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Reconfiguration of Vertex Covers in a Graph∗

Takehiro ITO†a), Member, Hiroyuki NOOKA†b), Nonmember, and Xiao ZHOU†c), Member

SUMMARY Suppose that we are given two vertex covers C0 and Ct of
a graph G, together with an integer threshold k ≥ max{|C0 |, |Ct |}. Then, the
vertex cover reconfiguration problem is to determine whether there exists
a sequence of vertex covers of G which transforms C0 into Ct such that
each vertex cover in the sequence is of cardinality at most k and is obtained
from the previous one by either adding or deleting exactly one vertex. This
problem is PSPACE-complete even for planar graphs. In this paper, we first
give a linear-time algorithm to solve the problem for even-hole-free graphs,
which include several well-known graphs, such as trees, interval graphs and
chordal graphs. We then give an upper bound on k for which any pair of
vertex covers in a graph G has a desired sequence. Our upper bound is best
possible in some sense.
key words: combinatorial reconfiguration, even-hole-free graph, graph
algorithm, vertex cover

1. Introduction

A vertex cover C of a graph G is a vertex subset of G which
contains at least one of the two endpoints of every edge in
G. (See Fig. 1 which depicts six different vertex covers of
the same graph.) Then, the vertex cover problem is a well-
known NP-complete problem [7], defined as follows: Given
a graph G and an integer k, it determines whether G has a
vertex cover of cardinality at most k.

The vertex cover problem has several applica-
tions [15], such as in the SNP assembly problem in com-
putational biochemistry and in a computer network security
problem. In the computer network security problem, each

Fig. 1 A sequence ⟨C0,C1, . . . ,C5⟩ of vertex covers of the same graph,
where the vertices in vertex covers are depicted by large black circles.
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vertex corresponds to a router and each edge corresponds to
a link in a computer network, and we wish to pick a subset
of routers for monitoring packets flowing on the links; such
a subset forms a vertex cover of the corresponding graph.

However, a practical issue in computer network secu-
rity requires that the formulation be considered in more dy-
namic situations: in order to maintain routers, we sometimes
need to change the current subset of routers to another sub-
set. Of course, we wish to keep monitoring all links even
during the transformation. This situation can be formu-
lated by the concept of reconfiguration problems that have
been extensively studied in recent literature [2], [4], [8]–
[10], [12], [14].

1.1 Our Problems

Suppose that we are given two vertex covers C0 and Ct

of a graph G = (V, E), together with an integer threshold
k ≥ max{|C0|, |Ct |}. Then, the vertex cover reconfigura-
tion problem is to determine whether there exists a sequence
⟨C0,C1, . . . ,Cℓ⟩ of vertex covers of G such that

(a) Cℓ = Ct, and |Ci| ≤ k for all i, 0 ≤ i ≤ ℓ; and
(b) for each index i, 1 ≤ i ≤ ℓ, the vertex cover Ci of G is

obtained from the previous one Ci−1 by either deleting
or adding a single vertex u ∈ V , that is, Ci−1 △ Ci =

(Ci−1 \Ci) ∪ (Ci \Ci−1) = {u}.
Figure 1 illustrates a sequence ⟨C0,C1, . . . ,C5⟩ of vertex
covers of the same graph which transforms C0 into Ct = C5,
where the vertex which is deleted from (or added to) the
previous vertex cover is surrounded by a dotted circle.

The existence of such a transformation clearly depends
on the value of a given threshold k. For example, if k ≥
4, then the instance of the two vertex covers C0 and Ct in
Fig. 1 is a yes-instance, because all vertex covers in Fig. 1
have cardinality at most four. On the other hand, if k ≤ 3,
then the instance in Fig. 1 is a no-instance, because there is
no transformation between C0 and Ct that consists only of
vertex covers of cardinality at most three.

Therefore, we can get a natural minimization problem,
called the minmax vertex cover reconfiguration problem, in
which we wish to minimize the maximum cardinality of any
vertex cover in a transformation for two given vertex covers
C0 and Ct of a graph G; we denote by f ∗G(C0,Ct) the optimal
value. Then, the answer to vertex cover reconfiguration is
“yes” if k ≥ f ∗G(C0,Ct); otherwise “no.” (A formal definition
will be given in Sect. 2.)
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1.2 Related and Known Results

Recently, this type of problems has been studied extensively
in the framework of reconfiguration problems [10], which
arise when we wish to find a step-by-step transformation
between two feasible solutions of a search problem such
that all intermediate solutions are also feasible and each
step abides by a prescribed reconfiguration rule (i.e., an ad-
jacency relation defined on feasible solutions of the origi-
nal search problem). For example, in vertex cover recon-
figuration, feasible solutions are defined to be all vertex
covers of a graph with cardinality at most a given thresh-
old k; and the reconfiguration rule is defined to be the
condition (b) in Sect. 1.1. (We simply say a reconfigura-
tion problem on a search problem A if the reconfiguration
problem considers feasible solutions of A as the interme-
diate solutions.) This reconfiguration framework has been
applied to several well-known problems, including inde-
pendent set [9], [10], [12], [14], satisfiability [8], clique,
matching [10], vertex-coloring [2], [4], etc.

Both vertex cover reconfiguration and minmax vertex
cover reconfiguration are known to be PSPACE-complete
for planar graphs of maximum degree three [10], and hence
it is very unlikely that they are solvable in polynomial time
even for planar graphs.

From the viewpoint of approximation, it is known that
the optimal value f ∗G(C0,Ct) can be approximated within
a factor 2 in linear time; indeed, this approximation re-
sult can be obtained from a linear-time 2-approximation al-
gorithm for the reconfiguration problem on set cover [10,
Theorem 6] . However, as far as we know, only this 2-
approximation is known for the reconfiguration problem on
set cover, and hence it is desired to investigate further al-
gorithmic (positive) results for the reconfiguration problems
on vertex cover.

One may think that some known results for the recon-
figuration problem on independent set [9], [10], [12], [14]
can be converted into our vertex cover reconfiguration;
because, if a vertex subset C is a vertex cover of a graph
G = (V, E), then V \ C forms an independent set of G, and
vice versa. There are three types of reconfiguration prob-
lems on independent set which employ different reconfig-
uration rules. Although one of the three rules corresponds
to the one for our vertex cover reconfiguration, almost all
(positive) results are given to the other reconfiguration rules;
this will be discussed in Sect. 3.

