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Uniformly Random Generation of Floorplans

Katsuhisa YAMANAKA†a) and Shin-ichi NAKANO††, Members

SUMMARY In this paper, we consider the problem of generating uni-
formly random mosaic floorplans. We propose a polynomial-time algo-
rithm that generates such floorplans with f faces. Two modified algorithms
are created to meet additional criteria.
key words: random generation, algorithm, floorplan, mosaic floorplan,
classification tree

1. Introduction

It is useful to have a way to uniformly and randomly gener-
ate (or sample) objects in a specified class. For instance, uni-
formly random generators have been proposed for trees [2],
triangulations [10], and bipartite permutation graphs [11]. In
this paper, we design an algorithm for generating uniformly
random mosaic floorplans with f faces.

A mosaic floorplan partitions a rectangle, called the
boundary, into smaller rectangles, called faces. Each face
includes its boundary. Some examples are shown in Fig. 1.
Mosaic floorplans are one of basic models used for very-
large-scale integration (VLSI) design [7], [8]. The number
of mosaic floorplans with f faces is known [12], and there
is a one-to-one correspondence between mosaic floorplans
and Baxter permutations [1], [5]. Also, the number of mo-
saic floorplans with various properties is known [1]: more
precisely, there is an exact formula for the number of mo-
saic floorplans with f faces, r maximal vertical line seg-
ments not on the boundary, n n-touch faces and w w-touch
faces, where an n-touch face and a w-touch face share a line
segment with the uppermost horizontal line segment and the
leftmost vertical line segment, respectively.

Our idea for a random generation algorithm is as fol-
lows. First, we define a tree T f , called the classification
tree, in which (1) each leaf in the tree corresponds to a dis-
tinct mosaic floorplan, and (2) each vertex v in the tree cor-
responds to the set of mosaic floorplans corresponding to
the leaves in the subtree rooted at v; see Fig. 5. The mo-
saic floorplans corresponding to each vertex are partitioned
into subsets, each of which corresponds to a child of the ver-
tex. Thus, each path from the root to a leaf corresponds to

Manuscript received March 27, 2015.
Manuscript revised August 2, 2015.
Manuscript publicized December 16, 2015.
†The author is with the Department of Electrical Engineering

and Computer Science, Iwate University, Morioka-shi, 020–8551
Japan.
††The author is with the Department of Computer Science,

Gunma University, Kiryu-shi, 376–8515 Japan.
a) E-mail: yamanaka@cis.iwate-u.ac.jp

DOI: 10.1587/transinf.2015FCP0013

a distinct mosaic floorplan with f faces. If we can choose
such paths uniformly and randomly, then we can generate
uniformly random mosaic floorplans. We can make this
uniformly random selection as follows. Assume that we
are now at vertex v in T f , and assume that v has children
c1, c2, . . .. Which child should we choose as the next ver-
tex of the path? We first compute the number, say M(v), of
leaves in the subtree rooted at v, and for each i, the number,
say M(ci), of leaves in the subtree rooted at ci. Then, with
probability M(ci)/M(v), we choose each child ci.

In this paper, we first propose an algorithm that gener-
ates a mosaic floorplan with f faces in O( f 2) time. With
a similar idea but with modified classification trees, we
present two algorithms that generate mosaic floorplans with
additional specified properties.

An algorithm can be designed to generate a uniformly
random mosaic floorplan with f faces in linear time; this
can be done by generating uniformly random “watermelon
structures” [4], which have a bijection into mosaic floor-
plans [6]. However, by slightly modifying our algorithm, we
can also generate mosaic floorplans with various additional
properties that are not possible with the linear-time method.

We modify our algorithm to create two additional algo-
rithms that add additional criteria: one generates floorplans
that include fN n-touch faces, and the other generates floor-
plans that include fN n-touch faces and fW w-touch faces.
Designating the number of faces that share a line segment
with the boundary of a mosaic floorplan arises naturally
from VLSI applications. A mosaic floorplan can be used
as a model of a circuit, and each face corresponds to a mod-
ule of the circuit. If a module shares a boundary with the
circuit, then it can connect to outside devices. Hence, des-
ignating the number of faces sharing line segments with the
boundary of a mosaic floorplan corresponds to designating
the number of such modules.

