
1428
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

PAPER Special Section on Formal Approach

Optimal Stabilizing Controller for the Region of Weak Attraction
under the Influence of Disturbances

Sasinee PRUEKPRASERT†a), Nonmember and Toshimitsu USHIO†b), Fellow

SUMMARY This paper considers an optimal stabilization problem of
quantitative discrete event systems (DESs) under the influence of distur-
bances. We model a DES by a deterministic weighted automaton. The
control cost is concerned with the sum of the weights along the generated
trajectories reaching the target state. The region of weak attraction is the
set of states of the system such that all trajectories starting from them can
be controlled to reach a specified set of target states and stay there indefi-
nitely. An optimal stabilizing controller is a controller that drives the states
in this region to the set of target states with minimum control cost and keeps
them there. We consider two control objectives: to minimize the worst-case
control cost (1) subject to all enabled trajectories and (2) subject to the en-
abled trajectories starting by controllable events. Moreover, we consider
the disturbances which are uncontrollable events that rarely occur in the
real system but may degrade the control performance when they occur. We
propose a linearithmic time algorithm for the synthesis of an optimal stabi-
lizing controller which is robust to disturbances.
key words: stabilization, state attraction, quantitative discrete event sys-
tems, state feedback controllers, optimal control

1. Introduction

Supervisory control initiated by Ramadge and Wonham [1],
[2] is a formal approach to design of a controller, which is
called a supervisor, for discrete event system(DESs) mod-
eled by automata. In their framework, a DES spontaneously
and asynchronously generates events which are partitioned
into controllable and uncontrollable ones. The supervisory
control problem is to design a supervisor that determines en-
abling or disabling of each controllable event from the ob-
servation of system’s behavior so that the supervised DES
satisfies a control specification given by a language or a
predicate. The supervisory control is applied to software
adaptation and automatic software development [3], [4], and
the formal methods in manufacturing systems [5].

The stabilization problem of DESs, which was intro-
duced in [6], is to synthesize a controller that drives a system
from arbitrary initial states to a given set of target states and
keeps it there indefinitely. A linear complexity algorithm for
computing the region of weak attraction, which is the set of
all stabilizable states, was presented in [7]. A slightly dif-
ferent stabilization problem was proposed independently in
[8]. In the latter work, the objective is to control the tra-
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jectories from arbitrary states to revisit the target states in-
finitely often. Another notion of stability called language-
stability was proposed in [7], where stability of the system
is defined in term of its behavior. The stabilization problem
under partial observation was studied in [9]. The concept of
stabilization can be applied to many fields, including fault-
tolerant control [10], the control of reconfigurable manufac-
turing systems [11], [12], and the control of gene regulatory
networks in systems biology [9].

A system may have uncertainty in the sense that some
of the events rarely occur. Software and hardware interrupts,
and emergency preemptions in embedded systems are exam-
ples of the uncertainty. A specification for such an uncertain
system is formally described by a modal transition system,
where transitions are partitioned into two types: may and
must transitions [13], [14]. A must transition must be al-
lowed by the system while a may transition may or may not
be. As a motivational example of the modal transition sys-
tem, an e-mail system shown in Fig. 1 is considered in [14],
where check is a may transition and the others are must tran-
sitions. Namely, after the email is received, the system may
or may not check the email (e.g., for virus) before delivering
it to the receiver. A may transition corresponds to a distur-
bance, which is an uncertain and uncontrollable event, in
directed control framework [15]–[18]. We consider the case
where the event deliver in Fig. 1 is controllable and check is
a disturbance. Then, the system halts at state q1 if the con-
troller disabled deliver and check never occurs. Therefore,
the controller should enable at least one controllable event
at any state such that all uncontrollable events are distur-
bances.

The above discussion emphasises the control of qual-
itative DESs where all possible behaviors of the DES are
partitioned only into legal and illegal ones. This paper, in
contrary, focuses on quantitative DESs which is a more gen-
eral setting. In a quantitative DES, a measure or a control
cost function is assigned on the set of generated trajecto-
ries. As a result, the behavior of a DES can be controlled
based on a preference and the specification can be formal-
ized more accurately. Optimal control of qualitative DESs
has been widely investigated in many literatures under dif-
ferent objectives and assumptions [16]–[25]. The optimal

Fig. 1 A simple email system.
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controller problems of qualitative DESs are to synthesize
the controller under which the quantitative evaluation of the
controlled behaviors is optimized. A quadratic-time com-
plexity algorithm for computing an optimal and minimally
restrictive stabilizing controller was proposed in [20]. How-
ever, the previous researches on optimal stabilization mainly
aim to minimize the worst-case controlled performances.

This paper considers a novel optimal stabilization prob-
lem of quantitative discrete event systems under the influ-
ence of disturbances. We model a DES by a determinis-
tic quantitative automaton where a cost is assigned to each
transition. The control cost is evaluated by the sum of the
costs of the generated trajectory reaching a given set of tar-
get states. An optimal stabilizing controller is a controller
that drives as many states as possible to reach the set of tar-
get states with minimum control cost and stay there indefi-
nitely. We consider two control objectives. The first objec-
tive is to minimize the worst-case control cost subject to all
trajectories. The second one is to minimize the worst-case
control cost subject to the enabled trajectories starting by
controllable events. In other words, the worst-case control
cost of the trajectories following the enabled controllable
events is less than or equal to that of any other controllable
event. Furthermore, we study the optimal control under the
influence of the disturbances.