1.3 Our Contribution

In this paper, we investigate algorithmic results for the ver-
tex cover reconfiguration and minmax vertex cover recon-
figuration problems. (An extended abstract of this paper
has been presented in [11].)

We first show that both reconfiguration problems can
be solved in linear time for even-hole-free graphs. We will
define the class of even-hole-free graphs later, but we here

note that this graph class contains several well-known graph
classes, such as trees, interval graphs and chordal graphs.

We then give an upper bound on the optimal value
f ∗G(C0,Ct) for two vertex covers C0 and Ct of a graph G.
Our upper bound holds for any graph; as a corollary, we
have f ∗G(C0,Ct) ≤ max{|C0|, |Ct |} + 1 if G is a tree; and
f ∗G(C0,Ct) ≤ max{|C0|, |Ct |} + 2 if G is a cactus. We
note that our upper bound is best possible in the following
sense: there are instances of cacti such that f ∗G(C0,Ct) =
max{|C0|, |Ct |} + 2. (See Sect. 4.2 for details.)

We finally note that our second result gives an approx-
imation for f ∗G(C0,Ct) with absolute performance guaran-
tee. For an instance of minmax vertex cover reconfigu-
ration, let apG(C0,Ct) be an objective value computed by
an algorithm. Then, for two integers ρ ≥ 1 and c ≥
0, we say that the algorithm is a (ρ, c)-approximation if
apG(C0,Ct) ≤ ρ · f ∗G(C0,Ct) + c holds for any instance.
As we have mentioned above, there is a linear-time (2, 0)-
approximation algorithm for f ∗G(C0,Ct), which follows from
the 2-approximation for the reconfiguration problem on set
cover [10]. On the other hand, our second result gives a
(1, α)-approximation for f ∗G(C0,Ct), where α is some inte-
ger defined later. Although this integer α depends on an
input graph G, it is remarkable that α can be obtained only
by a local computation: we just focus on a transformation
restricted on 2-connected subgraphs of G, and extend it to a
transformation on the whole graph G.

2. Preliminaries

In this section, we define some terms which will be used
throughout the paper.

2.1 Graph Notation

In this paper, we may assume without loss of generality that
graphs are simple and undirected. For a graph G, we some-
times denote by V(G) and E(G) the vertex set and the edge
set of G, respectively. For a vertex subset V ′ of a graph G,
we denote by G[V ′] the subgraph of G induced by V ′.

A vertex u in a connected graph G = (V, E) is called a
cut vertex of G if the induced subgraph G[V \ {u}] is discon-
nected. A connected graph G is said to be 2-connected if G
has no cut vertex.

A vertex subset C of a graph G is called a vertex cover
of G if at least one of v ∈ C and w ∈ C holds for every edge
vw ∈ E(G). We say that an edge vw ∈ E(G) is covered by v
if v ∈ C.

2.2 Definitions for Vertex Cover Reconfiguration

Let Ci and C j be two vertex covers of a graph G. We say that
Ci and C j are adjacent if their symmetric difference Ci △ C j

consists of exactly one vertex u, that is, C j can be obtained
from Ci by either deleting or adding the vertex u. A recon-
figuration sequence between two vertex covers C and C′ of
G is a sequence C = ⟨C1,C2, . . . ,Cℓ⟩ of vertex covers of G
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such that C1 = C, Cℓ = C′, and Ci−1 and Ci are adjacent for
i = 2, 3, . . . , ℓ. For notational convenience, we write Ci ∈ C
if a vertex cover Ci appears in a reconfiguration sequence
C. Observe that any reconfiguration sequence is reversible,
that is, ⟨Cℓ,Cℓ−1, . . . ,C1⟩ is a reconfiguration sequence from
Cℓ = C′ to C1 = C, because the adjacency relation on vertex
covers of G is symmetric.

For a reconfiguration sequence C, let

f (C) = max{|Ci| : Ci ∈ C},

that is, the maximum cardinality of a vertex cover that ap-
pears in C. For two vertex covers C and C′ of a graph G, we
define the reconfiguration index f ∗G(C,C′), as follows:

f ∗G(C,C′) = min{ f (C) : C is a reconfiguration

sequence between C and C′}.

It should be noted that the reconfiguration index f ∗G(C,C′) is
well defined, because any pair of vertex covers C and C′ of
G has a trivial reconfiguration sequence C such that f (C) =
|C∪C′|, as follows: we add to C the vertices in C′ \C one by
one, and obtain the vertex cover C ∪C′ of G; and we delete
from C ∪ C′ the vertices in C \ C′ one by one. We note in
passing that this trivial reconfiguration sequence C gives a
2-approximation for f ∗G(C,C′) as shown in [10, Theorem 6],
because we clearly have

f ∗G(C,C′) ≥ max{|C|, |C′|} (1)

and f ∗G(C,C′) ≤ |C ∪C′| ≤ 2 ·max{|C|, |C′|}.
Given two vertex covers C0 and Ct of a graph G and a

positive integer k, the vertex cover reconfiguration prob-
lem is to determine whether f ∗G(C0,Ct) ≤ k; while the min-
max vertex cover reconfiguration problem is to compute
the reconfiguration index f ∗G(C0,Ct). Note that both prob-
lems do not ask for an actual reconfiguration sequence be-
tween C0 and Ct. We always denote by C0 and Ct the initial
and target vertex covers of G, respectively.

3. Even-Hole-Free Graphs

A graph G is even-hole free if any induced subgraph of G
is not a cycle consisting of an even number of vertices [6].
This graph class includes several well-known classes, such
as trees, interval graphs and chordal graphs.

Theorem 1: Both vertex cover reconfiguration and min-
max vertex cover reconfiguration can be solved in linear
time for even-hole-free graphs.

As a proof of Theorem 1, it suffices to give a linear-time
algorithm which computes f ∗G(C0,Ct) for any pair of vertex
covers C0 and Ct of an even-hole-free graph G. Our algo-
rithm employs a nice property of reconfiguration sequences
of independent sets, given by Kamiński et al. [12]. We first
explain this property in Sect. 3.1, and then give our algo-
rithm in Sect. 3.2.

3.1 Reconfiguration of Independent Sets

Kamiński et al. [12] deeply studied three types of reconfig-
uration problems on independent set in a graph. In this sub-
section, we define and explain only one type used for our
algorithm, which they call “Token Addition and Removal
(TAR) model” [12].

