^{\prime}. Furthermore, $\left|C_{q}^{\prime}\right|=\left|C_{t, L}\right|+\left|C_{0, R}\right|$ since $V\left(G_{L}^{\prime}\right) \cap V\left(G_{R}^{\prime}\right)=\emptyset$. Then, we give the following lemma.

Lemma 5: The following (a) and (b) hold:
(a) $\delta\left(G_{R}^{\prime}, C_{0}, C_{t}\right) \geq 0$ if $\delta\left(G_{L}^{\prime}, C_{0}, C_{t}\right) \geq 1$; and
(b) $\left|C_{q}^{\prime}\right| \leq \max \left\{\left|C_{0, G^{\prime}}\right|,\left|C_{t, G^{\prime}}\right|\right\}$.

Proof. (a) We first note that

$$
\begin{equation*}
-1 \leq \delta\left(G[\{u\}], C_{0}, C_{t}\right) \leq 1 \tag{8}
\end{equation*}
$$

clearly holds for the cut vertex u, because $G[\{u\}]$ consists only of a single vertex u.

We now consider the case where $u \in C_{0}$. Then, by Eq. (7) we have $G_{L}^{\prime}=G_{a}^{\prime}$. By the assumption that $\delta\left(G_{L}^{\prime}, C_{0}, C_{t}\right) \geq 1$ holds, we have

$$
\delta\left(G_{a}^{\prime}, C_{0}, C_{t}\right)=\delta\left(G_{L}^{\prime}, C_{0}, C_{t}\right) \geq 1,
$$

and hence by Eq. (6)

$$
\begin{equation*}
\delta\left(G_{i}^{\prime}, C_{0}, C_{t}\right) \geq \delta\left(G_{a}^{\prime}, C_{0}, C_{t}\right) \geq 1 \tag{9}
\end{equation*}
$$

for any connected component $G_{i}^{\prime}, 1 \leq i \leq p$, in $G\left[V^{\prime} \backslash\{u\}\right]$. Since $G_{L}^{\prime}=G_{a}^{\prime}$,

$$
V\left(G_{R}^{\prime}\right)=V^{\prime} \backslash V\left(G_{L}^{\prime}\right)=\{u\} \cup \bigcup_{1 \leq i \leq p, i \neq a} V\left(G_{i}^{\prime}\right)
$$

as illustrated in Fig. 3(a). Then, Eqs. (8) and (9) imply that

$$
\begin{aligned}
\delta\left(G_{R}^{\prime}, C_{0}, C_{t}\right) & =\delta\left(G[\{u\}], C_{0}, C_{t}\right)+\sum_{1 \leq i \leq p, i \neq a} \delta\left(G_{i}^{\prime}, C_{0}, C_{t}\right) \\
& \geq(-1)+(p-1) \cdot 1 \\
& =p-2
\end{aligned}
$$

Recall that $p \geq 2$ since u is a cut vertex of G^{\prime}. We thus have $\delta\left(G_{R}^{\prime}, C_{0}, C_{t}\right) \geq 0$.

We then consider the case where $u \notin C_{0}$. By Eq. (7) we have $G_{L}^{\prime}=G\left[V_{a}^{\prime} \cup\{u\}\right]$, and hence

$$
\delta\left(G_{L}^{\prime}, C_{0}, C_{t}\right)=\delta\left(G_{a}^{\prime}, C_{0}, C_{t}\right)+\delta\left(G[\{u\}], C_{0}, C_{t}\right)
$$

Then, by the assumption of the lemma and Eq. (8) we have

$$
\begin{aligned}
\delta\left(G_{a}^{\prime}, C_{0}, C_{t}\right) & =\delta\left(G_{L}^{\prime}, C_{0}, C_{t}\right)-\delta\left(G[\{u\}], C_{0}, C_{t}\right) \\
& \geq 1-1 \\
& =0
\end{aligned}
$$