The structure of the paper is as follows. Section 2 gives
some definitions. Section 3 defines the classification tree.
Section 4 presents our first random generation algorithm,
and Sect. 5 presents the modified algorithms for floorplans
with additional specified properties. Section 6 presents our
conclusions. See [13] for a preliminary version of this paper.

2. Definitions

In this section we give some definitions.
A mosaic floorplan is a partitioning of a rectangle,

called the boundary, into smaller rectangles, called faces.
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Some examples are shown in Fig. 1.
Two mosaic floorplans, M1 and M2, are isomorphic

if there exists a one-to-one correspondence between their
faces, a one-to-one correspondence between their maximal
vertical line segments, and a one-to-one correspondence be-
tween their maximal horizontal line segments, such that the
set of faces on either side of each vertical line segment and
on either side of each horizontal line segment are preserved.
For example, the three mosaic floorplans shown in Fig. 1 are
isomorphic. Intuitively, mosaic floorplans are isomorphic if
and only if they can be converted into each other by sliding
some maximal vertical and horizontal line segments, and if
doing so preserves the set of faces located on either side of
each vertical line segment and on either side of each hori-
zontal line segment.

We assume that no vertices of degree four appear in
any mosaic floorplan. A vertex of degree three is w-missing
(west missing) if it has line segments to the top, bottom, and
right; e-missing (east missing), n-missing (north missing),
and s-missing (south missing) are defined similarly.

We define a floorplan for each set of isomorphic mosaic
floorplans, as follows. A mosaic floorplan is a canonical
floorplan if any s-missing vertex appears to the left of any
n-missing vertex on any horizontal line segment, and any e-
missing vertex appears above any w-missing vertex on any
vertical line segment. For instance, the mosaic floorplan in
Fig. 1(c) is a canonical floorplan.

Let C be a canonical floorplan with f > 1 faces. The
face of C that coincides with the upper-left corner of the
boundary is called the first face of C. In Figs. 2–4, the first
faces are shaded. Let v be the lower-right corner vertex of
the first face F of C. If v is e-missing, as shown in Fig. 2(a),
then by continually shrinking the first face F into the up-
permost horizontal line of C while preserving the width of
F and enlarging the faces below F, as shown in Fig. 3, we
can obtain a canonical floorplan with one fewer face. Thus,
if v is e-missing, we say that the first face F is upward re-
movable. If v is s-missing, as shown in Fig. 2(b), then by
continually shrinking the first face F into the leftmost verti-

Fig. 1 Examples of mosaic floorplans.

Fig. 4 The removing sequence.

cal line of C, while preserving the height of F and enlarging
the faces located to the right of F, we can obtain a canon-
ical floorplan with one fewer face. Thus, if v is s-missing,
we say that F is leftward removable. So, if f > 1, then F
is either upward removable or leftward removable. In either
case, let P(C) be the floorplan derived from C by remov-
ing the first face of C, as above. Note that P(C) is also a
canonical floorplan.

Given a canonical floorplan C, by repeatedly removing
the first face of the derived canonical floorplan, we create a
sequence C, P(C), P(P(C)), . . . of canonical floorplans that
eventually converge to a canonical floorplan with exactly
one face. An example of this is shown in Fig. 4. We call
this the removing sequence of C. Note that each canonical
floorplan has a unique removing sequence.

Let RS = (C f = C,C f−1, . . . ,C1) be the removing
sequence of a canonical floorplan C. We define a label
L(Ci) for each Ci with i > 1 in RS , such that L(Ci) ex-
plains how the first face of Ci is removed to create Ci−1. Let
Fi be the first face of Ci. If Fi is upward removable, and
there are s faces located to the south of Fi, then we define
L(Ci) = (U, s). Otherwise, Fi is leftward removable, and
if there are e faces located to the east of Fi, then we de-
fine L(Ci) = (L, e). We call L(Ci) the removing label of Ci.
The first k labels of C are the sequence of k removing la-
bels (L(C f ), L(C f−1), . . . , L(C f−k+1)). For example, the first
five labels of the leftmost canonical floorplan C in Fig. 4 are
((L, 3), (U, 2), (L, 1), (U, 1), (L, 2)). For each canonical floor-
plan, the set of the first f − 1 labels is unique.

