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A New Scheme of Blockcipher Hash∗,∗∗

Rashed MAZUMDER†a), Nonmember and Atsuko MIYAJI†,††,†††b), Member

SUMMARY A cryptographic hash is an important tool in the area of
a modern cryptography. It comprises a compression function, where the
compression function can be built by a scratch or blockcipher. There
are some familiar schemes of blockcipher compression function such as
Weimar, Hirose, Tandem, Abreast, Nandi, ISA-09. Interestingly, the se-
curity proof of all the mentioned schemes are based on the ideal cipher
model (ICM), which depends on ideal environment. Therefore, it is de-
sired to use such a proof technique model, which is close to the real world
such as weak cipher model (WCM). Hence, we proposed an (n, 2n) block-
cipher compression function, which is secure under the ideal cipher model,
weak cipher model and extended weak cipher model (ext.WCM). Addi-
tionally, the majority of the existing schemes need multiple key schedules,
where the proposed scheme and the Hirose-DM follow single key schedul-
ing property. The efficiency-rate of our scheme is r = 1/2. Moreover, the
number of blockcipher call of this scheme is 2 and it runs in parallel.
key words: cryptographic hash, blockcipher, ideal cipher model, weak
cipher model, collision and preimage resistance

1. Introduction

A cryptographic hash is defined as a module that takes
an arbitrary length of data and produces a fixed size of
data [1]. In the modern cryptography, a cryptographic hash
has enormous applications. It is widely used in the digi-
tal signatures, message authentication, password verifica-
tion and file/data identifier [1]–[4], [21], [24]. It consists
of a compression function, where the blockcipher or scratch
can be used [3], [4], [14]–[16]. Therefore, the blockcipher
compression function is being focused here because of bet-
ter security bound and higher efficiency than that of the
scratch based compression function [5]–[10]. Additionally,
the blockcipher compression function is suitable for encryp-
tion of a constrained device due to direct implementation
of the blockcipher rather than the encryption function [3],
[4], [10]–[12]. There are some well known properties of the
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cryptographic compression function such as collision resis-
tance, preimage resistance, efficiency rate, key scheduling
and number of blockcipher call, where these properties iden-
tify the efficacy and fame of the blockcipher based cryp-
tographic compression function [1]–[3]. Usually, the col-
lision resistance means, it is infeasible to find two inputs
where outputs will collide. However, the efficiency rate is
defined as r = |m|/(n × #E), where |m| = length of message,
n = block-length, #E = number of blockcipher call [3], [4].
If a single key is used for each iteration of encryption, it
is called single key scheduling (KS = 1) [3], [4]. Addition-
ally, it is also needed to evaluate the number of blockcipher
call (#E) for a single message encryption [3], [4]. Gener-
ally, it is desired that r will be close to 1 and the value
of KS and #E will be minimum for any better scheme of
blockcipher compression function. There are two basic clas-
sifications of the blockcipher compression function such
as (n, n) and (n, 2n) blockcipher

(
n = block, key length

)
[1],

[2], [17], [18]. However, the (n, 2n) blockcipher compres-
sion function is suitable in application level because of
higher security bound [21], [23], [24].

Motivation. There are some familiar schemes of (n, 2n)
blockcipher compression function such as Weimar, Hirose,
Abreast, Tandem, Nandi and ISA-09. However, the secu-
rity proof technique of these schemes depend on the ideal
cipher model [3], [4], [15], [16], [23], [24]. Usually, the se-
curity proof of any crypto-system depends on cryptographic
model, where this model is defined on the basis of certain
assumptions, primitives, and environments [17]–[20], [33].
Hence, the security proof of a cryptographic compression
function generally depends on the ideal assumptions, which
is called ICM or Shanon model [17], [18]. As a security
model, the ICM works well and easy to understand. But it
totally depends on the ideal environment, where the adver-
sarial power is limited [19], [20]. For example, the adver-
sary can make only two types of query such as forward

(
E f
)

and backward
(
Eb
)

query for finding collision attack [19],
[20], [22]. Under this tight circumstance, Hirose et. al. [20]
formalized the concept of the weak ideal compression func-
tion to the weak cipher model. However, Liscov point out
the issue of the weak ideal compression function indepen-
dently at first in 2006 [19], where the adversary is allowed
to make total three types of query such as E f , Eb and Ek

(key-disclosure query). Therefore, the adversary of WCM
is stronger than that of the ICM (details in [17], [19], [20]).