Therefore, Eq. (6) implies that $\delta\left(G_{i}^{\prime}, C_{0}, C_{t}\right) \geq 0$ for any connected component $G_{i}^{\prime}, 1 \leq i \leq p$, in $G\left[V^{\prime} \backslash\{u\}\right]$. Since

$$
V\left(G_{R}^{\prime}\right)=V^{\prime} \backslash V\left(G_{L}^{\prime}\right)=\bigcup_{1 \leq i \leq p, i \neq a} V\left(G_{i}^{\prime}\right)
$$

as illustrated in Fig. 3(b), we have

$$
\delta\left(G_{R}^{\prime}, C_{0}, C_{t}\right)=\sum_{1 \leq i \leq p, i \neq a} \delta\left(G_{i}^{\prime}, C_{0}, C_{t}\right) \geq 0
$$

(b) Suppose for a contradiction that $\left|C_{q}^{\prime}\right|>\max \left\{\left|C_{0, G^{\prime}},\left|C_{t, G^{\prime}}\right|\right\}\right.$. Then, $\left|C_{q}^{\prime}\right|>\max \left\{\left|C_{0, G^{\prime}}\right|,\left|C_{t, G^{\prime}}\right|\right\} \geq\left|C_{0, G^{\prime}}\right|$, and hence we have $\left|C_{q}^{\prime}\right|-\left|C_{0, G^{\prime}}\right| \geq 1$. Since $V\left(G_{L}^{\prime}\right) \cap V\left(G_{R}^{\prime}\right)=\emptyset$, by Eq. (5)
we thus have

$$
\begin{align*}
\delta\left(G_{L}^{\prime}, C_{0}, C_{t}\right) & =\left|C_{t, L}\right|-\left|C_{0, L}\right| \\
& =\left(\left|C_{t, L}\right|+\left|C_{0, R}\right|\right)-\left(\left|C_{0, L}\right|+\left|C_{0, R}\right|\right) \\
& =\left|C_{q}^{\prime}\right|-\left|C_{0, G^{\prime}}\right| \\
& \geq 1 \tag{10}
\end{align*}
$$

Since $\left|C_{q}^{\prime}\right|>\max \left\{\left|C_{0, G^{\prime}}\right|,\left|C_{t, G^{\prime}}\right|\right\}$, we also have $\left|C_{q}^{\prime}\right|>\left|C_{t, G^{\prime}}\right|$. Therefore, we have

$$
\begin{align*}
\delta\left(G_{R}^{\prime}, C_{0}, C_{t}\right) & =\left|C_{t, R}\right|-\left|C_{0, R}\right| \\
& =\left(\left|C_{t, L}\right|+\left|C_{t, R}\right|\right)-\left(\left|C_{t, L}\right|+\left|C_{0, R}\right|\right) \\
& =\left|C_{t, G^{\prime}}^{\prime}\right|-\left|C_{q}^{\prime}\right| \\
& <0 \tag{11}
\end{align*}
$$

In this way, both Eqs. (10) and (11) hold; this contradicts Lemma 5(a).

4.3.2 Reconfiguration Sequence

We now give our reconfiguration sequence between C_{0} and C_{t} of a graph G, based on a decomposition tree T of G which is recursively defined as follows:
(A) the root r of T corresponds to the whole graph G; and
(B) if there is a cut vertex u in the subgraph G^{\prime} corresponding to a node v of T, then v has two children v_{L} and v_{R} in T which correspond to the subgraphs G_{L}^{\prime} and G_{R}^{\prime}, respectively, where $\left(G_{L}^{\prime}, G_{R}^{\prime}\right)$ is the bipartition of G^{\prime} with u.
Then, each leaf of T corresponds to a 2-connected subgraph of G.