In the TAR-model, two independent sets Ii and I j of a
graph G are adjacent if their symmetric difference Ii △ I j

consists of a single vertex u, that is, I j can be obtained from
Ii by either removing or adding the vertex u. Similarly as
for vertex covers, a reconfiguration sequence between two
independent sets I and I′ of G is a sequence ⟨I1, I2, . . . , Iℓ⟩
of independent sets of G such that I1 = I, Iℓ = I′, and Ii−1

and Ii are adjacent for i = 2, 3, . . . , ℓ. Kamiński et al. [12]
gave the following lemma for even-hole-free graphs.

Lemma 1 ([12]): Let I0 and It be any pair of independent
sets of an even-hole-free graph G such that |I0| = |It |. Then,
there exists a reconfiguration sequence I between I0 and It

such that |Ii| ≥ |I0| − 1 for all independent sets Ii ∈ I.

Based on Lemma 1, we give the following lemma. In
contrast to Lemma 1 in which |I0| = |It | always holds for
two independent sets I0 and It, note that two vertex covers
C0 and Ct in Lemma 2 do not necessarily have the same
cardinality.

Lemma 2: Let C0 and Ct be any pair of vertex covers of an
even-hole-free graph G. Then,

f ∗G(C0,Ct) ≤ max{|C0|, |Ct |} + 1.

Proof. We may assume without loss of generality that |C0| ≥
|Ct |; recall that any reconfiguration sequence is reversible.
Then, we construct a vertex cover C′t of G such that |C′t | =
|C0| by adding to Ct exactly |C0| − |Ct | (≥ 0) vertices chosen
arbitrarily from V(G) \ Ct. It suffices to show that there is
a reconfiguration sequence C between C0 and C′t such that
f (C) ≤ max{|C0|, |C′t |} + 1 = |C0| + 1, because Ct can be
obtained from C′t by only deleting the vertices in C′t \ Ct;
and hence f ∗G(C0,Ct) ≤ f (C).

It is well known that, if a vertex subset C is a vertex
cover of a graph G, then V(G)\C forms an independent set of
G, and vice versa. Let I0 = V(G)\C0 and I′t = V(G)\C′t , then
they are independent sets of G having the same cardinality.
Therefore, by Lemma 1 there is a reconfiguration sequence
I = ⟨I0, I1, . . . , Iℓ⟩ between I0 and Iℓ = I′t such that |Ii| ≥
|I0| − 1 for all independent sets Ii ∈ I.

Consider the sequence C = ⟨C0,C1, . . . ,Cℓ⟩ of vertex
covers of G corresponding to I, that is, Ci = V(G) \ Ii for
each i, 0 ≤ i ≤ ℓ. Since |Ii−1 △ Ii| = 1 holds for every
i, 1 ≤ i ≤ ℓ, two vertex covers Ci−1 and Ci are adjacent.
Therefore, C is a reconfiguration sequence between C0 and
Cℓ = C′t . Furthermore, since |Ii| ≥ |I0| − 1 hold for all Ii ∈ I,
any vertex cover Ci ∈ C satisfies

|Ci| = |V(G)| − |Ii| ≤ |V(G)| − |I0| + 1 = |C0| + 1.

Thus, f (C) = max{|Ci| : Ci ∈ C} ≤ |C0| + 1 holds. ⊓⊔
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3.2 Linear-Time Algorithm

We now give our linear-time algorithm. Let C0 and Ct be
two given vertex covers of an even-hole-free graph G. We
may assume without loss of generality that |C0| ≥ |Ct |. Then,
max{|C0|, |Ct |} = |C0|. Note that Lemma 2 and Eq. (1) imply
that f ∗G(C0,Ct) ∈

{|C0|, |C0| + 1
}
.

A vertex cover C of a graph G is said to be minimal if
there is no vertex u ∈ C such that C \ {u} is a vertex cover of
G. We can easily check whether a vertex cover of G is min-
imal or not in linear time. Then, our algorithm is described
as follows:

1. if C0 is minimal, then return f ∗G(C0,Ct) = |C0| + 1;
2. else if Ct is minimal, then return

f ∗G(C0,Ct) = max{|C0|, |Ct | + 1};

3. otherwise return f ∗G(C0,Ct) = |C0|.
The algorithm above clearly runs in linear time, because
it just checks the minimality of vertex covers C0 and Ct.
Therefore, to complete the proof of Theorem 1, we now
prove the correctness of our algorithm.

Case (1): C0 is a minimal vertex cover of G.
In this case, our algorithm returns f ∗G(C0,Ct) = |C0|+1.

Lemma 2 says that f ∗G(C0,Ct) ≤ |C0| + 1, and hence we will
prove that f ∗G(C0,Ct) ≥ |C0| + 1.

Let C∗ = ⟨C0,C∗1,C
∗
2, . . . ,C

∗
ℓ−1,C

∗
ℓ ⟩ be an arbitrary re-

configuration sequence between C0 and C∗ℓ = Ct such that
f (C∗) = f ∗G(C0,Ct). Since C0 is a minimal vertex cover of
G, the vertex cover C∗1 must be obtained by adding some
vertex to C0. Therefore, we have |C∗1| = |C0| + 1, and hence
f ∗G(C0,Ct) = f (C∗) ≥ |C∗1| = |C0| + 1, as claimed.

Case (2): C0 is not minimal, but Ct is minimal.
In this case, our algorithm returns f ∗G(C0,Ct) =

max{|C0|, |Ct | + 1}. We prove this case according to the fol-
lowing two sub-cases.

First, consider the sub-case where |C0| = |Ct |. Then,
our algorithm returns f ∗G(C0,Ct) = max{|C0|, |Ct |+1} = |Ct |+
1. Since Ct is minimal, the symmetric argument of Case (1)
above proves the correctness of this sub-case.

