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SUMMARY Modern web users may encounter a browser security
threat called drive-by-download attacks when surfing on the Internet.
Drive-by-download attacks make use of exploit codes to take control of
user’s web browser. Many web users do not take such underlying threats
into account while clicking URLs. URL Blacklist is one of the practical
approaches to thwarting browser-targeted attacks. However, URL Blacklist
cannot cope with previously unseen malicious URLs. Therefore, to make
a URL blacklist effective, it is crucial to keep the URLs updated. Given
these observations, we propose a framework called automatic blacklist gen-
erator (AutoBLG) that automates the collection of new malicious URLs by
starting from a given existing URL blacklist. The primary mechanism of
AutoBLG is expanding the search space of web pages while reducing the
amount of URLs to be analyzed by applying several pre-filters such as sim-
ilarity search to accelerate the process of generating blacklists. AutoBLG
consists of three primary components: URL expansion, URL filtration, and
URL verification. Through extensive analysis using a high-performance
web client honeypot, we demonstrate that AutoBLG can successfully dis-
cover new and previously unknown drive-by-download URLs from the vast
web space.
key words: drive-by-download, URL blacklist, search space, machine
learning, web client honeypot

1. Introduction

Today, internet users are exposed to various web-based at-
tacks. Kaspersky’s annual report shows that such attacks oc-
cur 4.7 M per day globally. Of the web-based attacks, drive-
by-download attack is considered as a significant threat, ac-
counting for 93% of web-based attacks [1]. Drive-by- down-
load attacks can be easily triggered by simply visiting a ma-
licious URL. A malicious URL infects a web user’s com-
puter with malware by exploiting web browser or browser
plug-in vulnerabilities. Many web users tend to click such
URLs without considering the underlying threats.

Adopting a URL blacklist as a pre-filtering mechanism
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is one of the most efficient countermeasures for browser-
targeted threats. A URL blacklist is a database that stores a
list of URLs that have been identified as malicious. If the
URL accessed by the user is blacklisted, it will be automati-
cally blocked by the browser. User feedback and proactively
searching web space are the general methods of building and
maintaining a URL blacklist.

Several challenges are needed to generate an effective
URL blacklist. First, we must tackle the scalability of the
World Wide Web. There are 30 trillion unique URLs in the
wild Internet [2]. Besides, the number of URLs is continu-
ally increasing everyday. We must be able to identify ma-
licious URLs among this huge population using a dynamic
analysis system such as a web client honeypot, which re-
quires both time and computing resources. Thus, we need
mechanisms that drastically minimize the number of URLs
that must be verified with the dynamic analysis system. Sec-
ond, we must address the fact that many of malicious URLs
are short-lived. For instance, fast-flux networks change their
domain name system (DNS) records rapidly to evade being
blacklisted [3]. Thus, a blacklist-generating system should
be lightweight.

To the best of our knowledge, although several ap-
proaches have proposed mechanisms to generate URL
blacklists, none has addressed the above-mentioned two is-
sues directly and simultaneously. We aim to construct a
lightweight framework called the automatic blacklist gener-
ator (AutoBLG). AutoBLG discovers new malicious URLs
from web space automatically. The key idea of AutoBLG
is expanding the search space of web pages while reducing
the number of URLs to be analyzed by applying several pre-
filters to accelerate the process of generating a blacklist.

AutoBLG comprises three primary primitives: URL
expansion, URL filtration, and URL verification. Each
primitive combines several techniques to achieve its func-
tions. Through extensive analysis using a high-performance
web client honeypot, we demonstrate that AutoBLG suc-
cessfully extracts new and previously unknown drive-by-
download URLs in a lightweight manner.

The main contributions of this paper are summarized
as follows:

• We developed a novel light-weight system, called Au-
toBLG that can discover new, previously unknown ma-
licious URLs efficiently.
• Our experiments using various verification systems in-
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cluding web-client honeypot, anti-virus checkers, and
public URL reputation system demonstrated the effec-
tiveness of AutoBLG.

The remainder of this paper is organized as follows.
We review related work in Sect. 2. A high-level overview of
AutoBLG is presented in Sect. 3. The techniques that com-
prise AutoBLG are detailed in Sect. 3.2 (URL expansion),
3.3 (URL filtration), and 3.4 (URL verification). An eval-
uation of the proposed method is given in Sect. 4. Finally,
discussions and conclusions are presented in Sects. 5 and 6,
respectively.