We now prove the key lemma.
Lemma 6: Let α be a fixed integer, and T be a decomposition tree of a graph G. For every 2-connected subgraph $G^{\prime \prime}$ of G, suppose that

$$
\begin{equation*}
f_{G^{\prime \prime}}^{*}\left(C_{0, G^{\prime \prime}}, C_{t, G^{\prime \prime}} ; C_{0, G^{\prime \prime}} \cap C_{t, G^{\prime \prime}}\right) \leq \max \left\{\left|C_{0, G^{\prime \prime}}\right|,\left|C_{t, G^{\prime \prime}}\right|\right\}+\alpha \tag{12}
\end{equation*}
$$

Then, for the subgraph G^{\prime} corresponding to each node v of T, there is a reconfiguration sequence $C^{\prime}=\left\langle C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{\ell}^{\prime}\right\rangle$ such that
(a) $C_{0}^{\prime}=C_{0, G^{\prime}}$ and $C_{\ell}^{\prime}=C_{t, G^{\prime}}$;
(b) $C_{0, G^{\prime}} \cap C_{t, G^{\prime}} \subseteq C_{i}^{\prime}$ for all vertex covers $C_{i}^{\prime} \in C^{\prime}$; and
(c) $f\left(C^{\prime}\right) \leq \max \left\{\left|C_{0, G^{\prime}}\right|,\left|C_{t, G^{\prime}}\right|\right\}+\alpha$.

Proof. We prove the lemma by induction based on the decomposition tree T.

Base step.

Suppose that v is a leaf of T, and let G^{\prime} be the subgraph corresponding to v. Then, G^{\prime} is 2 -connected, and hence Eq. (12) holds for G^{\prime}. Therefore, Eqs. (2) and (12) imply that there exists a reconfiguration sequence between $C_{0, G^{\prime}}$ and $C_{t, G^{\prime}}$ satisfying all the three conditions (a)-(c).

Inductive step.

Let v be an internal node of T having two children v_{L}
and v_{R}. Let $G^{\prime}, G_{L}^{\prime}$ and G_{R}^{\prime} be the subgraphs corresponding to v, v_{L} and v_{R}, respectively, and hence $\left(G_{L}^{\prime}, G_{R}^{\prime}\right)$ is a bipartition of G^{\prime}. Suppose that the lemma holds for G_{L}^{\prime} and G_{R}^{\prime}. Then, G_{L}^{\prime} has a reconfiguration sequence $C^{L}=$ $\left\langle C_{0}^{L}, C_{1}^{L}, \ldots, C_{\ell_{L}}^{L}\right\rangle$ such that
(a-L) $C_{0}^{L}=C_{0, L}$ and $C_{\ell_{L}}^{L}=C_{t, L}$;
(b-L) $C_{0, L} \cap C_{t, L} \subseteq C_{i}^{L}$ for all vertex covers $C_{i}^{L} \in C^{L}$; and (c-L) $f\left(C^{L}\right) \leq \max \left\{\left|C_{0, L}\right|,\left|C_{t, L}\right|\right\}+\alpha$.
Similarly, G_{R}^{\prime} has a reconfiguration sequence $C^{R}=$ $\left\langle C_{0}^{R}, C_{1}^{R}, \ldots, C_{\ell_{R}}^{R}\right\rangle$ such that
(a-R) $C_{0}^{R}=C_{0, R}$ and $C_{\ell_{R}}^{R}=C_{t, R}$;
(b-R) $C_{0, R} \cap C_{t, R} \subseteq C_{j}^{R}$ for all vertex covers $C_{j}^{R} \in C^{R}$; and (c-R) $f\left(C^{R}\right) \leq \max \left\{\left|C_{0, R}\right|,\left|C_{t, R}\right|\right\}+\alpha$.
From the induction hypothesis above, we now construct a sequence $C^{\prime}=\left\langle C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{\ell}^{\prime}\right\rangle$ of vertex subsets of G^{\prime}, where $\ell=\ell_{L}+\ell_{R}$, as follows:
(i) $C_{i}^{\prime}=C_{i}^{L} \cup C_{0, R}$ for all $i, 0 \leq i \leq \ell_{L}$; and
(ii) $C_{i}^{\prime}=C_{t, L} \cup C_{i-\ell_{L}}^{R}$ for all $i, \ell_{L}<i \leq \ell_{L}+\ell_{R}=\ell$.