Second, consider the sub-case where |C0| > |Ct |. Then,
|C0| ≥ |Ct |+ 1, and hence our algorithm returns f ∗G(C0,Ct) =
|C0|. By Eq. (1) it suffices to prove that f ∗G(C0,Ct) ≤ |C0|,
that is, there exists a reconfiguration sequence C between
C0 and Ct such that f (C) = |C0|. Since C0 is not mini-
mal, there exists a vertex u ∈ C0 such that C0 \ {u} forms
a vertex cover of G. Let C1 = C0 \ {u}, then C0 and C1

are adjacent and |C1| = |C0| − 1. Then, Lemma 2 implies
that f ∗G(C1,Ct) ≤ max{|C1|, |Ct |} + 1, and hence there is a
reconfiguration sequence C′ = ⟨C1,C2, . . . ,Cℓ⟩ between C1

and Cℓ = Ct such that f (C′) ≤ max{|C1|, |Ct |} + 1. Since
|C1| = |C0| − 1 and |C0| − 1 ≥ |Ct |, we have

f (C′) ≤ max{|C1|, |Ct |} + 1 =
(|C0| − 1

)
+ 1 = |C0|.

As our reconfiguration sequence C between C0 and Ct, we
put C0 in front of C′, that is, let C = ⟨C0,C1,C2, . . . ,Cℓ⟩.
Then, f (C) = max{|C0|, f (C′)} = |C0|, as claimed.

Case (3): neither C0 nor Ct are minimal.
In this case, our algorithm returns f ∗G(C0,Ct) = |C0|.

By Eq. (1) it suffices to prove that f ∗G(C0,Ct) ≤ |C0|, that is,
there exists a reconfiguration sequence C between C0 and Ct

such that f (C) = |C0|.
Since C0 is not minimal, there exists a vertex cover C1

of G such that |C1| = |C0| − 1 and C0 and C1 are adjacent.
Similarly, since Ct is not minimal, there exists a vertex cover
Ct−1 of G such that |Ct−1| = |Ct | − 1 and Ct−1 and Ct are
adjacent. Then, Lemma 2 implies that

f ∗G(C1,Ct−1) ≤ max{|C1|, |Ct−1|} + 1

= max{|C0|, |Ct |}
= |C0|.

Therefore, there is a reconfiguration sequence C′ =
⟨C1,C2, . . . ,Cℓ−1⟩ between C1 and Cℓ−1 = Ct−1 such that
f (C′) ≤ |C0|. As our reconfiguration sequence C between
C0 and Ct, let C = ⟨C0,C1,C2, . . . ,Cℓ−1,Ct⟩. We then have
f (C) = max{|C0|, f (C′), |Ct |} = |C0|, as claimed.

This completes the proof of Theorem 1. ⊓⊔

4. Upper Bound on the Reconfiguration Index

In this section, we give an upper bound on the reconfigura-
tion index f ∗G(C0,Ct).

4.1 Definitions

For a vertex cover Ci of a graph G and a subgraph G′ of G,
we denote by Ci,G′ = Ci ∩ V(G′) the restriction of Ci to G′.
Observe that Ci,G′ is a vertex cover of G′, because Ci is a
vertex cover of G and G′ is a subgraph of G.

Let Ci and C j be two vertex covers of a graph G, and
let D be any vertex subset of Ci ∩ C j. Then, we introduce
the reconfiguration index f ∗G(Ci,C j; D) under the constraint
of D, as follows:

f ∗G(Ci,C j; D)=min { f (CD) : CD is a reconfiguration

sequence between Ci and C j such

that D ⊆ Ck for all Ck ∈ CD}. (2)

Note that f ∗G(Ci,C j; D) is well defined for any vertex subset
D ⊆ Ci ∩ C j; recall the trivial reconfiguration sequence CD

between Ci and C j via the vertex cover Ci ∪ C j (in Sect. 2),
then D ⊆ Ck holds for every Ck ∈ CD. We clearly have

f ∗G(Ci,C j) = f ∗G(Ci,C j; ∅). (3)

Furthermore, we have the following lemma.

Lemma 3: Let Ci and C j be any pair of vertex covers of a
graph G, and let D and D′ be any vertex subsets such that
D ⊆ D′ ⊆ Ci ∩C j. Then, f ∗G(Ci,C j; D) ≤ f ∗G(Ci,C j; D′).
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Proof. Let CD′ be any reconfiguration sequence between Ci

and C j such that f (CD′ ) = f ∗G(Ci,C j; D′) and D′ ⊆ Ck for all
vertex covers Ck ∈ CD′ . Since D ⊆ D′, we have D ⊆ Ck for
all Ck ∈ CD′ . Therefore, CD′ is a reconfiguration sequence
such that D ⊆ Ck for all vertex covers Ck ∈ CD′ . By Eq. (2)
we thus have f ∗G(Ci,C j; D) ≤ f (CD′) = f ∗G(Ci,C j; D′), as
claimed. ⊓⊔

Lemma 3 and Eq. (3) imply that, for any vertex subset
D ⊆ C0 ∩Ct,

f ∗G(C0,Ct) ≤ f ∗G(C0,Ct; D). (4)

4.2 Our Upper Bound

We now give our upper bound, whose proof will be given in
Sect. 4.3.

Theorem 2: Let α be a fixed integer, and let G be any
graph. Suppose that

f ∗G′′ (C0,G′′ ,Ct,G′′ ; C0,G′′ ∩Ct,G′′) ≤ max{|C0,G′′ |, |Ct,G′′ |} + α

for every 2-connected subgraph G′′ of G. Then,

f ∗G(C0,Ct; C0 ∩Ct) ≤ max{|C0|, |Ct |} + α.

A graph G is a cactus if every edge is part of at most
one cycle in G [5]. Using Theorem 2, we give the following
corollary.

Corollary 1: Let C0 and Ct be any pair of vertex covers of
a graph G. Then,

(a) f ∗G(C0,Ct) ≤ max{|C0|, |Ct |} + 1 if G is a tree; and
(b) f ∗G(C0,Ct) ≤ max{|C0|, |Ct |} + 2 if G is a cactus.

Proof. (a) Every 2-connected subgraph G′′ of a tree G con-
sists of a single edge vw. Then, any vertex cover of G
contains at least one of v and w, and hence max{|C0,G′′ |,
|Ct,G′′ |} ≥ 1. Note that V(G′′) = {v, w} forms a vertex cover
of G′′, and hence there always exists a reconfiguration se-
quence between C0,G′′ and Ct,G′′ via the vertex cover V(G′′).
Furthermore, C0,G′′ ∩Ct,G′′ ⊆ V(G′′) holds. Therefore,

f ∗G′′(C0,G′′ ,Ct,G′′ ; C0,G′′ ∩Ct,G′′) ≤ |V(G′′)|
≤ max{|C0,G′′ |, |Ct,G′′ |} + 1.