Let fU and fL, respectively, be the number of upward-
removable faces and the number of leftward-removable
faces in the removing sequence of C. Let ev and eh, respec-

Fig. 2 (a) An upward-removable face, and (b) a leftward-removable face.

Fig. 3 Removing the first face.
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Fig. 5 The classification tree T4

tively, be the number of maximal vertical line segments and
the number of maximal horizontal line segments, excluding
the contour of the boundary of C. Then fU = eh and fL = ev
hold, and so does ev + eh = f − 1.

3. Classification Tree

In this section, we define a tree T f , called the classifica-
tion tree, that is related to the canonical floorplans with f
faces. In the next section, we will present our main algo-
rithm, which is based on this tree.

Each leaf in the classification tree corresponds to a dis-
tinct canonical floorplan, and each vertex v with depth d
in the classification tree corresponds to the set of canonical
floorplans that correspond to the leaves in the subtree rooted
at v and sharing the first d labels. The classification tree T4

is shown in Fig. 5. . The root of the classification tree corre-
sponds to the set of all canonical floorplans that have f faces
and share the first 0 label.

Now we explain how to compute the number of leaves
in the subtree rooted at a given vertex.

A face F of a floorplan C is said to be n-touch if F
shares a line segment with the uppermost horizontal line
segment of C. Similarly, a face F of a floorplan C is said
to be w-touch if F shares a line segment with the leftmost
vertical line of C.

Lemma 1 ([1]): Let C( f , r) be the set of canonical floor-
plans with f faces and r maximal vertical line segments not
on the boundary, and let C( f , n, w, r) be the set of canonical
floorplans with f faces, r maximal vertical line segments not
on the boundary, n n-touch faces, and ww-touch faces. Then
the following equations hold.

|C( f , r)| =

(
f+1
r

)(
f+1
r+1

)(
f+1
r+2

)(
f+1
1

)(
f+1
2

)

Fig. 6 A canonical floorplan C with the first three labels ((U, 3), (U, 2), (L, 4))
and the first four floorplans in its removing sequence.

|C( f , n, w, r)|=
(

f +1
r+1

)
wn

f ( f +1)

((
f − n − 1
f − r − 2

)(
f − w − 1

r − 1

)
−

(
f − n − 1
f − r − 1

)(
f − w − 1

r

))
Given a vertex v in the classification tree, now we can

calculate the number of corresponding canonical floorplans
(sharing some first labels), as follows. We start with an ex-
ample. Let f = 20, and let v at depth three correspond to
the set of canonical floorplans sharing the first three labels
((U, 3), (U, 2), (L, 4)). Then, each canonical floorplan shares
the same graph structure around the upper-left corner, as
shown in Fig. 6, and removing the first three faces, as in the
removing sequence, results in a distinct canonical floorplan
with 17 faces, including at least three n-touch faces and at
least four w-touch faces. Note that if the resulting canonical
floorplan has two or fewer n-touch faces, then the first three
labels will never be ((U, 3), (U, 2), (L, 4)). Conversely, for
each canonical floorplan with 17 faces that includes at least
three n-touch faces and at least four w-touch faces, if three
faces are added in the reverse of the removing sequence,
then this results in a distinct canonical floorplan with 20
faces sharing the first three labels ((U, 3), (U, 2), (L, 4)). We
can generalize this example. Let S ( f , Lk) be the set of
canonical floorplans with f faces sharing the first k labels
Lk. Let n( f , Lk) be the minimum number of n-touch faces in
the canonical floorplans derived by removing the first k faces
from a canonical floorplan in S ( f , Lk). We define w( f , Lk)
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similarly. Note that if a floorplan has x faces, then the max-
imum number of maximal vertical line segments not on the
boundary is x − 1. We have the following equation.

|S ( f , Lk)| =
f−k−1∑
r=0

f−k∑
n=n( f ,Lk)

f−k∑
w=w( f ,Lk)

|C( f − k, n, w, r)| (1)

4. Algorithm

In this section, we present the first of our random generation
algorithms for mosaic floorplans. We compute a path from
the root to a leaf in the classification tree, without construct-
ing the entire tree. We repeatedly choose the next vertex of
the path from among the children of the current vertex, so
that each leaf has an equal chance of being reached. In this
way, we can generate uniformly random mosaic floorplans.