Still there is a limitation for the adversary under the
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Table 1 The result of existing blockcipher compression functions

Security Proof
Technique

Scheme name CF KS r ICM WCM ext.
WCM

MR
(This paper), [31]

3n→ 2n 1 1/2
√ √ √

Weimar [3] 3n→ 2n 2 1/2
√

N.Y. N.Y.
Hirose [3], [4] 3n→ 2n 1 1/2

√
N.Y. N.Y.

Abreast [3], [15] 3n→ 2n 2 1/2
√

N.Y. N.Y.
Tandem [3], [16] 3n→ 2n 2 1/2

√
N.Y. N.Y.

Nandi [23] 4n→ 2n 3 2/3
√

N.Y. N.Y.
ISA-09 [24] 4n→ 2n 3 2/3

√
N.Y. N.Y.

CF = Compression function, KS =Key scheduling, Efficiency rate = r
ICM, WCM, ext.WCM = Ideal, Weak, extended weak (cipher model)
N.Y. = Not yet

Table 2

A→allowed

for Game.
Game (G):[
x, x′
] |x � x′∧

H (x) = H (x′)

ICM WCM ext. WCM

Allow,
A → E f /Eb

for G

Allow,
A → E f for G
then,
A → Eb for G
then,
A → Ek for G

Allow,
A → E f /Eb//Ek

for G

WCM model. Though the adversary can make three types
of query but it is only allowed to make a single type of
query under a single instance. For example, the adversary
is allowed to make only forward query for a single game
(Table 2 and Fig. 1). After ending of this game, it will be
allowed for backward query or key-disclosure query. On the
other hand, the adversary can make two types of query un-
der the ICM but it is allowed for both query under a single
instance (Table 2 and Fig. 1). That’s why, we think to extend
the weak cipher model, where the adversary can make three
types of query for any game under a single instance like the
ICM (Table 2 and Fig. 1).

In the perspective of the efficiency, the efficiency rate of
Hirose-DM is 1/2 and it follows single key scheduling (Ta-
ble 1). However, the collision security bound of Hirose-DM
is less than that of the Weimar-DM [3], [4]. On the con-
trary, the Weimar-DM needs multiple key scheduling (Ta-
ble 1). Usually, the number of gates will be increased if any
scheme needs multiple key scheduling (details in [10], [31]).
The efficiency rate of the Nandi and ISA-09 are 2/3 but the
collision security bound are less than that of the Weimar
and Hirose-DM [3], [4]. Additionally, the Nandi and ISA-
09 need multiple key scheduling (KS = 3). Therefore, there
is a scope for a new scheme which can provide higher col-
lision security bound under the ICM, WCM and ext.WCM
model. Moreover, the new scheme will satisfy single key
scheduling property and higher efficiency rate.

Our Contribution: According to the motivational sec-
tion, we can claim that our proposed scheme is secure under
the three types of security model. Secondly, it follows sin-
gle key scheduling and it’s number of blockcipher call is 2.
Additionally, the efficiency rate of proposed scheme is 1/2.

In the perspective of security bound, we use three kinds
of security model such as the ICM, WCM and ext.WCM.
The ICM depends on the ideal environment, which is far

Fig. 1 Security proof model

from the real world [34]. Usually, the adversarial behaviour
is limited under the ideal environment. Therefore, though
the security bound is good under the ICM but it doesn’t re-
flect the real world scenario [30], [34]. For example, the
adversary can make query for plaintext and ciphertext un-
der the ICM. Hence, there is a gap for key-disclosure query,
which is being injected into the WCM [17]–[20]. As a re-
sult, the WCM is close to the real world, where the adver-
sary gets better freedom than that of the ICM. That’s why,
it is desire to satisfy the security of blockcipher compres-
sion function under the WCM. However, the WCM is bet-
ter than the ICM, but still it is not close enough to the real
world. According to the definition of the WCM, we find that
though the adversary can make three types of query but it is
restricted for only one type of query under a single instance.
As an example, the adversary can make only plaintext query
for a single instance. Hence, it can start for the ciphertext
or key-disclosure query process after ending the plaintext
query process. That’s why, we proposed here the ext.WCM,
where the adversary can make any type of query under a
single instance. Therefore, the ext.WCM goes more close to
the real world than that of the WCM.