Then, $C_{\ell_{L}}^{\prime}=C_{t, L} \cup C_{0, R}$. In the following, we will show that C^{\prime} is a reconfiguration sequence for G^{\prime} satisfying all the three conditions (a)-(c). Let $C_{0, \ell_{L}}^{\prime}=\left\langle C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{\ell_{L}}^{\prime}\right\rangle$ and $C_{\ell_{L}, \ell}^{\prime}=\left\langle C_{\ell_{L}}^{\prime}, C_{\ell_{L}+1}^{\prime}, \ldots, C_{\ell_{L}+\ell_{R}}^{\prime}\right\rangle$. Note that, for notational convenience, $C_{\ell_{L}}^{\prime}$ appears in both $C_{0, \ell_{L}}^{\prime}$ and $C_{\ell_{L}, \ell}^{\prime}$.

We first show that C^{\prime} satisfies the condition (a). By the construction (i) above and the condition (a-L), we have $C_{0}^{\prime}=C_{0}^{L} \cup C_{0, R}=C_{0, L} \cup C_{0, R}=C_{0, G^{\prime}}$, as required. Similarly, by the construction (ii) above and the condition (a-R), we have $C_{\ell}^{\prime}=C_{t, L} \cup C_{\ell_{R}}^{R}=C_{t, L} \cup C_{t, R}=C_{t, G^{\prime}}$. Thus, C^{\prime} satisfies the condition (a).

Before showing the conditions (b) and (c), we now prove that C^{\prime} is a reconfiguration sequence between $C_{0, G^{\prime}}$ and $C_{t, G^{\prime}}$. It suffices to show that $C_{0, \ell_{L}}^{\prime}$ is a reconfiguration sequence from $C_{0, G^{\prime}}=C_{0, L} \cup C_{0, R}$ to $C_{\ell_{L}}^{\prime}=C_{t, L} \cup C_{0, R}$, and that $C_{\ell_{L}, \ell}^{\prime}$ is a reconfiguration sequence from $C_{\ell_{L}}^{\prime}=C_{t, L} \cup C_{0, R}$ to $C_{t, G^{\prime}}=C_{t, L} \cup C_{t, R}$.

Recall that $C^{L}=\left\langle C_{0}^{L}, C_{1}^{L}, \ldots, C_{\ell_{L}}^{L}\right\rangle$ is a reconfiguration sequence between $C_{0}^{L}=C_{0, L}$ and $C_{\ell_{L}}^{L}=C_{t, L}$, and hence each $C_{i}^{L} \in C^{L}$ is a vertex cover of G_{L}^{\prime}. Since $C_{i}^{\prime}=C_{i}^{L} \cup C_{0, R}$ for each vertex subset $C_{i}^{\prime} \in C_{0, \ell_{L}}^{\prime}$, Lemma 4(a) implies that C_{i}^{\prime} is a vertex cover of G^{\prime}. Therefore, the sequence $C_{0, \ell_{L}}^{\prime}$ is a reconfiguration sequence from $C_{0, G^{\prime}}=C_{0, L} \cup C_{0, R}$ to $C_{\ell_{L}}^{\prime}=C_{t, L} \cup C_{0, R}$.