The remaining of the paper is organized as follows.
Section 2 provides the preliminaries. Section 3 formulates
the optimal stabilizing control problem. Section 4 proposes
an algorithm for the problem. Section 5 presents illustra-
tive examples. Section 6 considers the time complexity and
shows the experimental result. Finally, Sect. 7 draws the
conclusions.

2. Preliminaries

2.1 Quantitative Discrete Event Systems

We consider a quantitative discrete event system (DES)
modeled by a deterministic weighted automaton G =

(Q,Σ = Σc ∪ Σu, δ = δc ∪ δu, w), where Q is a finite set
of states, Σ is a finite set of events, δ ⊆ Q × Σ × Q is a de-
terministic transition relation, w : Q × Σ × Q → [0,∞) is a
weight function which assigns a non-negative cost for each
transition. Let Σ(q) = {σ ∈ Σ|∃q′ ∈ Q, (q, σ, q′) ∈ δ}, i.e.,
the set of active events at the state q in the DES G. A state
q is said to be dead (in G) if Σ(q) = ∅. The set of events
Σ is partitioned into the set of uncontrollable events Σu and
the set of controllable events Σc. The set of transitions is
likewise partitioned into the set of uncontrollable transitions
δu ⊆ Q×Σu×Q, and set of controllable ones δc ⊆ Q×Σc×Q.

r = q0σ1q1 . . . qn ∈ Q (ΣQ)∗ is a run generated by
G starting from q ∈ Q if q0 = q and (qi, σi+1, qi+1) ∈ δ
for each i ∈ {0, 1, . . . , n − 1}. We say r visits qi for each
i ∈ {0, 1, . . . , n}. We also say that r visits, or enters, a
set of states Q′ ⊆ Q if r visits at least one of the states
in Q′. r is called a cyclic run if it (re)visits a state more
than once, i.e., there exist i, j ∈ {0, 1, . . . , n} such that i , j

and qi = q j. Ru(G, q) represents the set of all possible
runs generated in G starting from q ∈ Q. For a given set
of states Q′ ⊆ Q, RuQ′ (G, q) is the set of all runs in G
that start from q and end right after entering the set Q′.
Formally, RuQ′(G, q) = {q0σ1q1 . . . qn ∈ Ru(G, q)|qn ∈
Q′ and qi < Q′,∀i ∈ {0, 1, . . . , n − 1}}. Moreover, let
Ruc

Q′(G, q) = {q0σ1q1 . . . qn ∈ RuQ′(G, q)|σ1 ∈ Σc}, and
Ruu

Q′(G, q) = {q0σ1q1 . . . qn ∈ RuQ′(G, q)|σ1 ∈ Σu}. In
other words, Ruc

Q′ (G, q) and Ruu
Q′ (G, q) are the sets of runs

in RuQ′(G, q) whose first transition is controllable and un-
controllable, respectively.

V :
∪
q∈Q

Ru(G, q) → [0,∞) is a function that represents

the control cost for each generated run and is defined as fol-
lows: for each run r = q0σ1q1 . . . qn,

V(r) =


0 if r = q0 ∈ Q,
n−1∑
i=0

w(qi, σi+1, qi+1) otherwise.

2.2 Region of Weak Attraction

Let E ⊆ Q be the set of target states. For a given δ′ ⊆ δ,
E is δ′-invariant if there does not exist (q, σ, q′) ∈ δ′ such
that q ∈ E and q′ ∈ Q \ E (i.e., no transition goes out of E.).
A state q is strongly attractable (to E) if the following three
conditions hold [6].

(a1) E is δ-invariant.
(a2) For any state q′ visited by a run in Ru(G, q),

RuE(G, q′) , ∅.
(a3) There is no cyclic run in RuE(G, q).

In other words, a state q is strongly attractable (to E) if all
runs starting from q eventually enter E within a finite num-
ber of transitions and indefinitely remain in E. A set of states
Q′ ⊆ Q is strongly attractable to E if all states in Q′ are
strongly attractable to E.

A feedback controller K is a mapping from Q to 2Σc

that assigns a set of enabled controllable events K(q) at each
state q. For each q ∈ Q, K(q) ⊆ Σc ∩ Σ(q) is the set of all
enabled controllable events at the state q. Let GK = (Q,Σ =
Σc ∪ Σu, δK , w) be the DES controlled by the controller K
where δK = {(q, σ, q′) ∈ δ|σ ∈ K(q)∪Σu}. No controller can
disable any uncontrollable event in Σu.

A state q ∈ Q is weakly attractable (to E) if there
exists a controller K such that q is strongly attractable to
E in GK . We also say that the controller K stabilizes the
state q, and q is stabilized by K. The set of all weakly at-
tractable states to E is called the region of weak attraction
[6]. Note that if the condition (a1) is omitted, the defini-
tions of strongly and weakly attractable states are the same
as those of prestable and prestabilizable states proposed by
[8], respectively. From the above definitions, we have the
following lemma.

Lemma 1. A state q is strongly attractable to E in GK if and
only if q and GK satisfy the following two conditions:
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1. q ∈ E or q is not dead in GK;
2. for any transition (q, σ, q′) ∈ δK , q′ is strongly at-

tractable to E in GK .