2. Preliminaries

2.1 Ideal Cipher Model (ICM)

The ideal cipher oracle is denoted by E, where it has n-bit
block and k-bit key. If K,M,C is a set of key, message and
ciphertext space, then Ek (·) |k ∈ K is an operation of a ran-
dom permutation. The Blockk

n is a set of all blockciphers
from where E is selected randomly. Under the ICM, two
types of query are available to an adversary, where the ad-
versary A can ask either E f (forward query) or Eb (back-
ward query) to the blockcipher oracle under a single instance
(Table 2 and Fig. 1). The adversary gets a value of cipher-
text [Ek (m) = c |(k ∈ K,m ∈ M, c ∈ C) ] for the E f and op-
positely it gets plaintext for the Eb. It is assumed that the
adversary never makes a duplicate query [17], [18], [22].

2.2 Weak Cipher Model (WCM)

The weak cipher model [19], [20] is an extension of the
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ICM. The assumption and primitive is more weaker than the
ICM. The adversary can make the query of E f and Eb as
like the ICM. Additionally, a key-disclosure

(
Ek
)

query can
be asked by the adversary, where E (m, c) = k. The WCM
environment also ensures that no duplicate query will be ex-
ecuted. Though the adversary can make three types of query
but it is restricted to only one type of query for a single in-
stance (Table 2 and Fig. 1).

2.3 Extended Weak Cipher Model (ext.WCM)

An extended weak cipher model (ext.WCM) has been in-
troduced in this paper. It follows the basic properties of
the ICM/WCM. It adds a new feature for making the ad-
versary powerful, where the adversary can ask any type of
query for a single instance (Table 2 and Fig. 1). Addition-
ally, the assumptions of the ext.WCM is weaker than the
ICM and WCM. Under the ext.WCM, the adversary gets a
set of message and corresponding encrypted message (ci-
phertext) based on a key. However, the query process is
based on non-adaptive. The blockcipher oracle is defined as
ext.WCMk,m,c (·), where the adversary can ask and gets a set
of key (k), message (m) and ciphertext (c).

2.4 Collision Resistance

It is difficult for an adversary to find a pair of distinct in-
puts, such that the hash output will be same. In notational
form, it can be deduced as H (in1) = H (in2), when in1 � in2[
in1,2 = input, H (·) = Hash output

]
. It is assumed that the

adversarial advantage will be measured by the number of
executed queries from the oracle [3], [16], [27]–[29]. Ad-
ditionally, it is assumed that the adversary doesn’t make
any similar query such as E f

k1
(m1) = c1→×

(
Eb

k1
(c1) = m1

)
,

where c = ciphertext, m = message and k = key.
The compression function of cryptographic hash is de-

fined as F, where the blockcipher (E) is replaced into F.
According to the adversarial point of view, the function of
adversary is to find a collision under the F such as:

funccoll
F (A) =

(x, y,m) , (x′, y′,m′)← AICM,WCM,ext.WCM

if, F (x, y,m) = F (x′, y′,m′)∧ {(x, y,m) � (x′, y′,m′)}
then return 1, else 0

where,
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x, y, x′, y′ = chaining value,
m,m′ = message,
ICM,WCM,ext.WCM= oracle model

⎤⎥⎥⎥⎥⎥⎥⎥⎦

IfA finds a collision under the F then funccoll
F (A) returns 1.

Let, Advcoll
F (A) is probability of the function of funccoll

F (A).
Therefore, Advcoll

F (q) = maxA
{
Advcoll

F (A)
}
, where A can

make at most q, (q ≥ 1) pairs of queries [17], [18], [30].

3. Definition of Scheme

The proposed scheme follows the two calls of blockcipher

Fig. 2 Block diagram of the proposed scheme

call, where the key scheduling is single. It satisfies the class
of (n, 2n) blockcipher because of key size is double of the
block-length. It runs under the Matyas Meyer Oseas mode
(MMO). The definition and block diagram of this scheme
are notified in Definition 1 and Fig. 2.

Definition 1. Let E ∈ Blockk
n be a blockcipher, where

k = key length and n = block-length. The HNEW is a hash
that is constructed by F. Let F = {0, 1}n×{0, 1}2n → {0, 1}2n

be a blockcipher (E) based compression function. In this
scheme, two independent blockciphers will be used for a
single iteration such as Eupper

key and Elower
key . Therefore, the

final output of HNEW will be:

HNEW (xl−1, yl−1,ml) = xl, yl

such that,
xl = z1

l ⊕ ml, yl = z2
l ⊕ m̄l

where,
z1

l ← Eupper
x̄l−1 ||ȳl−1

(m) , z2
l ← Elower

x̄l−1 ||ȳl−1
(m̄)

[
xl, yl = chaining value, ml = message, z1

l , z
2
l = output

]

4. Security Proof of Collision Resistance Under the
ICM

An adversary A can make two types of query such as for-
ward query

(
E f
)

and backward query
(
Eb
)

[17], [18], [22].