2. Related Work

Many malicious URL detection methods have been pro-
posed in recent years. Such methods can be classified into
two categories depending on whether machine learning is
used. In this section, we review related work from these two
categories.
Machine learning-based approaches

All studies mentioned below have used various types
of supervised machine learning to detect malicious URLs.
We describe the features and supervised machine learning
algorithms proposed in these studies.

Choi et al. [4] adopted six groups of discriminative fea-
tures: lexicon, link popularity, webpage content, DNS, DNS
fluxiness, and network traffic. The classifiers proposed by
Ma et al. [5] were based on only URL strings and host infor-
mation features; however, they evaluated the performance
of multiple classifiers. They determined that a logistic re-
gression classifier is optimal for malicious URL detection
in terms of learning time and false-positive rate. Eshete et
al. [6] constructed multiple classifiers that contain features
such as URL strings and web content. They also evaluated
the performance of multiple classifiers. Their experimental
results show that a random tree classifier achieved the high-
est accuracy. Xu et al. [7] extracted 124 features from the
application and network layers. They attempted to select
these features using principal component analysis, correla-
tion feature selection, and Ranker search method to deter-
mine whether the use of only a few features is as powerful
as using all features and to determine the features that are
more indicative of malicious websites. Canali et al. de-
veloped a perfilter called Prophiler [8] that can reduce the
load of costly dynamic analysis tools by quickly discarding
likely benign URLs. They considered features from HTML
content, JavaScript code, and URL strings. By experiment-
ing with numerous standard models, they selected J48 as a
suitable classifier. Chiba et al. [9] leveraged IP addresses as
a primary feature to discriminate malicious traffic from le-
gitimate traffic. Their assumption was that IP addresses are
more stable than other features mentioned above. Note that
the classifiers adopted in the above-mentioned methods in-
volve batch processing. Ma et al. [10] proposed an online
classifier method that can update a classifier in real time to
address the diversity of big data.

As all these previous studies used supervised machine
learning, they constructed classifiers with training data pro-
vided in advance. To achieve high accuracy, they prepared a
large amount of “ground truth” training data; however, cre-
ating such data was a costly process. Moreover, existing
malicious URLs in URL blacklists are short lived and can-
not be used to obtain more information. The advantage of
our proposed method is that malicious URLs are identified
using Bayesian sets, which require little training data, as a
search algorithm.
Non-machine learning approaches

Invernizzi et al. [11] developed EvilSeed; it can more
efficiently search the web for URLs that are likely malicious.
Unlike other previous studies, Invernizzi et al. leveraged
search engines such as Google, Bing, and Yacy to find ma-
licious URLs from vast web space. They used malicious
URLs detected by Google’s Safe Browsing Blacklist and
Wepawet as seed URLs. They extracted features from these
seed URLs to implement five gadgets: links, content dorks,
search engine optimization, domain registration, and DNS
queries. Most of the gadgets were used to collect new un-
known URLs from web space using search engine queries.
However, EvilSeed cannot find malicious URLs that are not
indexed by a search engine. Our proposed approach lever-
ages a passive DNS database to search malicious URLs from
web space. Thus, even if malicious URLs are not indexed
by a search engine, we can find them as long as they are
accessed by web users at least once.

Akiyama et al. [12] proposed a method that aim to dis-
cover new malicious URLs in the neighborhood of a exist-
ing malicious URL by using a search engine. The seeds fed
to the search engine was different from Invernizzi et al.’s
work [11]. They created seeds by changing the structure of
existing malicious URLs’ path. So their system was able to
find new malicious URLs with a variety of different paths. In
contrast, our work is designed to expand URL search space
by collecting different domains associated with a given IP
address.

3. AutoBLG Framework

This section presents the architecture of the AutoBLG
framework. The aim of the AutoBLG framework is to im-
prove the effectiveness of URL blacklists by collecting new
malicious URLs based on the known ones. We first present
high-level overview of the AutoBLG framework. Next, we
present three core components, URL expansion, URL filtra-
tion, and URL verification.