3. Formulation

3.1 Disturbances

In this paper, we consider the control under the influ-
ence of disturbances. Disturbances, which was introduced
in directed control framework [15]–[18], are uncontrollable
events whose occurrences are uncertain in the sense that
they rarely occur in the real system. From the practical point
of view, a state where all enabled events are disturbances
can be considered as a dead state. In other words, we design
a controller in such a way that it enables at least one con-
trollable event at any state where all enabled uncontrollable
events are disturbances. Moreover, we must consider the
effect of the disturbances on the control performance when
they occur.

Let Σd ⊆ Σu be the set of disturbances. A state q is
weakly attractable under disturbances if there exists a con-
troller K that satisfies the following two conditions:

1. K stabilizes q;
2. for each state q′ ∈ Q \ E visited by any run in

RuE(GK , q), K(q′) ∩ Σ(q′) , ∅ if Σ(q′) ∩ Σu ⊆ Σd.

We also say the controller K stabilizes the state q under
disturbances. The region of weak attraction under distur-
bances, denoted by Ω(E), is the set of all states that are
weakly attractable to E under disturbances. Obviously, if
Σd = ∅, Ω(E) is also the region of weak attraction. Let S
be the set of all controllers that stabilize Ω(E) under distur-
bances. Note that S is finite because Q and Σ are finite and
the number of controllers of G is bounded by |Q| · 2|Σc |.

An optimal control problem for attraction is considered
in [20]. A controller achieves optimal attraction if the worst-
case cost of the generated runs is minimized. An optimal
control problem under the influence of disturbances was also
studied in the directed control framework in [16]–[18].

3.2 Optimal Attraction under Disturbances

This paper studies non-negative-cost DESs and enriches the
optimal control framework for attraction in such a way that,
aside from the worst-case-cost runs, the controller also en-
ables some of the other runs that yield a less cost. However,
considering the best-case-cost runs is perhaps overly opti-
mistic and not suitable for real systems. Thus we define an
optimal stabilizing controller as follows.

For a controller K and a state q, let

λK(q) =

 max
r∈RuE (GK ,q)

V(r) if RuE(GK , q) , ∅,

∞ otherwise.

That is, λK(q) is the worst-case value of runs starting from q

to E in the DES controlled by K. Similarly, let

λc
K(q) =

 max
r∈Ruc

E (GK ,q)
V(r) if Ruc

E(GK , q) , ∅,

∞ otherwise,

and

λu
K(q) =

 max
r∈Ruu

E (GK ,q)
V(r) if Ruu

E(GK , q) , ∅,

∞ otherwise.

An optimal stabilizing controller is a controller K ∈ S such
that for any K′ ∈ S and q ∈ Ω(E) \ E, the following two
conditions hold.

(b1) λK(q) ≤ λK′(q).
(b2) If K(q) , ∅, then λc

K(q) ≤ λc
K′ (q).

The optimal stabilizing control problem is to design an op-
timal stabilizing controller.

The condition (b2) can be interpreted as minimizing the
worst-case control cost subject to the runs starting from each
state q by the occurrence of an enabled controllable event.
At the state q, an optimal stabilizing controller K may en-
able only controllable transitions such that the value λc

K(q)
is minimized and lower than or equal to λK(q). Note that the
(conventional) optimal stabilization problem in [20] requires
only condition (b1) and does not consider the notion of dis-
turbances. The algorithm proposed in [20] computes the re-
gion of weak attraction and a stabilizing controller within
O(|Q|2).

Obviously, if all events are controllable (Σu = Σd = ∅),
the optimal stabilizing control problem is the single-source
shortest path problem in directed graphs with non-negative
costs which can be solved by several algorithms, including
Dijkstra’s algorithm [26]. Based on this concept, we pro-
pose an O(|Q| · log|Q| + |δ|) algorithm to solve the optimal
stabilizing control problem in the next section. For the sys-
tem where the number of events is insignificantly small, the
time complexity of the proposed algorithm is O(|Q| · log|Q|).

4. An Algorithm for the Computation of an Optimal
Stabilizing Controller

If the target set E is δu-invariant, a controller K may dis-
able all active controllable events at the states in E so that
E becomes δK-invariant in GK . If the target set E is empty
or not δu-invariant, all states are obviously neither strongly
nor weakly attractable to E, and Ω(E) is empty. We there-
fore assume that qe is the only target state and dead, i.e.,
E = {qe} and Σ(qe) = ∅. In such cases where there are more
than one target states or the target states are not dead (but δu-
invariant), we can replace all target states by qe and replace
each incoming transition to target states by a transition to qe

with the same event within O(|Q| + |δ|). Since |δ| ≤ |Q| · |Σ|,
this replacement can be done in O(|Q| · |Σ|). Based on these
assumptions, we propose Algorithm 1 which computes the
region of weak attraction under disturbances along with an
optimal controller.
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Algorithm 1 optimal stabilizing controller Kh , Ω(E)
Require: G = (Q,Σ = Σu ∪ Σc, δ = δu ∪ δc, w), E = {qe}
1: Vc(qe)← Vu(qe)← 0, K(qe)← ∅, degu(qe)← 0, chkc(qe)← f alse
2: Qd ← {q ∈ Q|Σu ∩ Σ(q) , ∅ and Σu ∩ Σ(q) ⊆ Σd}
3: for all q ∈ Q \ {qe} do
4: Vc(q)← Vu(q)← ∞, K(q)← ∅
5: degu(q)← |Σ(q) ∩ Σu |, chkc(q)← f alse
6: end for
7: H0 ← {qe}, N0 ← Q \ {qe}, h← 0
8: while Hh , ∅ do
9: U ← ∅, h← h + 1