Then, Theorem 2 implies that f ∗G(C0,Ct; C0 ∩ Ct) ≤
max{|C0|, |Ct |} + 1. By Eq. (4) we thus have

f ∗G(C0,Ct) ≤ f ∗G(C0,Ct; C0 ∩Ct) ≤ max{|C0|, |Ct |} + 1

if G is a tree.

(b) Every 2-connected subgraph G′′ of a cactus G consists of
either a single edge or a cycle. Similarly as in (a) above, we
have f ∗G′′(C0,G′′ ,Ct,G′′ ; C0,G′′ ∩Ct,G′′) ≤ max{|C0,G′′ |, |Ct,G′′ |}+
1 if G′′ is a single edge.

We thus consider the case where G′′ is a cycle. We
choose an arbitrary vertex u in Ct,G′′ , and let P = G[V(G′′) \
{u}]. Since P is a path (and hence a tree), by the proof of

Corollary 1(a) we have

f ∗P(C0,P,Ct,P; C0,P ∩Ct,P) ≤ max{|C0,P|, |Ct,P|} + 1.

Therefore, there is a reconfiguration sequence C between
C0,P and Ct,P such that f (C) ≤ max{|C0,P|, |Ct,P|} + 1 and
C0,P ∩ Ct,P ⊆ Ci for all vertex covers Ci ∈ C of P. For each
vertex cover Ci ∈ C of P, notice that Ci ∪ {u} forms a vertex
cover of G′′. Since C0,G′′ ∩ Ct,G′′ ⊆

(
C0,P ∩ Ct,P

) ∪ {u} ⊆
Ci ∪ {u}, we have

f ∗G′′ (C0,G′′ ,Ct,G′′ ; C0,G′′ ∩Ct,G′′ ) ≤ f (C) + |{u}|
≤ max{|C0,P|, |Ct,P|} + 2.

Since C0,P ⊆ C0,G′′ and Ct,P ⊆ Ct,G′′ , we have |C0,P| ≤ |C0,G′′ |
and |Ct,P| ≤ |Ct,G′′ |. Therefore,

f ∗G′′(C0,G′′ ,Ct,G′′ ; C0,G′′ ∩Ct,G′′) ≤ max{|C0,G′′ |, |Ct,G′′ |} + 2.

In this way, f ∗G′′(C0,G′′ ,Ct,G′′ ; C0,G′′ ∩ Ct,G′′ ) ≤
max{|C0,G′′ |, |Ct,G′′ |} + 2 holds for any 2-connected sub-
graph G′′ of a cactus G. Then, Theorem 2 implies that
f ∗G(C0,Ct; C0 ∩Ct) ≤ max{|C0|, |Ct |} + 2. By Eq. (4) we thus
have

f ∗G(C0,Ct) ≤ f ∗G(C0,Ct; C0 ∩Ct) ≤ max{|C0|, |Ct |} + 2

if G is a cactus. ⊓⊔
We note that Corollary 1(a) gives another proof of

Lemma 2 for trees. Conversely, Corollary 1(b) cannot be ob-
tained from Lemma 2, because a cactus is not always even-
hole free.

Furthermore, we note that our upper bound on
f ∗G(C0,Ct) is best possible in some sense. For example, con-
sider an even-length cycle G and its two vertex covers C0

and Ct, each of which forms an independent set of G. (See
Fig. 2.) Since G is a cycle (and hence a cactus), by Corol-
lary 1(b) we have f ∗G(C0,Ct) ≤ max{|C0|, |Ct |} + 2. Indeed,
we have to add at least two vertices to C0 in order to delete
any vertex in C0. Therefore, f ∗G(C0,Ct) = max{|C0|, |Ct |}+2.

4.3 Proof of Theorem 2

In this subsection, as a proof of Theorem 2, we construct
a reconfiguration sequence C between C0 and Ct such that
f (C) ≤ max{|C0|, |Ct |} + α and C0 ∩ Ct ⊆ Ci for all ver-
tex covers Ci ∈ C. Then, the theorem follows, because
f ∗G(C0,Ct; C0 ∩ Ct) ≤ f (C) holds for such a reconfiguration
sequence C.

Roughly speaking, our idea is as follows. We first de-
compose a graph G into its 2-connected subgraphs, and then

Fig. 2 Instance for a cycle G such that f ∗G(C0,Ct) = max{|C0 |, |Ct |} + 2.
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separately construct a reconfiguration sequence for each 2-
connected subgraph G′′ which transforms the vertex cover
C0 ∩ V(G′′) into the target one Ct ∩ V(G′′). Of course,
we need to extend the reconfiguration sequence for G′′ to
one for the whole graph G. Furthermore, we need to find a
clever ordering of 2-connected subgraphs of G to be trans-
formed so that all intermediate vertex covers Ci of G satisfy
|Ci| ≤ max{|C0|, |Ct |} + α.

Therefore, we first introduce some notions and proper-
ties of vertex covers in subgraphs, and then give our recon-
figuration sequence.

4.3.1 Notions and Properties

Let Ci and C j be two vertex covers of a graph G. Then, for
a subgraph G′ of G, we define the difference δ(G′,Ci,C j)
from Ci to C j, as follows:

δ(G′,Ci,C j) = |C j,G′ | − |Ci,G′ |, (5)

that is, the cardinality of the vertex cover of G′ is increased
by δ(G′,Ci,C j) if we transform the vertex cover Ci ∩ V(G′)
into C j ∩ V(G′). Clearly,

δ(G′,Ci,C j) = −δ(G′,C j,Ci).

Let G′ = (V ′, E′) be any induced subgraph of a graph
G = (V, E). Let u be an arbitrary cut vertex of G′, and sup-
pose that the induced subgraph G[V ′ \{u}] consists of p con-
nected components G′1,G

′
2, . . . ,G

′
p. Note that p ≥ 2 since u

is a cut vertex of G′. Let G′a = (V ′a, E
′
a) be the connected

component in G[V ′ \ {u}] such that

δ(G′a,C0,Ct) = min{δ(G′i ,C0,Ct) : 1 ≤ i ≤ p}. (6)

Then, the bipartition (G′L,G
′
R) of G′ with a cut vertex u is

to decompose G into two subgraphs G′L and G′R, defined as
follows (see Fig. 3):

G′L =

{
G′a if u ∈ C0;
G[V ′a ∪ {u}] if u < C0,

(7)

and G′R = G[V ′ \V(G′L)]. Therefore, V(G′L) and V(G′R) form
a partition of V(G′), that is, V(G′L) ∪ V(G′R) = V(G′) and
V(G′L) ∩ V(G′R) = ∅.