3.1 High-Level Overview

Here, we present the high-level overview of the AutoBLG
framework. To discover new malicious URLs efficiently, we
have designed and implemented AutoBLG with three com-
ponents: URL expansion, URL filtration, and malicious-
ness verification (see Fig. 1). In the URL expansion stage,
we leverage the internet protocol (IP) addresses of mali-
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Fig. 1 Overview of the AutoBLG system.

cious URLs to gather unknown URLs. Malicious URLs
are quickly made unavailable if the attacker determines that
their URLs have been blacklisted; however, in most cases,
the IP addresses are still open to communication. There-
fore, we focus on the network properties of malicious URLs,
which should be more stable than the malicious URLs them-
selves. In fact, this strategy enabled us to gather new mali-
cious URLs that were not reachable from the original URLs
through the links of Web. Next, through URL filtration
extracts likely malicious URLs from new unknown URLs
as a statistical filter. As the statistical filter, we adopt the
Bayesian sets algorithm as we shall show in short. Finally,
maliciousness of extracted URLs are verified by using sev-
eral systems including a high-performance web client hon-
eypot, anti-virus checkers, and public URL reputation sys-
tem. We have summarized both the new methodologies in
our AutoBLG framework. First, we proposed a new URL
expansion method that is able to gather malicious URLs
that were not reachable through the web links which were
adopted to search for new malicious URLs in the previous
work. Second, with regard to URL filtration, we have im-
plemented a high performance filter by using existing algo-
rithms (Bayesian sets) that find similar items based on user-
defined queries to improve the efficiency of URL verifica-
tion. Third, we have developed three new features that have
not been applied by previous papers on feature extraction.

3.2 URL Expansion

To determine malicious URLs with an existing given URL
blacklist, we must obtain a set of unknown URLs that con-
tains malicious URLs as many as possible. First, we lever-
age a passive DNS database to transform existing mali-
cious URLs to a set of unknown fully qualified domain
names (FQDN). Second, we employ a search engine and
web crawler to expand FQDNs to URLs with paths. We de-
tail each component of URL expansion as follows.

3.2.1 Pre-Processing

The input of the proposed system is a URL blacklist
constructed and maintained by a client honeypot Mari-
onette [13] and the sandbox BotnetWatcher [14] , which can
analyze online malware while preventing infection to other
hosts. Our data-gathering period was from August 02, 2011
to October 01, 2014. Our research has focused on the IP
addresses of existing malicious URLs; thus, we extract ef-
fective IP addresses from URL blacklists. First, we obtain
different IP addresses from a URL blacklist. We then check
whether the port 80 (HTTP communication) of IP addresses
is available using a tool such as Hping3 [15] or ZMap [16].

3.2.2 Passive DNS Database

To further enhance the information of the given set of IP ad-
dresses, we leverage the passive DNS database [17]. For a
given IP address, the passive DNS database returns a set of
FQDNs that are/were associated with. Note that this process
is different from the reverse DNS lookups. For instance, If
many FQDNs are associated with a single IP address, we
cannot extract these FQDNs through reverse lookups. How-
ever, the passive DNS database enables us to extract all the
present and past associations of FQDNs and IP addresses,
through the large-scale monitoring of DNS cache servers
that accomodate many users of several commercial ISPs.
Thus, the output of the database is a list of FQDNs that can
be considered as the “neighborhood” of existing malicious
URLs in terms of IP addresses, which are often stable due
to the existence of rogue hosting companies. In order to
confirm whether these FQDNs are still in service of DNS,
we use Unbound [18] as a local DNS resolver to accomplish
such DNS lookups parallelly.

Even if we obtain a list of FQDNs, it is not sufficient
because an attacker will likely place malicious webpages
deep in the directory structure of a server or in the root di-
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rectory with a name other than “index.html.” To further lo-
cate malicious webpages with URLs of deep paths, FQDNs
should be expanded to URLs with paths. As we shall show
in short, search engines and web crawler are used to accom-
plish this task.

3.2.3 Search Engine

To search URLs that are associated with a given set of
FQDNs, we made use of search APIs of several commer-
cial search engines. We used site search using the technique
such as adding the string “site:” in front of the FQDNs
to create search queries, e.g., “site:example.com”. For a
given query, we used the top 50 responses, which we em-
pirically determined as follows. First, it is likely that search
engines dispose malicious URLs in the top 20 search re-
sults. In addition, attackers may apply cloaking technol-
ogy to their malicious URLs to evade detection by a hon-
eypot. Thus, there may be fewer malicious URLs in the
top 20 search results. However, since adversaries may want
a malicious URL to be reachable from victims, they may
put such URLs in a place that are discoverable by search
engines. Therefore, we obtain the top 50 search results to
increase the toxicity of our data in URL expansion. Com-
monly, search results contain various URLs used to down-
load specific file types, such as PDF, SWF, and DOC files.
AutoBLG is designed to find new and previously unknown
drive-by-download URLs; therefore, we delete such file-
related URLs from the search results before submitting data
to the web crawler.