10: select qh ∈ arg min
q∈Hh−1

max-real(Vu(q),Vc(q))

11: Vλ(qh)← max-real(Vu(q),Vc(q))
12: for all (q, σu, qh) ∈ δu such that q ∈ Nh−1 ∪ Hh−1 \ {qh} do
13: degu(q)← degu(q) − 1
14: if degu(q) = 0 and (q < Qd or chkc(q)) then
15: U ← U ∪ {q}.
16: end if
17: Vu(q)← max-real(Vu(q),Vλ(qh) + w(q, σu, qh))
18: if Vc(q) > Vu(q) and q < Qd then
19: Vc(q)← Vu(q), K(q)← ∅
20: end if
21: end for
22: for all (q, σc, qh) ∈ δc such that q ∈ Nh−1 ∪ Hh−1 \ {qh} do
23: if q ∈ Qd and ¬chkc(q) then
24: Vc(q)← Vλ(qh) + w(q, σc, qh)
25: K(q)← {σc}, chkc(q)← true
26: else if Vc(q) > Vλ(qh) + w(q, σc, qh) then
27: Vc(q)← Vλ(qh) + w(q, σc, qh), K(q)← {σc}
28: else if Vc(q) = Vλ(qh) + w(q, σc, qh) then
29: K(q)← K(q) ∪ {σc}
30: end if
31: if degu(q) = 0 and (q < Qd or chkc(q)) then
32: U ← U ∪ {q}.
33: end if
34: end for
35: Hh ← Hh−1 \ {qh} ∪ U
36: Nh ← Nh−1 \ U
37: end while
38: return K, Q \ Nh

39: function max-real(V1,V2)
40: if V1 < V2 < ∞ or V1 = ∞ then return V2

41: else return V1 end if
42: end function

Algorithm 1 first considers three sets of states: Qd, H0,
and N0. Qd is the set of all states from which all outgo-
ing uncontrollable events are disturbances. We thus need to
ensure that the controller enables at least one controllable
event at each state in this set. H0 is the target set that is cer-
tainly weakly attractable to itself. N0 = Q \ E is the set of
the rest of the states in the system. Then, in the h-th itera-
tion of the while loop between lines 8 and 37, the algorithm
computes the following sets of states.

• Nh is a set of states that are not yet determined to be
weakly attractable to E under disturbances.

• Hh is a set of weakly attractable states where the con-
trol action has not been determined.

• Q \ (Nh ∪ Hh) = {q1, q2, . . . , qh} is a set of weakly at-
tractable states where the control action has been deter-
mined by the end of the h-th iteration.

• U is a temporary set for transferring the weakly at-
tractable states from Nh to Hh.

In the h-th iteration of the while loop between lines 8 and
37, qh is selected from Hh−1, and only states in Nh−1 can
be transferred to Hh. At the end of the h-th iteration of the
while loop, Hh ∩ Nh = ∅, {q1, q2, . . . , qh} = Q \ (Hh ∪ Nh),
and Q = {q1, q2, . . . , qh} ∪ Hh ∪ Nh. The number of the
states is finite and the algorithm exits the while loop when
Hh = ∅. Hence, the algorithm surely terminates after a finite
number of iterations of the while loop. We suppose that
the algorithm terminates after the ℓ-th iteration. For each
h ∈ {1, 2, . . . , ℓ}, we have

Q \ {q1, q2, . . . , qh} = Hh ∪ Nh and Hh ∩ Nh = ∅. (1)

In the h-th iteration of the while loop, the for loop be-
tween lines 12 and 21 (resp. lines 22 and 34) considers
each transition (q, σ, qh) ∈ δu (resp. δc) such that σ ∈ Σ
and q ∈ Nh−1 ∪ Hh−1 \ {qh}. The algorithm then computes
Vc(q), Vu(q), K(q), degu(q), and chkc(q) for the state q. Vu(q)
is used to calculate min

K∈S
λu

K(q). Vc(q) is used to calculate

min
K∈S
λc

K(q) if q ∈ Qd; and to calculate min
K∈S

min{λu
K(q), λc

K(q)}
if q < Qd. K(q) is used to compute an optimal stabi-
lizing controller. degu(q) is the number of outgoing un-
controllable transitions from q to Q \ {q1, q2, . . . , qh}. If
degu(q) = 0, all outgoing uncontrollable transitions from q
lead to {q1, q2, . . . , qh}. If q ∈ Qd, chkc(q) indicates whether
or not the controller K has already enabled at least one out-
going controllable transition from q to a weakly attractable
state in Q \ (Nh ∪ Hh). The algorithm need to ensure that
chkc(q) is true if q ∈ Qd.

Let Vh
c (q), Vh

u (q), Kh(q), degh
u(q), and chkh

c (q) represent
the corresponding variables at the end of the h-th round of
the while loop. Then, we have the following lemmas.