Our algorithm is shown as Algorithm 1. The next ver-
tex of the path is randomly chosen from among the children
of the current vertex. S ( f , ε), which corresponds to the root
of the classification tree, is the argument for the algorithm;
the next random vertex is found recursively.

Algorithm 1: Find-Child(S ( f , Lk))
1 begin
2 S ( f , Lk) is the set of canonical floorplans with f faces

sharing the first k labels Lk

3 if k = f − 1 then
4 return S ( f , Lk) /* S ( f , Lk) has exactly one

canonical floorplan. */

5 else
6 Let S ( f , L1

k+1), S ( f , L2
k+1), . . . , S ( f , Ld

k+1) be a partition
of S ( f , Lk), where Lk is the common prefix of
L1

k+1, L
2
k+1, . . . , L

d
k+1.

7 Uniformly and randomly generate an integer x in
[1, |S ( f , Lk)|].

8 Choose the minimum j such that x ≤ ∑ j
i=1 |S ( f , Li

k+1)|
9 Find-Child(S ( f , L j

k+1))

Assume that we are now at a vertex v in the classifi-
cation tree, and assume that v corresponds to the canonical
floorplans S ( f , Lk) that share the first k labels Lk. Assume
also that after removing k faces from the canonical floor-
plans in S ( f , Lk), the minimum number of n-touch faces
is n( f , Lk), and the minimum number of w-touch faces is
w( f , Lk). Each child ci, i = 1, 2, . . . , d, of v in the classi-
fication tree corresponds to the set of canonical floorplans
S ( f , Li

k+1) for some Li
k+1 that shares the first k + 1 labels

Li
k+1. Since Lk is the common prefix of L1

k+1, L
2
k+1, . . . , L

d
k+1,

then S ( f , L1
k+1), S ( f , L2

k+1), . . . , S ( f , Ld
k+1) is a partition of

S ( f , Lk). Algorithm 1 computes a uniformly random value,
say x, in [1, |S ( f , Lk)|], and it chooses the minimum j
with x ≤ ∑ j

i=1 |S ( f , Li
k+1)|. It then recursively computes

S ( f , L j
k+1). To randomly compute a path, we need to com-

pute |S ( f , Lk)| and |S ( f , L1
k+1)|, |S ( f , L2

k+1)|, . . . , |S ( f , Ld
k+1)|.

For the root, we can use Lemma 1 to com-
pute |S ( f , L0)| = ∑ f−1

r=0 |C( f , r)|. Now, n( f , L0) =

w( f , L0) = 1 holds. If we assume that we know
|S ( f , Lk)|, n( f , Lk), and w( f , Lk), then we compute
|S ( f , L1

k+1)|, |S ( f , L2
k+1)|, . . . , |S ( f , Ld

k+1)| as shown below.
Note that we only need to know n( f , Li

k+1) and w( f , Li
k+1),

since if we have them, then we can use Eq. (1) to com-
pute |S ( f , Li

k+1)|. Assume that the (k + 1)-th label of Li
k+1

is (ℓ1, ℓ2). We have the following two cases.

Case 1: ℓ1 = U
Let Fk+1 be the first face of the canonical floorplan C f−k

that is derived from some canonical floorplan in S ( f , Li
k+1)

by removing k faces. Since ℓ1 = U, Fk+1 is upward remov-
able. Hence, the minimum number n( f , Li

k+1) of n-touch
faces of a canonical floorplan in S ( f , Li

k+1) is n( f , Lk)+ℓ2−1.
Thus, we have n( f , Li

k+1) = n( f , Lk) + ℓ2 − 1. Also, if
w( f , Lk) > 1, then w( f , Li

k+1) = w( f , Lk) − 1 holds; other-
wise, w( f , Lk) = 1, and w( f , Li

k+1) = 1 holds.