Based on the bipartition (G′L,G
′
R) of a subgraph G′ with

a cut vertex u, we construct a reconfiguration sequence from
C0,G′ to Ct,G′ , as follows:

Fig. 3 The bipartition (G′L,G
′
R) of a subgraph G′ with a cut vertex u for

the cases where (a) u ∈ C0 and (b) u < C0.

(1) transform C0,G′L into Ct,G′L
without adding/deleting any

vertex in G′R; and
(2) transform C0,G′R into Ct,G′R

without adding/deleting
any vertex in G′L.

The following lemma will be used in Lemma 6 for prov-
ing that any vertex subset appearing in the reconfiguration
sequence above is a vertex cover of G′. For notational con-
venience, let Ci,L = Ci,G′L

and Ci,R = Ci,G′R
.

Lemma 4: Let (G′L,G
′
R) be the bipartition of G′ with a cut

vertex u. Then,
(a) for any vertex cover C′L of G′L, the vertex subset C′L ∪

C0,R forms a vertex cover of G′; and
(b) for any vertex cover C′R of G′R such that C0,R ∩ Ct,R ⊆

C′R, the vertex subset Ct,L ∪ C′R forms a vertex cover
of G′.

Proof. (a) Since C0,R is a vertex cover of G′R, every edge in
E(G′R) is covered by some vertex in C0,R. Similarly, every
edge in E(G′L) is covered by some vertex in C′L. Therefore, it
suffices to show that every edge e in E(G′)\(E(G′L)∪E(G′R)

)
is covered by some vertex in C′L ∪ C0,R. Note that such an
edge e is incident to the cut vertex u; let e = uw. (See the
thin dotted edges in Fig. 3.)

We first consider the case where u ∈ C0. Then, by
Eq. (7) we have u ∈ V(G′R), and hence u ∈ C0,R ⊆ C′L ∪C0,R.
(See Fig. 3(a).) Therefore, e is covered by u ∈ C′L ∪C0,R.

We then consider the case where u < C0. By Eq. (7)
we have u ∈ V(G′L), and hence w ∈ V(G′R). Since u < C0

and C0,G′ is a vertex cover of G′, the other endpoint w must
be in C0. Therefore, w ∈ C0,R, and hence e is covered by
w ∈ C′L ∪C0,R.

In this way, C′L ∪C0,R forms a vertex cover of G′.

(b) Every edge in E(G′L)∪ E(G′R) is covered by some vertex
in Ct,L ∪ C′R because Ct,L and C′R are vertex covers of G′L
and G′R, respectively. We thus show that every edge e = uw
in E(G′) \ (E(G′L) ∪ E(G′R)

)
is covered by some vertex in

Ct,L ∪C′R.
We first consider the case where u ∈ C0. (See

Fig. 3(a).) Then, u ∈ V(G′R) and w ∈ V(G′L). If u ∈ Ct, then
u is contained in both C0 and Ct and hence u ∈ C0,R ∩ Ct,R.
By the assumption that C0,R ∩ Ct,R ⊆ C′R holds, the edge e
is covered by u ∈ Ct,L ∪ C′R if u ∈ Ct. If u < Ct, then the
other endpoint w must be in Ct. Since w ∈ V(G′L), we have
w ∈ Ct ∩ V(G′L) = Ct,L and hence the edge e is covered by
w ∈ Ct,L ∪C′R.

We then consider the case where u < C0. (See
Fig. 3(b).) Then, u ∈ V(G′L) and w ∈ V(G′R). If u ∈ Ct, then u
is contained in Ct,L and hence e is covered by u ∈ Ct,L ∪C′R.
If u < Ct, then w must be in both C0 and Ct. Therefore,
w ∈ C0,R ∩ Ct,R. By the assumption that C0,R ∩ Ct,R ⊆ C′R
holds, the edge e is covered by w ∈ Ct,L ∪C′R.

In this way, Ct,L ∪C′R forms a vertex cover of G′. ⊓⊔

Let C′q = Ct,L ∪ C0,R. Lemma 4(a) implies that C′q is a
vertex cover of G′. Furthermore, |C′q| = |Ct,L| + |C0,R| since
V(G′L) ∩ V(G′R) = ∅. Then, we give the following lemma.
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Lemma 5: The following (a) and (b) hold:
(a) δ(G′R,C0,Ct) ≥ 0 if δ(G′L,C0,Ct) ≥ 1; and
(b) |C′q| ≤ max{|C0,G′ |, |Ct,G′ |}.

Proof. (a) We first note that

−1 ≤ δ(G[{u}],C0,Ct) ≤ 1 (8)

clearly holds for the cut vertex u, because G[{u}] consists
only of a single vertex u.

We now consider the case where u ∈ C0. Then,
by Eq. (7) we have G′L = G′a. By the assumption that
δ(G′L,C0,Ct) ≥ 1 holds, we have

δ(G′a,C0,Ct) = δ(G
′
L,C0,Ct) ≥ 1,

and hence by Eq. (6)

δ(G′i ,C0,Ct) ≥ δ(G′a,C0,Ct) ≥ 1 (9)

for any connected component G′i , 1 ≤ i ≤ p, in G[V ′ \ {u}].
Since G′L = G′a,

V(G′R) = V ′ \ V(G′L) = {u} ∪
∪

1≤i≤p,i,a

V(G′i),

as illustrated in Fig. 3(a). Then, Eqs. (8) and (9) imply that

δ(G′R,C0,Ct) = δ(G[{u}],C0,Ct) +
∑

1≤i≤p,i,a

δ(G′i ,C0,Ct)

≥ (−1) + (p − 1) · 1
= p − 2.

Recall that p ≥ 2 since u is a cut vertex of G′. We thus have
δ(G′R,C0,Ct) ≥ 0.

We then consider the case where u < C0. By Eq. (7) we
have G′L = G[V ′a ∪ {u}], and hence

δ(G′L,C0,Ct) = δ(G
′
a,C0,Ct) + δ(G[{u}],C0,Ct).