Lemma 2. For any h ∈ {2, . . . , ℓ} and any i ∈ {h, h +
1, . . . , ℓ}, V i

c(qh) = Vh−1
c (qh), V i

u(qh) = Vh−1
u (qh), Ki(qh) =

Kh−1(qh), degi
u(qh) = degh−1

u (qh) and chki
c(qh) = chkh−1

c (qh).

Proof. In the h-th iteration of the while loop, the for loop
between lines 12 and 21 (resp. lines 22 and 34) considers
each transition (q, σ, qh) ∈ δu (resp. δc) such that σ ∈ Σ and
q ∈ Nh−1 ∪ Hh−1 \ {qh}. From Eq. (1), Nh−1 ∪ Hh−1 \ {qh} =
(Nh−1 ∪ Hh−1) \ {q1, q2, . . . , qh}. Thus, for each i ∈ {h, h +
1, . . . , ℓ}, the variables Vc(qh), Vu(qh), K(qh), degu(qh), and
chkc(qh) are not updated in the i-th iteration of the while
loop between lines 8 and 37. □

Lemma 3. Consider each h ∈ {1, 2, . . . , ℓ} and q ∈ Q \
{q1, q2, . . . , qh}. The following conditions hold at the end of
the h-th round of the while loop between lines 8 and 37.

1. If there exists i ≤ h such that (q, σ, qi) ∈ δu,

Vh
u (q) = max

(q,σ,qi)∈δu
i∈{1,2,...,h}

(w(q, σ, qi) + Vλ(q
i)).

Otherwise, Vh
u (q) = ∞.

2. If q ∈ Qd and there exists i ≤ h such that (q, σ, qi) ∈ δc,

Vh
c (q) = min

(q,σ,qi)∈δc
i∈{1,2,...,h}

(w(q, σ, qi) + Vλ(q
i)).
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If q < Qd and there exists i ≤ h such that (q, σ, qi) ∈ δc,

Vh
c (q) = min


max

(q,σ,qi)∈δu
i∈{1,2,...,h}

(w(q, σ, qi) + Vλ(q
i))

min
(q,σ,qi)∈δc
i∈{1,2,...,h}

(w(q, σ, qi) + Vλ(q
i)).

Otherwise, Vh
c (q) = ∞.

3. σ ∈ Kh(q) if and only if there exists (q, σ, q′) ∈ δc such
that q′ ∈ {q1, q2, . . . qh} and w(q, σ, q′)+Vλ(q′) = Vh

c (q).
4. degh

u(q) is the number of outgoing uncontrollable tran-
sitions from q to states in Q \ {q1, q2, . . . , qh}.

5. If q ∈ Qd, chkh
c (q) is true if and only if the controller

Kh enables at least one controllable transition from q
to a state in {q1, q2, . . . , qh}.

Proof. Base Case. Obviously, q1 = qe and Vc(q1) =
Vu(q1) = 0. For each q ∈ Q \ {q1}, the algorithm initially
set Vc(q) = Vu(q) = ∞, K(q) = ∅, degu(q) = |Σ(q) ∩ Σu|,
and chkc(q) = f alse. In the first iteration of the while loop,
the for loop between lines 12 and 21 (resp. lines 22 and 34)
considers each transition (q, σ, q1) ∈ δu (resp. δc) such that
σ ∈ Σ and q ∈ Q\{q1}. It can be easily shown that conditions
1 - 5 hold for any state q ∈ Q \ {q1}.

Inductive Hypothesis. Consider h ∈ {1, 2, . . . , ℓ − 1}.
Assume that conditions 1 - 5 hold for any q ∈ Q\{q1, q2, . . . ,
qh} at the end of the h-th iteration of the while loop.

Inductive Step. From Eq. (1), Q\{q1, q2, . . . , qh} = Hh∪
Nh and Hh∩Nh = ∅. The state qh+1 is selected from Hh. The
for loop between lines 12 and 21 considers each transition
(q, σ, qh+1) ∈ δu such that q ∈ Q \ {q1, q2, . . . , qh+1}. degu(q)
and Vu(q) can be updated at lines 13 and 17, respectively.
From the inductive hypothesis, conditions 1 and 4 hold for
q after the (h + 1)-st iteration of the while loop.

Then, we consider conditions 2, 3, and 5. First, con-
sider the case where q < Qd. Since q < Qd, condition 5
holds. If Vc(q) > Vu(q), the algorithm sets Vc(q) = Vu(q) =

max
(q,σ,qi)∈δu

i∈{1,2,...,h+1}

(w(q, σ, qi) + Vλ(q
i)) and K(q) = ∅ at line 19.

Then, the for loop between lines 22 and 34 considers each
(q, σ, qh+1) ∈ δc such that q ∈ Q \ {q1, q2, . . . , qh+1} and up-
dates the values Vc(q) and K(q). From the inductive hypoth-
esis, conditions 2 and 3 hold for q after the (h+1)-st iteration
of the while loop.