Recall also that $C^{R}=\left\langle C_{0}^{R}, C_{1}^{R}, \ldots, C_{\ell_{R}}^{R}\right\rangle$ is a reconfiguration sequence between $C_{0}^{R}=C_{0, R}$ and $C_{\ell_{R}}^{R}=C_{t, R}$, and hence each $C_{j}^{R} \in C^{R}$ is a vertex cover of G_{R}^{\prime}. Furthermore, by the condition (b-R) we have $C_{0, R} \cap C_{t, R} \subseteq C_{j}^{R}$ for all $C_{j}^{R} \in C^{R}$. Since $C_{i}^{\prime}=C_{t, L} \cup C_{i-\ell_{L}}^{R}$ for each vertex subset $C_{i}^{\prime} \in C_{\ell_{L}, \ell}^{\prime}$, Lemma 4(b) implies that C_{i}^{\prime} is a vertex cover of G^{\prime}. Therefore, the sequence $C_{\ell_{L}, \ell}^{\prime}$ is a reconfiguration sequence from $C_{\ell_{L}}^{\prime}=C_{t, L} \cup C_{0, R}$ to $C_{t, L} \cup C_{t, R}=C_{t, G^{\prime}}$.

In this way, C^{\prime} is a reconfiguration sequence between $C_{0, G^{\prime}}$ and $C_{t, G^{\prime}}$.

We then show that C^{\prime} satisfies the condition (b). Since
$V\left(G_{L}^{\prime}\right) \cap V\left(G_{R}^{\prime}\right)=\emptyset$, we have

$$
C_{0, G^{\prime}} \cap C_{t, G^{\prime}}=\left(C_{0, L} \cap C_{t, L}\right) \cup\left(C_{0, R} \cap C_{t, R}\right)
$$

By the condition (b-L), we have $C_{0, L} \cap C_{t, L} \subseteq C_{i}^{L}$ for all i, $0 \leq i \leq \ell_{L}$. Therefore, for all vertex covers C_{i}^{\prime} in $C_{0, \ell_{L}}^{\prime}$, by the construction (i) above we have

$$
\begin{aligned}
C_{0, G^{\prime}} \cap C_{t, G^{\prime}} & =\left(C_{0, L} \cap C_{t, L}\right) \cup\left(C_{0, R} \cap C_{t, R}\right) \\
& \subseteq C_{i}^{L} \cup C_{0, R} \\
& =C_{i}^{\prime}
\end{aligned}
$$

as required. Similarly, by the condition (b-R), we have $C_{0, R} \cap C_{t, R} \subseteq C_{i-\ell_{L}}^{R}$ for all $i, \ell_{L} \leq i \leq \ell_{L}+\ell_{R}$. Therefore, for all vertex covers C_{i}^{\prime} in $C_{\ell_{L}, \ell}^{\prime}$, by the construction (ii) above we have

$$
\begin{aligned}
C_{0, G^{\prime}} \cap C_{t, G^{\prime}} & =\left(C_{0, L} \cap C_{t, L}\right) \cup\left(C_{0, R} \cap C_{t, R}\right) \\
& \subseteq C_{t, L} \cup C_{i-\ell_{L}}^{R} \\
& =C_{i}^{\prime}
\end{aligned}
$$

as required. In this way, $C_{0, G^{\prime}} \cap C_{t, G^{\prime}} \subseteq C_{i}^{\prime}$ for all vertex covers $C_{i}^{\prime} \in C^{\prime}$, and hence C^{\prime} satisfies the condition (b).

We finally prove that C^{\prime} satisfies the condition (c). Notice that

$$
\begin{equation*}
f\left(C^{\prime}\right)=\max \left\{f\left(C_{0, \ell_{L}}^{\prime}\right), f\left(C_{\ell_{L}, \ell}^{\prime}\right)\right\} \tag{13}
\end{equation*}
$$

Recall that $V\left(G_{L}^{\prime}\right) \cap V\left(G_{R}^{\prime}\right)=\emptyset$. Then, by the construction (i) above and the condition (c-L), we have

$$
\begin{aligned}
f\left(C_{0, \ell_{L}}^{\prime}\right) & =f\left(C^{L}\right)+\left|C_{0, R}\right| \\
& \leq \max \left\{\left|C_{0, L}\right|,\left|C_{t, L}\right|\right\}+\alpha+\left|C_{0, R}\right| \\
& =\max \left\{\left|C_{0, L}\right|+\left|C_{0, R}\right|,\left|C_{t, L}\right|+\left|C_{0, R}\right|\right\}+\alpha \\
& =\max \left\{\left|C_{0, G^{\prime}}\right|,\left|C_{\ell_{L}}^{\prime}\right|\right\}+\alpha .
\end{aligned}
$$