3.2.4 Web Crawler

We adopt Apache Nutch [19] as the web crawler and
MySQL [20] as the database. Two tasks are assigned to the
web crawler. The first expands FQDNs obtained from the
passive DNS database to URLs with paths to complement
the search engine. Unlike a search engine, a web crawler
can extract hyperlinks from HTML content. These hyper-
links are probably not indexed by a search engine. The other
task crawls HTML content and stores it to a database for fea-
ture extraction. The seeds for crawling are FQDNs obtained
from the passive DNS database and URLs returned by the
search engine. The output of URL expansion is URLs with
HTML content, which are then used to extract HTML fea-
tures.

3.3 URL Filtration

To further reduce the amount of obtained URLs, we lever-
age a machine-learning-based approach. We aim to consider
URLs that have characteristics similar to the existing mali-
cious URLs. This filtration enables us to drastically reduce
the amount of URLs to be verified. To this end, we adopt
Bayesian sets algorithm that finds similar items based on
user-defined queries, which specify a set of items that have
similar features; e.g., URLs that used the same exploit kit. In

the sections below, we first present an overview of Bayesian
sets. Next, we describe how we extract features from URLs
for applying the Bayesian sets algorithm to our problem.

3.3.1 Bayesian Sets

Inspired by Google Sets [21], Ghahramani et al. developed
a search algorithm called Bayesian Sets [22]. Google Sets†
is a useful service that provides a very small set of queries
by the user and will output other items with high relevance
to these queries from web data. For example, given a set
of queries by a user: “Toyota,” “Nissan,” “Honda,” Google
Sets will output top items such as “BMW,” “Ford,” “Audi,”
“Mitsubishi,” “Mazda,” “Volkswagen” ranked by relevance
to the queries.

Ghahramani et al. formulated the input and output of
Google Sets as clustering on demand. More precisely, the
queries given by a user can be considered as the subset of
some unknown cluster with common features. The output
of this algorithm is to complete such a cluster by elements
that are highly relevant to queries. Interestingly, the user can
form any cluster using different query patterns. We present
additional details of the Bayesian sets algorithm as follows.

Let D be an entire set of URL, x ∈ D be an element
belong to this set. The user provides relatively small subset
of URL Q ⊂ D as query.

Under the condition of query set Q given by the user,
the following score formula S is created as metrics of mea-
suring the relevance between Q and x.

S (x; Q) =
P(x,Q)

P(x)P(Q)
=

P(x|Q)
P(x)

Bayesian Sets Algorithm computes each x ∈ D’s score using
Q and then outputs x in the descending order of score.

Let xi = {xi1, . . . , xim} be i-th URL’s feature vector.
where m is the number of feature in each item.

The elements of feature vector are xi j ∈ {0, 1} (1 ≤
j ≤ m) binary variable. After modeling by paramter θ j of
Bernoulli distribution:

P(xi j|θ j) = θ
xi j

j (1 − θ j)
1−xi j .

Score can be computed as follows.

S (xi; Q) =
P(xi|Q)
P(xi)

=

∫
P(xi|θ)P(θ|Q)dθ∫
P(xi|θ)P(θ)dθ

The conjugate prior for the parameter θ of a Bernoulli dis-
tribution is the Beta distribution B(α, β), so finally score for-
mula can be dramatically simplified to the following one us-
ing hyperparameters α, β [22].

S (xi; Q) =
P(xi|Q, α, β)

P(xi|α, β)
†The service of Google Sets including Google Sheets is un-

available since August 2014.
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=

m∏
j=1

α j + β j

α j + β j + N

(
α̃ j

α j

)xi j
(
β̃ j

β j

)1−xi j

where N = |Q| and

α̃ j = α j +
∑
xi∈Q

xi j

β̃ j = β j +
∑
xi∈Q

(1 − xi j)

It is convenient to compute score in the form of loga-
rithm log S (xi; Q). Hyperparameters α, β are defined expe-
riencely depending on datasets. For example, they utilized
entire data xi j’s average,

mj =
∑
xi∈D

xi j

|D|
to define α j = cmj, β j = c(1 − mj). Because the average
of the Beta distribution which is α j/(α j + β j) is in accor-
dance with mj. Our work [22] adopted customary value of
paramter c = 2.

Bayesian Sets Algorithm computes α, β using an entire
set of URL D beforehand, and then computes α̃, β̃ according
to query set Q, finally computes score by means of α, β, α̃, β̃.

3.3.2 Feature Extraction

With regard to feature extraction, we focus on using static
features to implement lightweight URL filtration; thus, we
only extract 19 static features from landing page contents,
including HTML tags and JavaScript codes, in reference of
Canali et al.’s HTML and JavaScript features [8]. We will
increase the number of features by acquiring JavaScript files
that are loaded by landing page in future.