Under the ICM, a game will be defined as Gamecoll
ICM

(Algorithm 1), where the adversary A will try to find
(x, y,m) and (x′, y′,m′). Therefore, the adversary will win
iff HNEW (x, y,m) = HNEW (x′, y′,m′) where, (x, y,m) �
(x′, y′,m′). Additionally, the Gamecoll

ICM will be categorized
into three sub-games with their tasks into Table 3. Hence,
the adversary A will play through these three subgames
for getting success, where the first subgame stands for dual
queries. Under this subgame, the adversary will try to find
two different queries for a collision. Secondly, the subgame
of subGamecoll

sole,ICM will be responsible for finding a colli-
sion within a single query. Finally, a collision through the
initial chaining values will be followed by the third sub-
game.

Theorem 1: Let HNEW be a two calls of 2n bit key block-
cipher compression function. The task of adversary A is to
find a collision under the compression function F

(
HNEW

)
.

Hence, after q pairs of queries, the advantage of A will be
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Table 3 Branches of Gamecoll
ICM

Branch name Condition

subGamecoll
dual,ICM

(xl, yl,ml) � (xl′ , yl′ ,ml′ )∧
HNEW (xl, yl,ml) = HNEW (xl′ , yl′ ,ml′ )

subGamecoll
sole,ICM

xl = yl, when
HNEW (xl−1, yl−1,ml) = (xl, yl)

subGamecoll
pri,ICM

(xl, yl) = (x0, y0) ,when
HNEW (xl−1, yl−1,ml) = (xl, yl)

bounded by:

AdvICMcoll

HNEW (q) ≤ q2 + q

(2n − 2q)2
+

2q
(2n − 2q)

Proof: We allow an adversary A to ask any relevant
query but assume that A never makes any duplicate query
through E f or Eb. It can ask upto l-th queries, where l ≤ q.

subGamecoll
dual,ICM . The adversary A uses the ICM or-

acle for E f or Eb query. At first, the adversary will check
whether the most recent query made collision with the pre-
vious any queries or not. Let the current iteration is l, where
the outputs are xl, yl. For example, l′|(l′ < l ≤ q) is previ-
ously executed any iteration and the corresponding output
are xl′ , yl′ . If (xl, yl) = (xl′ , yl′ ), a trigger will be defined and
the subGamecoll

dual,ICM will be over. Otherwise, the adversary
Awill store the xl, yl into the query database (Q) and run for
next iteration.

Let the outcome of l′-th iteration are xl′ ←
Eupper

x̄l′−1 ||ȳl′−1
(ml′ ) ⊕ ml′ and yl′ ← Elower

x̄l′−1 ||ȳl′−1
(m̄l′ ) ⊕ m̄l′ . For an

iteration of l |(l′ < l ≤ q) , the output are xl ← Eupper
x̄l−1 ||ȳl−1

(ml)⊕
ml and yl ← Elower

x̄l−1 ||ȳl−1
(m̄l) ⊕ m̄l. If (xl′ , yl′ ) and (xl, yl) col-

lides each other then a trigger will be defined as tricoll
dual,ICM .

However, the xl, yl come from the set size 2n − (2l − 2) and
2n−(2l − 1). Hence, under the trigger of tricoll

dual,ICM the prob-
ability will be l − 1/(2n − (2l − 2))× (2n − (2l − 1)). More
explicitly, under the subGamecoll

dual,ICM through tricoll
dual,ICM , the

following states are responsible for collision:

{(xl = xl′ ) ∧ (xl = yl′ )} ∨ {(yl = yl′ ) ∧ (yl = xl′ )} (1)

where,

xl = Eupper
x̄l−1 ||ȳl−1

(ml) ⊕ ml, xl′ = Eupper
x̄l′−1 ||ȳl′−1

(ml′ ) ⊕ ml′

yl = Elower
x̄l−1 ||ȳl−1

(m̄l) ⊕ m̄l, yl′ = Elower
x̄l′−1 ||ȳl′−1

(m̄l′ ) ⊕ m̄l′

Therefore, the probability of collision under the l-th query
will be Pr

[
Tricoll

dual,ICM

]
= Pr

[
tricoll

2,dual,ICM , · · · , tricoll
q,dual,ICM

]
,

which implies that,

q∑
l=2

Pr[Tricoll
l,dual,ICM] =

q∑
l=2

2(l − 1)
(2n − 2l − 2) (2n − 2l − 1)

≤
q∑

l=2

2(l − 1)