Then, by the assumption of the lemma and Eq. (8) we have

δ(G′a,C0,Ct) = δ(G
′
L,C0,Ct) − δ(G[{u}],C0,Ct)

≥ 1 − 1

= 0.

Therefore, Eq. (6) implies that δ(G′i ,C0,Ct) ≥ 0 for any con-
nected component G′i , 1 ≤ i ≤ p, in G[V ′ \ {u}]. Since

V(G′R) = V ′ \ V(G′L) =
∪

1≤i≤p,i,a

V(G′i)

as illustrated in Fig. 3(b), we have

δ(G′R,C0,Ct) =
∑

1≤i≤p,i,a

δ(G′i ,C0,Ct) ≥ 0.

(b) Suppose for a contradiction that |C′q| > max{|C0,G′ |, |Ct,G′ |}.
Then, |C′q| > max{|C0,G′ |, |Ct,G′ |} ≥ |C0,G′ |, and hence we
have |C′q| − |C0,G′ | ≥ 1. Since V(G′L)∩V(G′R) = ∅, by Eq. (5)

we thus have

δ(G′L,C0,Ct) = |Ct,L| − |C0,L|
=
(|Ct,L| + |C0,R|

) − (|C0,L| + |C0,R|
)

= |C′q| − |C0,G′ |
≥ 1. (10)

Since |C′q| > max{|C0,G′ |, |Ct,G′ |}, we also have |C′q| > |Ct,G′ |.
Therefore, we have

δ(G′R,C0,Ct) = |Ct,R| − |C0,R|
=
(|Ct,L| + |Ct,R|

) − (|Ct,L| + |C0,R|
)

= |Ct,G′ | − |C′q|
< 0. (11)

In this way, both Eqs. (10) and (11) hold; this contradicts
Lemma 5(a). ⊓⊔

4.3.2 Reconfiguration Sequence

We now give our reconfiguration sequence between C0 and
Ct of a graph G, based on a decomposition tree T of G which
is recursively defined as follows:

(A) the root r of T corresponds to the whole graph G; and
(B) if there is a cut vertex u in the subgraph G′ corre-

sponding to a node v of T , then v has two children vL
and vR in T which correspond to the subgraphs G′L and
G′R, respectively, where (G′L,G

′
R) is the bipartition of

G′ with u.
Then, each leaf of T corresponds to a 2-connected subgraph
of G.

We now prove the key lemma.

Lemma 6: Let α be a fixed integer, and T be a decomposi-
tion tree of a graph G. For every 2-connected subgraph G′′

of G, suppose that

f ∗G′′(C0,G′′ ,Ct,G′′ ; C0,G′′ ∩Ct,G′′) ≤ max{|C0,G′′ |, |Ct,G′′ |} + α.
(12)

Then, for the subgraph G′ corresponding to each node v of
T , there is a reconfiguration sequence C′ = ⟨C′0,C′1, . . . ,C′ℓ⟩
such that

(a) C′0 = C0,G′ and C′ℓ = Ct,G′ ;
(b) C0,G′ ∩Ct,G′ ⊆ C′i for all vertex covers C′i ∈ C′; and
(c) f (C′) ≤ max{|C0,G′ |, |Ct,G′ |} + α.

Proof. We prove the lemma by induction based on the de-
composition tree T .

Base step.
Suppose that v is a leaf of T , and let G′ be the sub-

graph corresponding to v. Then, G′ is 2-connected, and
hence Eq. (12) holds for G′. Therefore, Eqs. (2) and (12)
imply that there exists a reconfiguration sequence between
C0,G′ and Ct,G′ satisfying all the three conditions (a)–(c).

Inductive step.
Let v be an internal node of T having two children vL
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and vR. Let G′, G′L and G′R be the subgraphs correspond-
ing to v, vL and vR, respectively, and hence (G′L,G

′
R) is a

bipartition of G′. Suppose that the lemma holds for G′L
and G′R. Then, G′L has a reconfiguration sequence CL =

⟨CL
0 ,C

L
1 , . . . ,C

L
ℓL
⟩ such that

(a-L) CL
0 = C0,L and CL

ℓL
= Ct,L;

(b-L) C0,L ∩Ct,L ⊆ CL
i for all vertex covers CL

i ∈ CL; and
(c-L) f (CL) ≤ max{|C0,L|, |Ct,L|} + α.

Similarly, G′R has a reconfiguration sequence CR =

⟨CR
0 ,C

R
1 , . . . ,C

R
ℓR
⟩ such that

(a-R) CR
0 = C0,R and CR

ℓR
= Ct,R;

(b-R) C0,R ∩Ct,R ⊆ CR
j for all vertex covers CR

j ∈ CR; and
(c-R) f (CR) ≤ max{|C0,R|, |Ct,R|} + α.

From the induction hypothesis above, we now construct a
sequence C′ = ⟨C′0,C′1, . . . ,C′ℓ⟩ of vertex subsets of G′,
where ℓ = ℓL + ℓR, as follows:

(i) C′i = CL
i ∪C0,R for all i, 0 ≤ i ≤ ℓL; and

(ii) C′i = Ct,L ∪CR
i−ℓL for all i, ℓL < i ≤ ℓL + ℓR = ℓ.

Then, C′ℓL = Ct,L ∪ C0,R. In the following, we will show
that C′ is a reconfiguration sequence for G′ satisfying all
the three conditions (a)–(c). Let C′0,ℓL = ⟨C

′
0,C

′
1, . . . ,C

′
ℓL
⟩

and C′ℓL,ℓ = ⟨C
′
ℓL
,C′ℓL+1, . . . ,C

′
ℓL+ℓR
⟩. Note that, for notational

convenience, C′ℓL appears in both C′0,ℓL and C′ℓL,ℓ.
We first show that C′ satisfies the condition (a). By

the construction (i) above and the condition (a-L), we have
C′0 = CL

0 ∪C0,R = C0,L∪C0,R = C0,G′ , as required. Similarly,
by the construction (ii) above and the condition (a-R), we
have C′ℓ = Ct,L ∪CR

ℓR
= Ct,L ∪Ct,R = Ct,G′ . Thus, C′ satisfies

the condition (a).