Since $C_{\ell_{L}}^{\prime}=C_{t, L} \cup C_{0, R}$, by Lemma 5(b) we thus have

$$
\begin{equation*}
f\left(C_{0, \ell_{L}}^{\prime}\right) \leq \max \left\{\left|C_{0, G^{\prime}}\right|,\left|C_{t, G^{\prime}}\right|\right\}+\alpha \tag{14}
\end{equation*}
$$

Similarly, by the construction (ii) above and the condition (c-R), we have

$$
\begin{aligned}
f\left(C_{\ell_{L}, \ell}^{\prime}\right) & =\left|C_{t, L}\right|+f\left(C^{R}\right) \\
& \leq\left|C_{t, L}\right|+\max \left\{\left|C_{0, R}\right|,\left|C_{t, R}\right|\right\}+\alpha \\
& =\max \left\{\left|C_{t, L}\right|+\left|C_{0, R}\right|,\left|C_{t, L}\right|+\left|C_{t, R}\right|\right\}+\alpha \\
& =\max \left\{\left|C_{\ell_{L}}^{\prime}\right|,\left|C_{t, G^{\prime}}\right|\right\}+\alpha
\end{aligned}
$$

Therefore, by Lemma 5(b) we have

$$
\begin{equation*}
f\left(C_{\ell_{L}, \ell}^{\prime}\right) \leq \max \left\{\left|C_{0, G^{\prime}}\right|,\left|C_{t, G^{\prime}}\right|\right\}+\alpha \tag{15}
\end{equation*}
$$

Equations (13), (14) and (15) prove that C^{\prime} satisfies the condition (c).

4.3.3 Proof of Theorem 2

Recall that the root r of a decomposition tree T of a graph G corresponds to the whole graph G. Therefore, by Lemma 6 there exists a reconfiguration sequence C between $C_{0, G}=C_{0}$
and $C_{t, G}=C_{t}$ such that $C_{0, G} \cap C_{t, G} \subseteq C_{i}$ for all vertex covers $C_{i} \in C$ and $f(C) \leq \max \left\{\left|C_{0, G}\right|,\left|C_{t, G}\right|\right\}+\alpha$. By Eq. (2) we thus have

$$
f_{G}^{*}\left(C_{0}, C_{t} ; C_{0} \cap C_{t}\right) \leq f(C) \leq \max \left\{\left|C_{0}\right|,\left|C_{t}\right|\right\}+\alpha
$$

as required. This completes the proof of Theorem 2.

5. Concluding Remarks

In this paper, we gave algorithmic results for the two reconfiguration problems on vertex cover. We note again that our upper bound on the reconfiguration index gives an approximation algorithm with absolute performance guarantee.

Recently, Mouawad et al. [13] proposed a linear-time algorithm to solve vertex cover reconfiguration for even-hole-free graphs and cacti. Their proof method is different from ours, and hence both results can coexist. As one of the interesting points of our paper, we proved that the reconfiguration index of a whole graph can be bounded only by the local computation, that is, the reconfiguration index of each 2-connected subgraph; this fact suggests that 2-connected subgraphs are essential for the problem.

In addition, it has been proved recently that the reconfiguration problem on INDEPENDENT SET under the TAR-model can be solved in polynomial time for cographs [1], [3]. Thus, vertex cover reconfiguration is solvable in polynomial time for cographs. Note that the classes of even-holefree graphs and cographs are non-comparable with each other.

It remains open to obtain an upper bound on the reconfiguration index in terms of the cardinality of separators in a graph. (Our upper bound can be seen as the case where the separator is of cardinality one.) This would help a better understanding of the reconfiguration index.