(2n − 2l)2
≤ q2

(2n − 2q)2
(2)

subGamecoll
sole,ICM . The subGamecoll

sole,ICM is responsi-
ble for finding a collision within l-th iteration of query,

where l ≤ q. Assume that, at the point of l-th itera-
tion, the output are xl and yl. Therefore, there is a
chance for creating a collision when xl = yl. If colli-
sion occurs, a trigger

(
tricoll

sole,ICM

)
will be called. There-

fore, the probability of collision under the subgame(
subGamecoll

sole,ICM

)
through tricoll

sole,ICM is Pr
[
Tricoll

sole,ICM

]
=

Pr
[
tricoll

1,sole,ICM , tricoll
2,sole,ICM , . . , tricoll

q,sole,ICM

]
. After q pairs of

queries, it implies that,

q∑
l=1

Pr[Tricoll
l,sole,ICM] =

q∑
l=1

1
(2n − 2l − 2) (2n − 2l − 1)

≤
q∑

l=1

1

(2n − 2l)2
≤ q

(2n − 2q)2
(3)

Algorithm 1
(
Gamecoll

ICM

)
1: Initailization : l = 0, q = 2n, Q : Empty query database
2: procedure Gamecoll

ICM
3: Execution: E f or Eb

4: Answer: from ICM oracle
5: E f /Eb → xl =

(
z1

l ⊕ ml

)
= Eupper

x̄l−1 ||ȳl−1
(ml) ⊕ ml

6: E f /Eb → yl =
(
z2

l ⊕ m̄l

)
= Elower

x̄l−1 ||ȳl−1
(m̄l) ⊕ m̄l

7: switch
(
input

)
do

8: case 1
9: assert(subGamecoll

dual,ICM)
10: if l′ < l ≤ q then
11: searching for (xl′ , yl′ ) from Q
12: if {(xl, yl) = (xl′ , yl′ )} → Awins then
13: call: collision event tricoll

dual,ICM

14: break: from subGamecoll
dual,ICM

15: end if
16: else
17: store: (xl, yl)→ Q
18: end if
19: case 2
20: assert(subGamecoll

sole,ICM)
21: if {(l ≤ q) ∧ (xl = yl)} → Awins then
22: call: collision event tricoll

sole,ICM

23: break:from subGamecoll
sole,ICM

24: else
25: store: (xl, yl)→ Q
26: end if
27: case 3
28: assert(subGamecoll

pre,ICM)
29: if {(l ≤ q) ∧ (xl, yl) = (x0, y0)} → Awins then
30: call: collision event tricoll

pri,ICM

31: break: from subGamecoll
pri,ICM

32: else
33: store: (xl, yl)→ Q
34: end if
35: end procedure

subGamecoll
pri,ICM . Usually, the initial vectors or chain-

ing values need to provide at the beginning of encryp-
tion process. Therefore, the generated output can be col-
lide with the initial or primary values at the any phase
of l. For example, in the iteration of l |(l ≤ q) , the out-
come are xl = Eupper

x̄l−1 ||ȳl−1
(ml) ⊕ ml and yl = Elower

x̄l−1 ||ȳl−1
(m̄l) ⊕
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m̄l. If collision occurs for x0, y0 and xl, yl, a trigger will
be defined as tricoll

pri,ICM and query process will be ter-

minated from the subGamecoll
pri,ICM . Hence, the probabil-

ity of collision under l-th query will be Pr
[
Tricoll

pri,ICM

]
=

Pr
[
tricoll

1,pri,ICM , tricoll
2,pri,ICM , . . , tricoll

q,pri,ICM

]
. After q pairs of

queries, it implies that,

q∑
l=1

Pr[Tricoll
l,pri,ICM] =

q∑
l=1

2
(2n − 2l)

≤ 2q
(2n − 2q)

(4)

Adding 2, 3 and 4, Theorem 1 will be satisfied.

5. Security Proof of Collision Resistance Under the
WCM

An adversary A will make an additional query Ek with
E f and Eb under the WCM, where Ek is defined as a
key-disclosure query [19], [20]. According to the WCM,
the adversary A will make any relevant query with non-
repetition. A Gamecoll

WCM (Algorithm 2) will be defined
for finding collision under the WCM. The target of the
adversary A is to find X,Y such that H (X) = H (Y),
where X,Y = input, H = hash outout. Additionally, the
Gamecoll

WCM will be classified into three subgames (Table 4),
where subGamecoll

f orw(E f ),WCM
is defined for finding collision

through ciphertext and subGamecoll
back(Eb),WCM

is used for ex-

ploring plaintext. Additionally, the adversary A will exe-
cute the game of subGamecoll

key(Ek),WCM
for getting collision

through the key-disclosure query.