Before showing the conditions (b) and (c), we now
prove that C′ is a reconfiguration sequence between C0,G′

and Ct,G′ . It suffices to show that C′0,ℓL is a reconfiguration
sequence from C0,G′ = C0,L ∪ C0,R to C′ℓL = Ct,L ∪ C0,R, and
thatC′ℓL,ℓ is a reconfiguration sequence from C′ℓL = Ct,L∪C0,R

to Ct,G′ = Ct,L ∪Ct,R.
Recall that CL = ⟨CL

0 ,C
L
1 , . . . ,C

L
ℓL
⟩ is a reconfiguration

sequence between CL
0 = C0,L and CL

ℓL
= Ct,L, and hence

each CL
i ∈ CL is a vertex cover of G′L. Since C′i = CL

i ∪C0,R

for each vertex subset C′i ∈ C′0,ℓL , Lemma 4(a) implies that
C′i is a vertex cover of G′. Therefore, the sequence C′0,ℓL
is a reconfiguration sequence from C0,G′ = C0,L ∪ C0,R to
C′ℓL = Ct,L ∪C0,R.

Recall also that CR = ⟨CR
0 ,C

R
1 , . . . ,C

R
ℓR
⟩ is a reconfig-

uration sequence between CR
0 = C0,R and CR

ℓR
= Ct,R, and

hence each CR
j ∈ CR is a vertex cover of G′R. Furthermore,

by the condition (b-R) we have C0,R ∩ Ct,R ⊆ CR
j for all

CR
j ∈ CR. Since C′i = Ct,L ∪ CR

i−ℓL for each vertex subset
C′i ∈ C′ℓL,ℓ, Lemma 4(b) implies that C′i is a vertex cover
of G′. Therefore, the sequence C′ℓL,ℓ is a reconfiguration se-
quence from C′ℓL = Ct,L ∪C0,R to Ct,L ∪Ct,R = Ct,G′ .

In this way, C′ is a reconfiguration sequence between
C0,G′ and Ct,G′ .

We then show that C′ satisfies the condition (b). Since

V(G′L) ∩ V(G′R) = ∅, we have

C0,G′ ∩Ct,G′ =
(
C0,L ∩Ct,L

) ∪ (C0,R ∩Ct,R
)
.

By the condition (b-L), we have C0,L ∩ Ct,L ⊆ CL
i for all i,

0 ≤ i ≤ ℓL. Therefore, for all vertex covers C′i in C′0,ℓL , by
the construction (i) above we have

C0,G′ ∩Ct,G′ =
(
C0,L ∩Ct,L

) ∪ (C0,R ∩Ct,R
)

⊆ CL
i ∪C0,R

= C′i ,

as required. Similarly, by the condition (b-R), we have
C0,R ∩ Ct,R ⊆ CR

i−ℓL for all i, ℓL ≤ i ≤ ℓL + ℓR. Therefore, for
all vertex covers C′i in C′ℓL,ℓ, by the construction (ii) above
we have

C0,G′ ∩Ct,G′ =
(
C0,L ∩Ct,L

) ∪ (C0,R ∩Ct,R
)

⊆ Ct,L ∪CR
i−ℓL

= C′i ,

as required. In this way, C0,G′ ∩ Ct,G′ ⊆ C′i for all vertex
covers C′i ∈ C′, and hence C′ satisfies the condition (b).

We finally prove that C′ satisfies the condition (c). No-
tice that

f (C′) = max{ f (C′0,ℓL ), f (C′ℓL,ℓ)}. (13)

Recall that V(G′L) ∩ V(G′R) = ∅. Then, by the construction
(i) above and the condition (c-L), we have

f (C′0,ℓL ) = f (CL) + |C0,R|
≤ max{|C0,L|, |Ct,L|} + α + |C0,R|
= max{|C0,L| + |C0,R|, |Ct,L| + |C0,R|} + α
= max{|C0,G′ |, |C′ℓL |} + α.

Since C′ℓL = Ct,L ∪C0,R, by Lemma 5(b) we thus have

f (C′0,ℓL ) ≤ max{|C0,G′ |, |Ct,G′ |} + α. (14)

Similarly, by the construction (ii) above and the condition
(c-R), we have

f (C′ℓL,ℓ) = |Ct,L| + f (CR)

≤ |Ct,L| +max{|C0,R|, |Ct,R|} + α
= max{|Ct,L| + |C0,R|, |Ct,L| + |Ct,R|} + α
= max{|C′ℓL |, |Ct,G′ |} + α.

Therefore, by Lemma 5(b) we have

f (C′ℓL,ℓ) ≤ max{|C0,G′ |, |Ct,G′ |} + α. (15)

Equations (13), (14) and (15) prove that C′ satisfies the con-
dition (c). ⊓⊔

4.3.3 Proof of Theorem 2

Recall that the root r of a decomposition tree T of a graph G
corresponds to the whole graph G. Therefore, by Lemma 6
there exists a reconfiguration sequence C between C0,G = C0
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and Ct,G = Ct such that C0,G∩Ct,G ⊆ Ci for all vertex covers
Ci ∈ C and f (C) ≤ max{|C0,G |, |Ct,G |}+α. By Eq. (2) we thus
have

f ∗G(C0,Ct; C0 ∩Ct) ≤ f (C) ≤ max{|C0|, |Ct |} + α,

as required. This completes the proof of Theorem 2. ⊓⊔

5. Concluding Remarks

In this paper, we gave algorithmic results for the two recon-
figuration problems on vertex cover. We note again that our
upper bound on the reconfiguration index gives an approxi-
mation algorithm with absolute performance guarantee.

Recently, Mouawad et al. [13] proposed a linear-time
algorithm to solve vertex cover reconfiguration for even-
hole-free graphs and cacti. Their proof method is different
from ours, and hence both results can coexist. As one of the
interesting points of our paper, we proved that the reconfig-
uration index of a whole graph can be bounded only by the
local computation, that is, the reconfiguration index of each
2-connected subgraph; this fact suggests that 2-connected
subgraphs are essential for the problem.

In addition, it has been proved recently that the recon-
figuration problem on independent set under the TAR-model
can be solved in polynomial time for cographs [1], [3].
Thus, vertex cover reconfiguration is solvable in polyno-
mial time for cographs. Note that the classes of even-hole-
free graphs and cographs are non-comparable with each
other.

It remains open to obtain an upper bound on the recon-
figuration index in terms of the cardinality of separators in
a graph. (Our upper bound can be seen as the case where
the separator is of cardinality one.) This would help a better
understanding of the reconfiguration index.
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