Because Bayesian sets algorithm assumes the elements
of feature vector as Bernoulli distribution, we binarized the
feature vector considering 0 as the threshold value. We set
the element whose value is larger than threshold value to 1.
Furthermore, to select effective features for data collected
by our system, we computed the odds ratio of each feature
and then eliminated the feature whose ratio was less than
1. Finally, we selected 10 effective features: the number of
iframe and frame tags, the number of hidden elements, the
number of meta refresh tags, the number of elements with a
small area, the number of out-of-place elements, the number
of embed and object tags, the presence of unescape behav-
ior, the number of suspicious words in the script, the number
of setTimeout functions, and the number of URLs with a dif-
ferent domain. The features that have some differences from
previous studies are as follows.
The number of elements with a small area: redirection
behavior in landing page by setting very small values of the
height and width of redirection tags. A previous study [8]
proposed a small area feature that the areas of div, iframe,
and object tags are smaller than 30 square pixels or each side
of the three tags is smaller than 2 pixels. Our study not only
uses the previous study’s definition about this feature but

also considers frameset tags whose attribute value (border,
frameborder, framespacing) is equivalent to 0.
The number of suspicious word in the script’s content:
Through studying existing malicious URL content, we find
that sometimes attackers assign special names such as shell-
code or shcode to variables in the script; we mark such vari-
ables as suspicious words.
The number of URLs with a different domain: A previ-
ous study [8] counts the number of URLs located in spec-
ified tags such as script, iframe, embed, form, and object.
Our study only considers URLs whose domains are differ-
ent from landing page URL’s domain because the landing
page URL’s domain can more possibly be a redirection to a
malicious website.

3.4 URL Verification

We use three tools to verify the URLs extracted by URL
filtration: the Marionette web client honeypot [13] , an-
tivirus software, and VirusTotal [23]. The Marionette client
can trace the redirection generated by drive-by-download at-
tacks and identify the malware distribution URL. If an ex-
ecutable file is downloaded from the malware distribution
URL, the Marionette web client honeypot will identify such
URLs as malicious. Antivirus software analyzes HTML and
JavaScript content statically. For example, if there is a hid-
den attribute in an iframe tag, the antivirus software will
identify such content as malicious. VirusTotal is a free URL
scanning service. Users submit suspicious URLs to Virus-
Total website. VirusTotal compares the URLs submitted by
users to URL blacklists and cyber-attack detection systems
and then forwards the result of the comparison to users.

4. Evaluation

In this section, we evaluate the performance of the AutoBLG
framework and present the results of the evaluation.

4.1 Preliminary Experiment

The preliminary experiment aimed to select optimal query
patterns for URL filtration. An appropriate query pattern
is crucial to the effective performance of a URL filtration
algorithm (Bayesian sets). To this end, we used the ground-
truth data so that we can confirm the accuracy of the ap-
proach. We collected datasets using the proposed system’s
URL expansion component and verified the datasets using
the Marionette honeypot as the ground truth. The datasets
for the preliminary experiment contained 10,000 benign
URLs, which were verified as benign with our manual in-
spection, and six malicious URLs, which were verified as
landing pages of the drive-by download attack using Mar-
ionette. Note that both benign and malicious URLs were
generated from the URL expansion of AutoBLG.

We compiled two query patterns from the observa-
tions of an existing blacklist to determine if the Bayesian
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Fig. 2 The malicious hit ratio of queries

sets algorithm can extract the malicious URLs from the be-
nign URLs. Each query pattern includes |Q| = N = 3
queries; i.e., six URLs were broadly classified into two
groups.The queries were determined with a manual inspec-
tion that whether there are or not common features in each
query’s landing pages. To narrow down the range of manual
inspection, we leveraged cluster algorithm such as Kmeans
and DBSCAN that can divide existing malicious URLs into
several clusters based on the similarity of HTML content.
We can achieve low frequency of creating query patterns,
because our query patterns are depending on HTML con-
tent’s feature which is more stable than the feature of ex-
ploit URL. We adopted all the effective features of HTML
contents so that we need to create new query patterns only
when new trick about the redirection to exploit URL is used
by adversary. We tested several combinations of possible
query patterns and confirmed that the succeeding results are
not sensitive. Concrete examples of query patterns are de-
scribed in the Appendix section.