Theorem 2: Let HNEW be a two calls of 2n bit key, block-
cipher hash function. It invokes the blockcipher based com-
pression function F, where the advantage of the adversary
A is to find collision under HNEW (F). Therefore, after q
pairs of queries, the adversarial advantage will be bounded
by:

AdvWCMcoll

HNEW (q) ≤ 3q (q − 1)
22n

Proof: Let A be the adversary that can make query
upto l-th queries, where l ≤ q. The collision probability of
these three subgames will be evaluated under the adversary
A in the following way.

subGamecoll
f orw(E f ),WCM

. The adversary A will execute

the subGamecoll
f orw(E f ),WCM

, where a forward query returns

the query result and stores a pair of output into the Q. There

Table 4 Branches of Gamecoll
WCM

Branch name Condition

subGamecoll
f orw(E f ),WCM

E f → (x, y,m) � (x′, y′,m′)
∧HNEW (x, y,m) = HNEW (x′, y′,m′)

subGamecoll
back(Eb),WCM

Eb → (x, y,m) � (x′, y′,m′)
∧HNEW (x, y,m) = HNEW (x′, y′,m′)

subGamecoll
key(Ek ),WCM

Ek → (x, y,m) � (x′, y′,m′)
∧HNEW (x, y,m) = HNEW (x′, y′,m′)

are three basic phases under the subGamecoll
f orw(E f ),WCM

such
as making query, checking and trigger/store. In the first
phase, the adversary is allowed to make query through E f

under the WCM. Then in second phase, A checks whether
the last output pair collides with the previous any query pair.
The third phase depends on the second phase where a trig-
ger will be called if collision occurs. On the contrary, the
output pair will be stored into Q and the adversary will be
allowed for next query. For example, the adversary A gets
a pair of outputs (xl′ , yl′ ) at the l′-th iteration. Let there is
an another iteration of l| (l′ < l), where output pair will be
xl, yl. If (xl, yl) = (xl′ , yl′ ) then a collision will be occurred
and a trigger

(
tricoll

E f ,WCM

)
will be called. However, the sets of

queries are:

E f→WCM (l′ < q) :
xl′ = z1

l′ ⊕ ml′ = Eupper
x̄l′−1,ȳl′−1

(ml′ ) ⊕ ml′ ,

yl′ = z2
l′ ⊕ m̄l′ = Elower

x̄l′−1,ȳl′−1
(m̄l′ ) ⊕ m̄l′

E f→WCM (l′ < l < q) :
xl = z1

l ⊕ ml = Eupper
x̄l−1,ȳl−1

(ml) ⊕ ml,

yl = z2
l ⊕ m̄l = Elower

x̄l−1,ȳl−1
(m̄l) ⊕ m̄l

Hence, the conditions of collision are:
⎧⎪⎪⎨⎪⎪⎩
(
z1

l′ ⊕ ml′ = z1
l ⊕ ml

)
∨(

z2
l′ ⊕ m̄l′ = z1

l ⊕ ml

)
⎫⎪⎪⎬⎪⎪⎭ ∧
⎧⎪⎪⎨⎪⎪⎩
(
z1

l′ ⊕ ml′ = z2
l ⊕ m̄l

)
∨(

z2
l′ ⊕ m̄l′ = z2

l ⊕ m̄l

)
⎫⎪⎪⎬⎪⎪⎭

(5)

From 5, the collision probability will be:

q∑
l=2

Pr[Tricoll
l,E f ,WCM] =

q∑
l=2

2(l − 1)

(2n − 2l)2

≤
q∑

l=2

2(l − 1)

(2n)2
≤ q (q − 1)

22n
(6)

subGamecoll
back(Eb),WCM

. Let the adversary A will exe-

cute the subGamecoll
back(Eb),WCM

, where backward query will

be provided an output pair. A trigger
(
tricoll

Eb,WCM

)
will be de-

fined, if collision occurs. According to this subgame and
the previous explanation of the subGamecoll

f orw(E f ),WCM
, the

collision probability will be:

=

q∑
l=2

Pr[Tricoll
l,Eb,WCM] =

q∑
l=2

2(l − 1)

(2n − 2l)2

≤
q∑

l=2

2(l − 1)

(2n)2
≤ q (q − 1)

22n
(7)

subGamecoll
key(Ek),WCM

. The explanation of probability of

subGamecoll
key(Ek),WCM

is as that of the subGamecoll
f orw(E f ),WCM

.