Case 2: ℓ1 = L
Similarly, we have w( f , Li

k+1) = w( f , Lk)+ ℓ2 − 1. Also,
if n( f , Lk) > 1, then n( f , Li

k+1) = n( f , Lk) − 1 holds; other-
wise, n( f , Lk) = 1, and n( f , Li

k+1) = 1 holds.

Thus, we can compute n( f , Li
k+1) and w( f , Li

k+1) in con-
stant time. Also note that ℓ2 < f holds. Thus, the maximum
number of children is at most 2 f − 2.

We have the following theorem.

Theorem 1: After preprocessing in polynomial time, our
algorithm generates each uniformly random mosaic floor-
plan in O( f 2) time.

Proof. For the preprocessing phase , we compute all pos-
sible values of |S ( f , Lk)|. Specifically, we compute the right-
hand side of Eq. (1) for all f ′(1 ≤ f ′ ≤ f ), k′(1 ≤ k′ ≤ f ′)
n′( f , Lk)(1 ≤ n′( f , Lk) ≤ f − k), w′( f , Lk)(1 ≤ w′( f , Lk) ≤
f − k), and r′(1 ≤ r′ ≤ f ). This computation can be done
in polynomial time. By using this table, we can obtain
|S ( f , Lk)| in O(1) time. To choose a child in Algorithm 1,
since the number of the children is at most 2 f , we need to
look up a value in the table at most O( f ) times. We repeat-
edly choose a child f − 1 times, so we need O( f 2) time for
the entire algorithm. Q.E.D.

5. Random Generation of Mosaic Floorplans with Par-
ticular Properties

We propose two algorithms for generating uniformly ran-
dom mosaic floorplans with various particular properties.

The first algorithm generates mosaic floorplans with f
total faces, including exactly fN n-touch faces.

Similar to what we did in Sect. 3, we can define a clas-
sification tree T fN

f that is related to the canonical floorplans
for this set.

Each leaf in the classification tree corresponds to a dis-
tinct canonical floorplan, and each vertex v with depth d
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in the classification tree corresponds to the set of canoni-
cal floorplans that correspond to the leaves in the subtree
rooted at v and that share the first d labels. For example, T 2

4
is shown in Fig. 7.

Let S ( f , fN , Lk) be the set of canonical floorplans with
f total faces, including exactly fN n-touch faces and with the
first k labels Lk. Let n( f , fN , Lk) be the number of n-touch
faces in a canonical floorplan derived by removing the first
k faces from a canonical floorplan in S ( f , fN , Lk). Note that
every such floorplan has exactly n( f , fN , Lk) n-touch faces.
Let w( f , fN , Lk) be the number of w-touch faces in such
floorplans. We can compute n( f , fN , Lk) and w( f , fN , Lk) in
a manner similar to what we did in Sect. 4, but with a differ-
ent initialization: n( f , fN , Lk) = fN . Now |S ( f , fN , Lk)| can
be calculated by using the following equation.

|S ( f , fN , Lk)| =
f−k−1∑
r=0

f−k∑
w=w( f , fN ,Lk)

|C( f − k, n( f , fN , Lk), w, r)| (2)

Similar to what was done in the algorithm in Sect. 4, we
can compute a uniformly random path in the classification
tree T fN

f .
We have the following theorem.

Theorem 2: After a preprocessing phase that can be com-
pleted in polynomial time, our algorithm generates a uni-
formly random mosaic floorplan with f total faces, includ-
ing exactly fN n-touch faces, in O( f 2) time.

The second algorithm generates mosaic floorplans with
f total faces, including exactly fN n-touch faces and exactly
fW w-touch faces.

Similar to what we did in Sect. 3, we can define a clas-
sification tree T fN , fW

f that is related to this set of canonical
floorplans.

Each leaf in the classification tree corresponds to a dis-
tinct canonical floorplan, and each vertex v with depth d
in the classification tree corresponds to the set of canonical
floorplans that correspond to the leaves in the subtree rooted
at v and that share the first d labels.