Figure 2 presents the number of malicious URLs in the
Top-K URLs extracted by the Bayesian Sets given the two
queries mentioned above. The two query patterns identify
different three malicious URLs in top 300 scores respec-
tively and extract all the six malicious URLs totally; i.e.,
all the six malicious URLs were in the 2 × 300 = 600 of
extracted URLs. The result demonstrates that the filtration
mechanism with the Bayesian Sets successfully filtered out
94% of benign URLs without missing any malicious URLs.

All the URLs extracted by the Bayesian sets algorithm
will be forwarded to the verification systems including the
Marionette web client honeypot. Although the Marionette
honeypot can achieve low rate of false-positive results, we
need to avoid verifying benign URLs as much as possible
because the dynamic analysis with web-client honeypot is
time-consuming task. Based on the results of preliminary
analysis, we considered the top 300 scores as the thresh-
old for URL filtration. The query patterns and threshold de-
termined in the preliminary experiment were utilized in the
formal experiment.

Table 1 The data flow of AutoBLG

Step Items Number Time

URLs(blacklist) 26 0
IP addresses(seed) 15 30s

URL Expansion FQDNs(Passive DNS database) 33,041 12m
URLs(Search Engine) 42,736 3h
URLs(Web crawler) 59,394 1.5h
query patterns(Bayesian Sets) 2

URL Filtration Threshold(Bayesian Sets) 300 <2s
candidate URLs(Bayesian Sets) 600
Web Client Honeypot 600

URL Verification Antivirus Software 600 1h
VirusTotal 600

Table 2 The result of AutoBLG

Web Client Honeypot Antivirus Software VirusTotal

Query Pattern 1 4 21 83
Query Pattern 2 3 2 16
Total 7 23 99

4.2 Performance of the AutoBLG Framework

The data flow of the proposed system is shown in Table 1.
First, from an existing URL blacklist, 26 most recent URLs,
which were landing pages of drive-by download attacks,
were selected. These URLs were then forwarded to the
URL Expansion component for pre-processing. In the pre-
processing step, the 26 URLs were reduced to 15 effective
IP addresses. We obtained 33,041 FQDNs from the pas-
sive DNS database using the 15 IP addresses as the query.
Next, we leveraged a search engine and web crawler to ex-
pand the FQDNs to URLs with paths. First, using a search
engine, we queried 33,041 FQDNs to acquire 42,736 URLs
with paths. Then, we crawled 33,041 FQDNs and 42,736
URLs with paths to identify the HTML content of the land-
ing page. Finally, we expanded the original 26 URLs to
59,394 URLs with landing page HTML content using the
URL expansion component. With the URL filtration com-
ponent, we extracted a static feature from the HTML con-
tent and searched for malicious URLs in the 59,394 URLs
using the two query patterns used in the preliminary exper-
iment. Only the top 300 URLs were submitted to the three
proposed tools in the malicious verification step. Therefore,
the proposed filter reduced 99% of the URLs expanded in
URL expansion.

In the table, we also present the amount of time needed
for each step. Overall, AutoBLG spent approximately 6
hours processing all the data mentioned above. Because we
assume that creation of blacklist is daily basis, the amount of
time processing is affordable for actual operation. Note that
the filtration mechanism of AutoBLG was quite effective
in compressing the processing time. If we verified all the
59,394 URLs extracted, it could take more than 100 hours
to complete our task. Thus, AutoBLG enables us to acceler-
ate the process of generating blacklist URLs.

Table 2 shows the number of malicious URLs verified
by the three proposed tools. We do not count duplicate
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Table 3 Comparsion with previous work

System URLs expanded URLs analyzed Malicious URLs Noise filtration Toxicity

Crawler-based [8] 3,057,697 437,251 604 85.7% 0.14%
Evilseed [11] 237,259 226,140 3,036 5% 1.34%
AutoBLG 59,394 600 7 99% 1.17%

Fig. 3 The correlation of three verification tools’ result

URLs from the two query pattern results; however, dupli-
cate URLs are found in the results for each verification tool.
Because some URLs are identified by multiple tools. After
eliminating duplications, of the 600 of extracted URLs, 106
URLs were detected as malicious or suspicious as follows.
Seven URLs detected by the web client honeypot are defi-
nitely malicious because it contained redirecting to the ex-
ploit web pages. 23 URLs detected by the multiple antivirus
softwares are highly suspicious because they contained sev-
eral HTTP objects that were detected by the antivirus check-
ers; e.g., malicioius JavaScript or executable malware. 99
URLs detected by VirusTotal are also suspicious URLs that
need further manual inspection.