Next, consider the case where q ∈ Qd. The for loop
between lines 22 and 34 considers each (q, σ, qh+1) ∈ δc
such that q ∈ Q \ {q1, q2, . . . , qh+1} and updates the vari-
ables Vc(q), K(q), and chkc(q). If Vc(q) is updated at line
24, chkc(q) = f alse at line 23. From the inductive hypoth-
esis, (q, σ, qh+1) is the first controllable transition from q to
{q1, q2, . . . , qh+1} that is considered by Algorithm 1. Hence,
K enables (q, σ, qh+1) and chkc(q) is set to be true at line 25.
Otherwise, Vc(q) can be updated at line 27, and K(q) can
be updated at lines 27 and 29. Then, from the inductive hy-
pothesis, conditions 2, 3, and 5 hold for q after the (h+ 1)-st
iteration of the while loop. □

Next, we show that all states in Q \ Nℓ are weakly at-

tractable to E and are stabilized by Kℓ under disturbances.

Lemma 4. Q \ Nℓ is strongly attractable to E in GKℓ .

Proof. Base Case. The target state q1 = qe is strongly at-
tractable to E in GKℓ .

Inductive Hypothesis. Consider h ∈ {1, 2, . . . , ℓ − 1}.
Assume all states in {q1, q2, . . . , qh} are strongly attractable
to E in GKℓ .

Inductive Step. Since qh+1 is selected from Hh, there
exist j ≤ h andσ ∈ Σ such that (qh+1, σ, q j) ∈ δK j where qh+1

is added in H j in the j-th iteration of the while loop. From
condition 3 of Lemma 3, there is no transition in δKh ∩ δc
from qh+1 to Q \ {q1, q2, . . . , qh}. Since qh+1 is added in H j,
deg j

u(qh+1) = 0. From Lemma 2, degh
u(qh+1) = 0. From con-

dition 4 of Lemma 3, there is no transition in δKh ∩ δu from
qh+1 to Q \ {q1, q2, . . . , qh}. Therefore, there is no transition
in δKh from qh+1 to Q \ {q1, q2, . . . , qh}.

From conditions 1 and 2 of Lemma 3, Vh
u (qh+1) < ∞

or Vh
c (qh+1) < ∞. If Vh

u (qh+1) < ∞, there exists an uncon-
trollable transition from qh+1 to {q1, q2, . . . , qh} which can-
not be disabled by Kh. If Vh

c (qh+1) < ∞, from condition
3 of Lemma 3, Kh enables a controllable transition from
qh+1 to {q1, q2, . . . , qh}. Thus, for both cases, there is at
least one transition in δKh from qh+1 to {q1, q2, . . . , qh} and
there is no transition from qh+1 to Q \ {q1, q2, . . . , qh}. From
Lemma 2, the transition from qh+1 to {q1, q2, . . . , qh} is also
included in δKℓ . From the inductive hypothesis, all states in
{q1, q2, . . . , qh} are strongly attractable to E in GKℓ . Thus,
qh+1 is strongly attractable to E in GKℓ by Lemma 1. □

Lemma 5. Kℓ stabilizes Q \ Nℓ under disturbances.

Proof. From Lemma 4, Kℓ stabilizes the set Q \ Nℓ =
{q1, q2, . . . , qℓ}. For each i ∈ {1, 2, . . . , ℓ}, since qi is selected
from Hi−1, there exists j ≤ i − 1 such that qi is added in H j.
Hence, deg j

u(qi) = 0. From Lemma 2, and conditions 2 and
3 of Lemma 3, there is no run in GKℓ starting from a state
q ∈ Q \ Nℓ that visits Nℓ.

As a result, it is sufficient to show that Kℓ(qi) , ∅ for
each i ∈ {2, 3, . . . , ℓ} such that qi ∈ Qd. Recall that there
exists j ≤ i − 1 where qi is added in H j. Hence, chk j

c(qi) is
true. From Lemma 2 and conditions 2, 3, and 5 of Lemma 3,
chkℓc(qi) is true and Kℓ(qi) , ∅. Thus, this lemma holds. □

The following theorem shows that Q \ Nℓ is the region
of weak attraction under disturbances.

Theorem 6. Q \ Nℓ = Ω(E), and is stabilized by Kℓ under
disturbances.

Proof. From Lemma 5, Q \ Nℓ ⊆ Ω(E) and Q \ Nℓ is sta-
bilized by Kℓ. Suppose that Ω(E) ⊈ Q \ Nℓ, that is, there
exists a state q ∈ Ω(E) ∩ Nℓ which is stabilized by a con-
troller K′ ∈ S under disturbances. For each i ∈ {1, 2, . . . , ℓ},
q is not included in Hi. Therefore, the state q satisfies any
of the following two conditions.

1. For any σ ∈ Σ(q) and any i ∈ {1, 2, . . . , ℓ}, (q, σ, qi) < δ.
2. degℓu(q) > 0 or (q ∈ Qd and chkℓc(q) is false).
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From Lemma 3, if degℓu(q) > 0, there is at least one un-
controllable transition from q to a state in Nℓ which cannot
be disabled by the controller K′. If q ∈ Qd and chkℓc(q) is
false, from condition 5 of Lemma 3, there is no controllable
transition from q to Q \ Nℓ. For this case, the controller K′

must enable at least one transition from q ∈ Qd to a state
in Nℓ. Recall that E = {q1} ⊆ Q \ Nℓ. Thus, for each
q ∈ Ω(E) ∩ Nℓ, either RuE(GK′ , q) = ∅ or there exists a
cyclic run in RuE(GK′ , q) that visits at least one state in Nℓ

more than once. Therefore, K′ does not stabilize q which is
a contradiction. □

Then, we show that Kℓ is an optimal stabilizing con-
troller.