Let S ( f , fN , fW , Lk) be the set of canonical floorplans
with f total faces, including exactly fN n-touch faces and
exactly fW w-touch faces, and with the first k labels Lk.

Fig. 7 The classification tree T 2
4 .

Let n( f , fN , fW , Lk) be the number of n-touch faces in a
canonical floorplan derived by removing the first k faces
from a canonical floorplan in S ( f , fN , fW , Lk). We define
w( f , fN , fW , Lk) similarly. We can compute n( f , fN , fW , Lk)
and w( f , fN , fW , Lk) in a manner similar to what we did in
Sect. 4, but with different initializations: n( f , fN , fW , Lk) =
fN and w( f , fN , fW , Lk) = fW .

Now we can compute |S ( f , fN , fW , Lk)| by the follow-
ing equation.

|S ( f , fN , fW , Lk)|

=

f−k∑
r=0

|C( f − k, n( f , fN , fW , Lk), w( f , fN , fW , Lk), r)|

(3)

By using a method similar to the algorithm in Sect. 4,
we can compute a uniformly random path in the classifica-
tion tree T fN , fW

f .
We have the following theorem.

Theorem 3: After a preprocessing phase that can be com-
pleted in polynomial time, our algorithm generates a mosaic
floorplan with f total faces, including exactly fN n-touch
faces and exactly fW w-touch faces, in O( f 2) time.

6. Conclusions

We have designed an algorithm that generates a uniformly
random mosaic floorplan in polynomial time. We propose
two additional algorithms that generate a uniformly random
mosaic floorplans with additional specified properties.

A rectangular drawing is a drawn graph in which every
face is a rectangle. The two drawings in Fig. 1(b) and (c)
are isomorphic as mosaic floorplans, but they are distinct as
rectangular drawings. Can we generate uniformly random
rectangular drawings?

Our random generation algorithms are related to enu-
meration algorithms. For example, if we traverse the clas-
sification tree in a depth-first manner instead of choos-
ing uniformly random children, we obtain an enumera-
tion algorithm for mosaic floorplans. Based on a sim-
ilar idea, we have designed enumeration algorithms for
floorplans [9]. Such enumeration algorithms based on tree
traversing, called reverse search [3], can be modified to ob-
tain random generation algorithms, if the number of descen-
dants of each vertex of the tree can be calculated.

References

[1] E. Ackerman, G. Barequet, and R.Y. Pinter, “A bijection between
permutations and floorplans, and its applications,” Discrete Applied
Mathematics, vol.154, pp.1674–1684, 2006.

[2] L. Alonso and R. Schott, Random Generation of Trees: Random
Generators in Computer Science, Kluwer Academic Publishers,
1995.

[3] D. Avis and K. Fukuda, “Reverse search for enumeration,” Discrete
Applied Mathematics, vol.65, no.1-3, pp.21–46, 1996.

http://dx.doi.org/10.1016/j.dam.2006.03.018
http://dx.doi.org/10.1016/j.dam.2006.03.018
http://dx.doi.org/10.1016/j.dam.2006.03.018
http://dx.doi.org/10.1016/0166-218x(95)00026-n
http://dx.doi.org/10.1016/0166-218x(95)00026-n


YAMANAKA and NAKANO: UNIFORMLY RANDOM GENERATION OF FLOORPLANS
629

[4] N. Bonichon and M. Mosbah, “Watermelon uniform random gen-
eration with applications,” Theoretical Computer Science, vol.307,
pp.241–256, 2003.

[5] S. Dulucq and O. Guibert, Baxter permutations, Discrete Mathemat-
ics, vol.180, pp.143–156, 1998.

[6] S. Felsner, É. Fusy, M. Noy, and D. Orden, Bijections for baxter fam-
ilies and related objects, J. Combinatorial Theory, Series A, vol.118,
no.3, pp.993–1020, 2011.

[7] B.D. He, “Optimal binary representation of mosaic floorplans and
baxter permutations,” Proc. 6th International Frontiers in Algorith-
mics, and The 8th International Conference on Algorithmic Aspects
in Information and Management (FAW-AAIM 2012), vol.7285 of
Lecture Notes in Computer Science, pp.1–12, 2012.