Overall, the AutoBLG framework successfully discov-
ered seven malicious URLs, 23 highly suspicious URLs, and
99 suspicious URLs. Of the discovered 106 URLs, seven
URLs are completely new URLs that have not been listed
in the VirusTotal, which is built on top of outcomes of sev-
eral commercial anti-virus products (see Fig. 3). Thus, Au-
toBLG was able to find unknown malicious URLs. We also
found that most of the malicious URLs identified by the
web-client honeypot were attributed to the ones exploiting
a relatively new vulnerability (i.e., MS13-037) compared
with the malicious URLs used to extract the effective IP
addresses. This result clearly supports our assumption that
IP addresses used for distributing malicious web pages are
more stable than URLs, which actually carry malicious con-
tent.

Figure 3 shows the correlation of three verification
tools’ result. As we mentioned above, seven malicious
URLs found by the honeypot are not included in VirusTo-
tal’s blacklist. This proves that the proposed method can
further enhance VirusTotal’s blacklist, which is widely used
as a popular URL verification service. In addition, 19 of
23 malicious URLs detected by multiple antivirus programs
were not identified by the honeypot. The web client hon-
eypot likely did not detect some malicious URLs for sev-
eral reasons, e.g., installation of particular browser plug-ins

etc. We will discuss the limitation of the existing web-client
honeypot approaches in Sect. 5.

In summary, the experiments demonstrate that Auto-
BLG is a light-weight blacklist generating system and it can
discover new and previously unknown drive-by-download
URLs and other suspicious URLs that need for further anal-
ysis.

4.3 Comparsion with Previous Work

The previous work’s system is not available as a service for
public use, so it is difficult to leverage the previous work’s
system to implement an actual comparison test. Therefore,
we have referred to the result presented in the previous pa-
per and compared it with AutoBLG from the viewpoints of
noise filtration and toxicity. Noise filtration is the fraction
of benign URLs reduced from expansion URLs that are col-
lected from web space initially. A higher noise filtration
indicates that the verified tools in the final stage only need
to inspect few suspicious URLs. Toxicity is the fraction of
malicious URLs submitted to verified tools. As shown in Ta-
ble 3, previous papers (crawler-based [8] and EvilSeed sys-
tems [11]) expand URLs by using web crawlers and search
engines, respectively. Our AutoBLG framework’s URLs ex-
pansion is based on a Passive DNS database. In compar-
ison with the crawler-based system, both our framework’s
noise filtration of 99% and toxicity of 1.17% are higher than
those of crawler-based systems (85.7% and 0.14%, respec-
tively). Compared with the EvilSeed system, our framework
achieved much higher noise filtration but a slightly lower
toxicity (5% and 1.34%, respectively). There is a tradeoff
between noise filtration and toxicity. To improve the effi-
ciency of URL verification, we have maximized the noise
filtration and optimized the toxicity, which is a little lower
than that of the previous work. It proves that our pre-filter
adopted by AutoBLG improves the performance of noise
filtration without sacrificing the toxicity.

5. Discussion

In this section, we discuss some limitations of AutoBLG and
future research directions derived from them.

5.1 URL Expansion

5.1.1 Search Engine

As mentioned in Sect. 3.2.3, we adopt top-50 URLs from
search results. Our experiments shows approximately half
of malicious URLs detected by AutoBLG are originated
from search engine’s result. Thus, web search engine played
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a crucial role in collecting malicious URLs. While we em-
pirically derived that top-50 search results works for collect-
ing malicious URLs, we still have a room to improve this
criteria; e.g, top-100 search results or bottom-100 search re-
sults. Main challenge here is to accelerate the process of
web search. As shown in Table 1, the search engine step
was the dominant factor for entire processing time. We will
address the issue of accelerating web search engine process
in our future work.

5.1.2 Web Crawler

It is known that some malicious web sites make use
of “cloaking techniques” to evade the detection of anti-
malware systems [5]. Although we have not discovered the
existence of cloaking from our experiments, it is possible
that our system could suffer from the cloaking mechanism
in collecting malicious URLs. As a simple solution to the
problem, we configured the user-agent of our web crawler
as Internet explorer 8. For our future work, we will de-
velop more sophisticated tools that can emulate the behav-
ior of browsers/plug-ins, which are targeted from malicious
URLs.