Acknowledgments

We thank Ryuhei Uehara for fruitful discussions. We also thank anonymous referees of the preliminary version [11] and of this journal version for their helpful suggestions.

References

[1] M. Bonamy and N. Bousquet, Reconfiguring independent sets in cographs, arXiv:1406.1433, 2014.
[2] M. Bonamy, M. Johnson, I. Lignos, V. Patel, and D. Paulusma, "Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs," J. Combinatorial Optimization 27, pp.132-143, 2014.
[3] P. Bonsma, "Independent set reconfiguration in cographs," Proc. WG 2014, LNCS 8747, pp.105-116, 2014.
[4] P. Bonsma and L. Cereceda, "Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances," Theoretical Computer Science 410, pp.5215-5226, 2009.
[5] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics, Philadelphia, 1999.
[6] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković, Even-hole-free graphs part I: Decomposition theorem, J. Graph Theory 39, pp.6-49, 2002.
[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979.
[8] P. Gopalan, P.G. Kolaitis, E.N. Maneva, and C.H. Papadimitriou, "The connectivity of Boolean satisfiability: computational and structural dichotomies," SIAM J. Computing 38, pp.2330-2355, 2009.
[9] R.A. Hearn and E.D. Demaine, "PSPACE-completeness of slidingblock puzzles and other problems through the nondeterministic constraint logic model of computation," Theoretical Computer Science 343, pp.72-96, 2005.
[10] T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, and Y. Uno, "On the complexity of reconfiguration problems," Theoretical Computer Science 412, pp.1054-1065, 2011.
[11] T. Ito, H. Nooka, and X. Zhou, "Reconfiguration of vertex covers in a graph," In Proc. of IWOCA 2014, LNCS 8986, pp.164-175, 2015.
[12] M. Kamiński, P. Medvedev, and M. Milanič, "Complexity of independent set reconfigurability problems," Theoretical Computer Science 439, pp.9-15, 2012.
[13] A.E. Mouawad, N. Nishimura, and V. Raman, "Vertex cover reconfiguration and beyond," In Proc. of ISAAC 2014, LNCS 8889, pp.452-463, 2014.
[14] A.E. Mouawad, N. Nishimura, V. Raman, N. Simjour, and A. Suzuki, "On the parameterized complexity of reconfiguration problems," In Proc. of IPEC 2013, LNCS 8246, pp.281-294, 2013.
[15] S. Pirzada and A. Dharwadker, Applications of graph theory, J. Korean Society for Industrial and Applied Mathematics 11, pp.19-38, 2007.

Takehiro Ito skipped the second semester of the senior grade of an undergraduate course at Tohoku University, Japan, and received the M.S. and Ph.D. degrees from Tohoku University in 2003 and 2006, respectively. He is currently Associate Professor of Graduate School of Information Sciences, Tohoku University. His research interests include graph algorithms and computational complexity.

Hiroyuki Nooka received the B.E. and M.S. degrees from Tohoku University in 2010 and 2012, respectively.

Xiao Zhou received the B.E. degree from the East China Normal University, Shanghai, China, in 1986, and the M.E. and Ph.D. degrees from Tohoku University, Japan, in 1992 and 1995, respectively. He is currently Professor of Graduate School of Information Sciences, Tohoku University. His areas of research interest are combinatorial algorithms, graph theory and computational complexity.

[^0]: Manuscript received March 27, 2015.
 Manuscript revised June 29, 2015.
 Manuscript publicized December 16, 2015.
 ${ }^{\dagger}$ The authors are with the Graduate School of Information Sciences, Tohoku University, Sendai-shi, 980-8579 Japan.
 *This work is partially supported by Grant-in-Aid for Scientific Research 25330003 and 15H00849.
 a) E-mail: takehiro@ecei.tohoku.ac.jp
 b) E-mail: nooka.hiroyuki@ec.ecei.tohoku.ac.jp
 c) E-mail: zhou @ecei.tohoku.ac.jp

 DOI: 10.1587/transinf.2015FCP0010