[8] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J.
Gu, “Corner block list: An effective and efficient topological repre-
sentation of non-slicing floorplan,” Proc. IEEE/ACM International
Conference on Computer-Aided Design, pp.8–12, 2000.

[9] S. Nakano, “Enumerating floorplans with n rooms,” Proc. 12th In-
ternational Symposium on Algorithms and Computation, (ISAAC
2001), volume 2223 of Lecture Notes in Computer Science, pp.107–
115, 2001.

[10] D. Poulalhon and G. Schaeffer, “Optimal coding and sampling of
triangulations,” Proc. 30th International Colloquium on Automata,
Languages and Programming (ICALP 2003), volume 2719 of Lec-
ture Notes in Computer Science, pp.1080–1094, 2003.

[11] T. Saitoh, Y. Otachi, K. Yamanaka, and R. Uehara, “Random gener-
ation and enumeration of bipartite permutation graphs,” J. Discrete
Algorithms, vol.10, pp.84–97, 2012.

[12] Z.C. Shen and C.C.N. Chu, “Bounds on the number of slicing, mo-
saic, and general floorplans,” IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol.22, no.10, pp.1354–1361,
2003.

[13] K. Yamanaka and S. Nakano, “Uniformly random generation of
floorplans (extended abstract),” Proc. 9th Hungarian-Japanese Sym-
posium on Discrete Mathematics and Its Applications, pp.188–195,
2015.

Katsuhisa Yamanaka is an assistant pro-
fessor of Department of Electrical Engineering
and Computer Science, Faculty of Engineer-
ing, Iwate University. He received B.E., M.E.
and Dr. Eng. degrees from Gunma University in
2003, 2005 and 2007, respectively. His research
interests include combinatorial algorithms and
graph algorithms.

Shin-ichi Nakano received his B.E. and
M.E. degrees from Tohoku University, Sendai,
Japan, in 1985 and 1987, respectively. In 1987
he joined Seiko Epson Corp., and in 1990 he
joined Tohoku University. In 1992, he received
his Dr. Eng. degree from Tohoku University.
Since 1999 he has been a faculty member of De-
partment of Computer Science, Faculty of Engi-
neering, Gunma University. His research inter-
ests are graph algorithms and graph theory. He
is a member of IPSJ, JSIAM, ACM, and IEEE

Computer Society.

http://dx.doi.org/10.1016/s0304-3975(03)00218-4
http://dx.doi.org/10.1016/s0304-3975(03)00218-4
http://dx.doi.org/10.1016/s0304-3975(03)00218-4
http://dx.doi.org/10.1016/s0012-365x(97)00112-x
http://dx.doi.org/10.1016/s0012-365x(97)00112-x
http://dx.doi.org/10.1016/j.jcta.2010.03.017
http://dx.doi.org/10.1016/j.jcta.2010.03.017
http://dx.doi.org/10.1016/j.jcta.2010.03.017
http://dx.doi.org/10.1109/iccad.2000.896442
http://dx.doi.org/10.1109/iccad.2000.896442
http://dx.doi.org/10.1109/iccad.2000.896442
http://dx.doi.org/10.1109/iccad.2000.896442
http://dx.doi.org/10.1007/3-540-45678-3_10
http://dx.doi.org/10.1007/3-540-45678-3_10
http://dx.doi.org/10.1007/3-540-45678-3_10
http://dx.doi.org/10.1007/3-540-45678-3_10
http://dx.doi.org/10.1007/3-540-45061-0_83
http://dx.doi.org/10.1007/3-540-45061-0_83
http://dx.doi.org/10.1007/3-540-45061-0_83
http://dx.doi.org/10.1007/3-540-45061-0_83
http://dx.doi.org/10.1016/j.jda.2011.11.001
http://dx.doi.org/10.1016/j.jda.2011.11.001
http://dx.doi.org/10.1016/j.jda.2011.11.001
http://dx.doi.org/10.1109/tcad.2003.818136
http://dx.doi.org/10.1109/tcad.2003.818136
http://dx.doi.org/10.1109/tcad.2003.818136
http://dx.doi.org/10.1109/tcad.2003.818136