Lemma 7. For each qh ∈ {q2, q3, . . . , qℓ}, Vλ(qh) =
min
K∈S
λK(qh) = λKℓ (q

h) and Vλ(qh) ≥ Vλ(qh−1).

Proof. Base Case. Since q1 = qe ∈ E, λK(q1) is zero for any
controller K. The algorithm accordingly assigns Vλ(q1) =
max-real(Vu(q1),Vc(q1)) = 0. In the 2nd iteration of the
while loop, we have Vλ(q2) = max-real(Vh

u (q2),Vh
c (q2)) and

q2 ∈ arg min
q′∈H1
max-real(V2

u (q′),V2
c (q′)). Since the costs of

all transitions are non-negative, from Lemma 2 and condi-
tions 1-3 of Lemma 3, this lemma holds for q2.

Inductive Hypothesis. Consider h ∈ {2, 3, . . . , ℓ − 1}.
Suppose that for each i ∈ {2, . . . , h}, this lemma holds for qi.

Inductive Step. From Algorithm 1, we have
Vλ(qh+1) = max-real(Vh

u (qh+1),Vh
c (qh+1)) and qh+1 ∈

arg min
q′∈Hh
max-real(Vh

u (q′),Vh
c (q′)). Since the costs of all

transitions are non-negative, from the inductive hypothesis,
Lemma 2, and conditions 1-3 of Lemma 3, this lemma holds
for qh+1. □

Lemma 7 implies the condition (b1) of an optimal sta-
bilizing controller. Vλ(qh) = λKℓ (qh) represents the worst-
case cost from any state qh under the controller Kℓ. Then,
we show the condition (b2).

Lemma 8. For each K′ ∈ S and each qh ∈ {q2, . . . , qℓ} such
that Kℓ(qh) , ∅, λc

Kℓ
(q) ≤ λc

K′ (q).

Proof. From Theorem 6 and Lemma 7, we have Vλ(q
1) =

min
K∈S
λK(q1) ≤ Vλ(q

2) = min
K∈S
λK(q2) ≤ . . . ≤ Vλ(q

ℓ) =

min
K∈S
λK(qℓ). Since the costs of all transitions are non-

negative, this Lemma holds by condition 2 of Lemma 3. □

From Lemmas 7 and 8, we have the following theorem.

Theorem 9. Algorithm 1 computes the region of weak at-
traction under disturbances Q \ Nℓ and an optimal stabiliz-
ing controller Kℓ.

5. Illustrative Examples

5.1 A Simple DES

We show the result from applying Algorithm 1 to the DES

in Fig. 2. Initially, Qd = {q4, q6, q8}, H0 = {qe}, and N0 =

{q2, q3, . . . , q8}. Then, the result after each iteration of the
while loop is as follows.

• the 1st iteration

– Vλ(qe) = 0, H1 = {q2, q3}
– V1

u (q2) = V1
u (q3) = V1

u (q4) = 1
– V1

c (q3) = 1, K1(q3) = {c3}
– V1

c (q6) = 2, K1(q6) = {c6}, chk1
c (q6) = true

• the 2nd iteration

– Vλ(q2) = 1, H2 = {q3, q4}
– V2

c (q4) = 2 , K2(q4) = {c4}, chk2
c (q4) = true

– V2
c (q3) = 1 , K2(q3) = {c3, c3′}

• the 3rd iteration

– Vλ(q3) = 1, H3 = {q4}
– V3

u (q8) = 1, V3
c (q6) = 1, K3(q6) = {c6′}

– V3
c (q7) = 4, K3(q7) = {c7}

• the 4th iteration

– Vλ(q4) = 2, H4 = {q5, q6}
– V4

u (q6) = 7, deg4
u(q6) = 0

– V4
c (q5) = 7, K4(q5) = {c5}

• the 5th iteration

– Vλ(q5) = 7, H5 = {q6}, N5 = {q7, q8}
• the 6th iteration

– Vλ(q6) = 7, H6 = ∅, N6 = {q7, q8}
Algorithm 1 returns the set Q\N6 = {qe, q2, q3, q4, q5, q6}

and the controller K6 given by K6(qe) = K6(q2) = ∅,
K6(q3) = {c3, c3′}, K6(q4) = {c4}, K6(q5) = {c5}, K6(q6) =
{c6′}, K6(q7) = {c7}. Notice that although disabling c4 at q4

decreases Vλ(q4), c4 is enabled since d4 is a disturbance.
The result from our algorithm can be compared with

ones of the previous works as follows. In the directed con-
trol framework [15]–[18], the controller enables at most one
controllable event at q3, i.e., either c3 or c3′, but not both. In
the (conventional) optimal stabilization framework that does
not restrict the condition (b2) [6], the controller K6 may en-
able both c6 and c6′, because the worst-case value of the
runs following from both events are still lower than that of
d6. Besides, since disturbances are not considered, c4 and
c7 are disabled in order to minimize the values Vλ(q4) and
Vλ(q7). q7 and q8 would then become weakly attractable to
E. In our setting, we need to disable c6 since the worst-case

Fig. 2 A DES modeled by an automaton. The labels of the transitions
are events and their costs. Σc = {c2, c3, c3′, c4, c5, c5′c6, c6′, c7}, Σu =

{u2, u3, d4, d6, u7, d8}, and Σd = {d4, d6, d8}.
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value of runs after its occurrence is higher than that of c6′.
Note that if the disturbance d6 does not occur at q6, dis-
abling c6 decreases the worst-case control cost. In addition,
we may enable both c3 and c3′ since the worst-case value of
the controlled runs following from them is minimal.