5.2 Query Patterns

Using the Bayesian Sets algorithm, a set of malicious URLs
that is similar to query patterns was extracted successfully
from a large number of unknown URLs. A good feature
of adopting the Bayesian Sets algorithm is that queries are
flexible and customizable based on user demand. If we find
a new pattern, we can reflect the pattern to compile a new
query. In our experiments, we tested only the search capa-
bility of two different query patterns. Although AutoBLG
may miss several malicious URLs that are completely dif-
ferent to the query patterns provided by users, finding more
new malicious URLs is possible by increasing the number
of query patterns. Because Bayesian sets is a fast algorithm
that can output each query pattern’s result in less than one
second, increasing the number of query patterns will not af-
fect the performance of AutoBLG.

5.3 URL Verification

In URL verification, we used three tools to assess suspi-
cious URLs detected by the Bayesian sets algorithm. Mari-
onette [13] is a high-interaction honeypot that analyzes sus-
picious URLs dynamically in a virtual machine’s browser.
Generally, only one version of a browser or plug-in is ap-
plied to the high-interaction honeypot to assure efficient
analysis. We configured Marionette with Internet Explorer
6 and Internet Explorer 8, which are targeted by most ma-
licious URLs. Marionette suffers from false negatives be-
cause of browser and plug-in version limitations. To im-
prove the effectiveness of URL verification, we can in-
crease the diversity of browsers and plug-ins or adopt a low-
interaction honeypot that can emulate different browsers to

complement the high-interaction honeypot.

5.4 Online Operation

Currently, the process of AutoBLG is not fully online due to
the fact that two data collection processes, search engine and
web crawler, are not configured to work online. Pipelining
these processes will enable AutoBLG system work online.
Such online operation will enable us to generate and dis-
tribute the new blacklists in real time. We will also leave the
issue of pipelining URL expansion step for our future work.

6. Conclusion

In this paper, we have proposed the AutoBLG frame-
work. Our experiments demonstrated that AutoBLG is a
light-weight blacklist generating system and it can discover
new and previously unknown drive-by-download URLs and
other suspicious URLs that need for further analysis. No-
tably, it reduced number of URLs to be investigated with
the dynamic analysis systems by 99% (reduced from 60K
to 600), while successfully finding new URLs that have not
been listed in the widely used popular URL reputation sys-
tem. There are many vendors or service providers that de-
ploy URL blacklists in the real world. For example, security
vendors such as Symantec and Trend Micro have built their
own URL blacklist database to prevent users from access-
ing malicious URLs. Public services such as URLBlack-
list.com provide URL blacklists for users and researchers to
download. A company’s operations center can also create
a local URL blacklist for their own private network secu-
rity. The potential application of our AutoBLG framework
is that vendors or service providers can make any existing
URL blacklist they possess more effective. Vendors input
their URL blacklist into the AutoBLG framework, which
then quickly expands it with new malicious URLs. There
are several types of malicious URL throughout the Internet
such as drive-by-download URLs and phishing URLs. All
these types leverage the URL as a trigger method, so it is
possible for them to have similar characteristics. For ex-
ample, attackers may change the URL’s domain or path to
evade detection by URL-phishing blacklists as a counter-
measure to drive-by-download URL blacklists. In addition,
the output of our AutoBLG framework (URL blacklist) can
be applied not as only client-side protection, such as browser
plugins, but also as a middlebox, such as a web proxy. In fu-
ture, we plan to adopt other types of URL blacklists, such
as phishing blacklists, as input and evaluate whether the
proposed framework can determine new and previously un-
known phishing URLs.
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Appendix:

We present examples of patterns for the queries and detected
malicious URLs. Some parts such as hostnames are masked
for security reasons. Figures A· 1 and A· 2 show a part of
HTML content of two query URLs for pattern 1. Clearly, we
can see that some obfuscation JavaScript code is included
in these cases. Together with other features, we compiled
these URLs as a pattern 1 queries. As shown in Fig. A· 3,
the HTML content of the detected malicious URL looks
quite similar to the queries used above. Similarly, Figs. A· 4
and A· 5 show a part of HTML content of two query URLs
for pattern 2. Here, we can see that some intrinsic embed
and object tags are included, which also reflect a typical

pattern of landing pages used for the drive-by-download at-
tacks. Again, as shown in Fig. A· 6, the detected malicious
URL has HTML content that look similar to those for the
two queries.

Fig. A· 1 HTML content of query URL 1 (pattern 1)

Fig. A· 2 HTML content of query URL 2 (pattern 1)

Fig. A· 3 HTML content of detected URL (pattern 1)
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Fig. A· 4 HTML content of query URL 1 (pattern 2)

Fig. A· 5 HTML content of query URL 2 (pattern 2)

Fig. A· 6 HTML content of detected URL (pattern 2)
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