Therefore, the probability of collision will be:

=

q∑
l=2

Pr[Tricoll
l,Ek ,WCM] =

q∑
l=2

2(l − 1)

(2n − 2l)2
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≤
q∑

l=2

2(l − 1)

(2n)2
≤ q (q − 1)

22n
(8)

Adding the values of 6, 7 and 8, Theorem 2 will be proved.

Algorithm 2
(
Gamecoll

WCM

)
1: Initailization : l = 0, q = 2n, Q : Empty query database
2: procedure Gamecoll

WCM
3: run: subGamecoll

f orw,WCM , subGamecoll
back,WCM and subGamecoll

key,WCM

4: function subGamecoll
f orw(E f ),WCM

5: for (l ≤ q) do
6: run an oracle

(
E f
)

from WCM
7: reply:
8: E f → xl =

(
z1

l ⊕ ml

)
= Eupper

x̄l−1 ||ȳl−1
(ml) ⊕ ml

9: E f → yl =
(
z2

l ⊕ m̄l

)
= Elower

x̄l−1 ||ȳl−1
(m̄l) ⊕ m̄l

10: Check for collision hit event:
11: if l′ < l ≤ q then
12: searching for (xl′ , yl′ ) from Q
13: if (xl, yl) = (xl′ , yl′ )→ Adversary wins then
14: introduce event tricoll

E f ,WCM

15: terminate from subGamecoll
f orw(E f ),WCM

16: end if
17: else
18: keep: (xl, yl)→ Q
19: end if
20: end for
21: end function
22: function subGamecoll

back(Eb),WCM

23: run an oracle
(
Eb
)

from WCM

24: do same procedure as subGamecoll
f orw(E f ),WCM

but use a different

oracle
25: end function
26: function subGamecoll

key(Ek ),WCM

27: run an oracle
(
Ek
)

from WCM

28: do same procedure as subGamecoll
f orw(E f ),WCM

but use a different

oracle
29: end function
30: end procedure

6. Security Proof of Collision Resistance under
ext.WCM

According to the definition of ext.WCM, the adversary A
will make three types of query under a single instance non-
adaptively (Table 2 and Fig. 1), where the adversary has
no chance for repeated query. A Gamecoll

(E f ,Eb,Ek),ext.WCM(
Algorithm 3

)
will be defined in this section for providing

the security proof of the proposed scheme and it is catego-
rized into three subgames with their task into Table 5.

Theorem 3: Let HNEW be a two calls of 2n bit key block-
cipher hash function, where it consists of blockcipher com-
pression function F. The advantage of adversaryA is to find
collision through HNEW (F) after q pairs of queries. There-
fore, the adversarial advantage will be bounded by:

Advext.WCMcoll

HNEW (q) = q2 − q
/
2N2+3q/N

Table 5 Branches of Gamecoll
(E f ,Eb ,Ek),ext.WCM

Branch name Condition

outer subGamecoll
(E f /Eb/Ek),ext.WCM

E f ,b,k→ext.WCMk,m,c (·)⇒
(xl, yl,ml) � (xl′ , yl′ ,ml′ )∧
HNEW (xl, yl,ml)
= HNEW (xl′ , yl′ ,ml′ )

inner,IV subGamecoll
(E f /Eb/Ek),ext.WCM

E f ,b,k→ext.WCMk,m,c (·)⇒
xl = yl
when,
HNEW (xl−1, yl−1,ml) = (xl, yl)
∨
(xl, yl) = (x0, y0)
when,
HNEW (xl−1, yl−1,ml) = (xl, yl)
and (x0, y0) = initial value

Proof: Let the adversaryA will ask any relevant query
and never makes any duplicate query through E f /Eb/Ek.
Under the ext.WCM model, the query will be asked non-
adaptively at first. Therefore, the adversary looks for colli-
sion based on those executed queries.

outer subGamecoll
(E f /Eb/Ek),ext.WCM

. The subgame of
outer subGamecoll

(E f /Eb/Ek),ext.WCM
will be assigned for finding

collision under any iteration of the query process l| (l ≤ q).
For an example, at the point of l′ (l′ ≤ q)-th iteration, the
resultant output are xl′ , yl′ . However, in the iteration of
l| (l′ < l ≤ q), the output are xl, yl. If the adversary A finds
that there is a collision between xl′ , yl′ and xl, yl then a trig-
ger will be called. Hence, the conditions of collision are:
(
A→make query