5.2 Automated Guided Vehicles (AGVs)

We consider a system with two automated guided vehicles
(AGVs) in Fig. 3(a). The goal of the first and the sec-
ond AGVs are to reach stations A and C without collision,
respectively. The black transitions represent controllable
routes that can be enable and disabled by the controller. The
two gray transitions are uncontrollable routes. The dashed
gray transition represents an emergency route at station E.
This emergency route may be unpredictably enabled by the
local controller at station E; therefore, it is a disturbance.
The cost of each transition represents the transit time.

The automaton in Fig. 3(b) represents all possible
routes of the system in Fig. 3(a) as follows: each state i j
of Fig. 3(b) represents when the first vehicle is in the sta-
tion i and the second vehicle is in the station j of Fig. 3(a).
The dead states AA, BB, CC, DD , and EE represent the
collisions. The target state AC is also dead. Then, our ob-
jective is to find a minimally restrictive optimal controller
that drives both vehicles to the state AC of Fig. 3(b). By ap-
plying Algorithm 1 to the automaton in Fig. 3(b), we obtain
the controlled system as shown in Fig. 3(c).

For example, consider the controlled system starting
from the state ED in Fig. 3(c). The controllable transition
from ED to BD is enabled because the other transition is
a disturbance. Both transitions from ED to BD allow the
first vehicle to move from station E to station B in Fig. 3(a).
Then, the first vehicle may move to station A directly, or

Fig. 3 (a) An example of a traffic system. (b) An automaton representing
possible routes of the system (a). (c) An optimal controlled system.

move to station C first and then to station A. In either way,
the system reaches the state AD with the same cost. Finally,
the second vehicle moves to station C and the controlled
system reaches the target state AC.

6. Computational Time Complexity

In this section, we discuss the computational time complex-
ity of Algorithm 1. In the algorithm, line 1 initializes the
variables in O(1). Line 2 computes Qd in O(|Q| + |δ|). The
for loop between lines 3 and 6 is also O(|Q| + |δ|). From
Eq. (1), Algorithm 1 terminates within ℓ ≤ |Q| iterations of
the while loop between lines 8 and 37. In the h-th iteration
of the while loop, h ∈ {1, 2, . . . , ℓ}, the state qh with mini-
mal max-real(Vu(qh),Vc(qh)) is selected from Hh−1. Then,
the for loops lines 12–21 and 22–34 consider each transi-
tion in δ at most once. For each q ∈ Hh, Vc(q) is possi-
bly updated at line 27. This update may decrease the value
max-real(Vu(q),Vc(q)). At lines 35 and 36, qh is deleted
from H and the states in U are moved from N to H. Note
that, in any iteration of the while loop, |U | is less than or
equal to the number of iterations considered in the for loops
between lines 12–21 and 22–34.

We can implement the set H using a priority queue
which provides the following operations: select and delete
a state in arg min

q∈H
max-real(Vu(q),Vc(q)), insert a state q in

H, and decrease the values Vc(q) and max-real(Vu(q),Vc(q))
for a state q ∈ H. Using strict Fibonacci heap [27], the se-
lection, insertion, and decreasing the values are O(1); and
the deletion is O(log|Q|). Thus, the over all complexity of
the while loop, as well as Algorithm 1, is O(|Q| · log|Q|+ |δ|).
Note that in the real considered system, the number of the
states is often far larger than the number of the events. If |Σ|
is insignificantly small and dominated by log|Q|, the com-
plexity of Algorithm 1 is O(|Q| · log|Q|).

We implement our algorithm to confirm its efficiency.
The computation environment is Windows 7 Enterprise Ser-
vice Pack 1, on AMD Phenom(tm) II X6 1090T Processor
3.20 GHz with 8.00 GB memory. We consider systems with
100,000 to 1,000,000 connected states. The numbers of con-
trollable transitions, uncontrollable transitions, and distur-
bances are 5, 0.01, and 0.002 times the number of states,
respectively. Shown in Fig. 4 is a relation between the av-
erage computation time of Algorithm 1 and the number of
states. This result confirms that the time complexity is lin-
earithmic.

Fig. 4 Relation between the average computation time of Algorithm 1
and the number of states.
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7. Conclusions

This paper formulates a novel optimal stabilization problem
of quantitative discrete event systems under the influence of
disturbances, which are uncontrollable events whose occur-
rences are uncertain in the sense that they rarely occur in
the real system. The objective is to compute a region of
weak attraction under disturbances, along with an optimal
stabilizing controller that minimizes not only the worst-case
control cost subject to all enabled runs but also the worst-
case control cost subject to all enabled runs starting by con-
trollable events. We propose an O(|Q| · log|Q|+ |δ|) algorithm
for the problem. If |Σ| is insignificantly small and dominated
by log|Q|, the complexity is O(|Q| · log|Q|). It is future work
to extend the proposed algorithms to the other control prob-
lems such as control under partial observation.
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