(
E f , Eb, Ek

))
∧(

for two iterations of queries (l, l′) |(l′ < l ≤ q)
) (9)

Furthermore, (9) can be derived as:

z1
l

(
Eupper

x̄l−1,ȳl−1
(ml)
)
= z1

l′
(
Eupper

x̄l′−1,ȳl′−1
(ml′ )
)

or,
z1

l

(
Eupper

x̄l−1,ȳl−1
(ml)
)
= z2

l′
(
Elower

x̄l′−1,ȳl′−1
(, m̄l′ )

) (10)

and

z2
l

(
Elower

x̄l−1,ȳl−1
(m̄l)
)
= z2

l′
(
Elower

x̄l′−1,ȳl′−1
(m̄l′ )
)

or,
z2

l

(
Elower

x̄l−1,ȳl−1
(m̄l)
)
= z1

l′
(
Eupper

x̄l′−1,ȳl′−1
(ml′ )
) (11)

If, 10 and 11 occurs then outertricoll
(E f ,Eb,Ek),ext.WCM

will

be called. The probability of collision under the subgame of
outer subGamecoll

(E f /Eb/Ek),ext.WCM
will be:

Pr
[

outerTricoll
(E f ,Eb,Ek),ext.WCM

]
=

Pr
[

outertricoll
1,(E f ,Eb,Ek),ext.WCM

, · · · ,outertricoll
q,(E f ,Eb,Ek),ext.WCM

]

(12)

From 12,
q∑

l=1

Pr
[

outerTricoll
l,(E f ,Eb,Ek),ext.WCM

]
=

q∑
l=1

(l − 1)(
22n
) ≤ q2 − q

2.22n

(13)
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inner subGamecoll
(E f /Eb/Ek),ext.WCM

. Let, there is an itera-

tion l, where l ≤ q. Under the l-th iteration, the output will
be:

z1
l = Eupper

x̄l−1,ȳl−1
(ml)⇒ ml ⊕ z1

l = xl (14)

z2
l = Elower

x̄l−1,ȳl−1
(m̄l)⇒ m̄l ⊕ z2

l = yl (15)

Algorithm 3
(
Gamecoll

(E f ,Eb,Ek),ext.WCM

)

1: Initailization : l = 0, q = 2n, Q : Empty query database

2: procedure
(
Gamecoll

(E f ,Eb ,Ek),ext.WCM

)

3: for (l ≤ q) do
4: Execution: E f /Eb/Ek through ext.WCMk,m,c (·)
5: Answer from ext. WCM oracle
6: E f /Eb/Ek → xl =

(
Eupper

xl−1 ||yl−1
(ml) ⊕ ml

)

7: E f /Eb/Ek → yl =
(
Eupper

x̄l−1 ||ȳl−1
(m̄l) ⊕ m̄l

)
8: Store into Q
9: end for

10:
(∗calling three subgames∗)

11: CALL→ outer subGamecoll
(E f ,Eb ,Ek),ext.WCM

12: searching for (xl, yl) and (xl′ , yl′ ) from Q
13: if {(xl, yl) = (xl′ , yl′ )} → Awins then

14: call collision event
(
outertricoll

(E f ,Eb ,Ek),ext.WCM

)

15: break from outer subGamecoll
(E f ,Eb ,Ek),ext.WCM

16: end if
17: CALL→ inner subGamecoll

(E f ,Eb ,Ek),ext.WCM

18: searching for (xl, yl)
19: if (xl = yl)→ Awins then

20: call collision event
(
innertricoll

(E f ,Eb ,Ek),ext.WCM

)

21: break from inner subGamecoll
(E f ,Eb ,Ek),ext.WCM

22: end if
23: CALL→ ivGamecoll

(E f ,Eb ,Ek),ext.WCM

24: searching for (xl, yl)
25: if {(xl, yl) = (x0, y0)} → Awins then

26: call collision event
(
ivtricoll

(E f ,Eb ,Ek),ext.WCM

)

27: break from ivsubGamecoll
(E f ,Eb ,Ek),ext.WCM

28: end if
29: end procedure

There is a chance to make collision between xl and yl.

So, a trigger
(

innertricoll
(E f ,Eb,Ek),ext.WCM

)
will be called when a

collision occurs. Hence,

Pr
[

innerTricoll
(E f ,Eb,Ek),ext.WCM

]
=

Pr
[

innertricoll
1,(E f ,Eb,Ek),ext.WCM

, · · · ,innertricoll
q,(E f ,Eb,Ek),ext.WCM

]

(16)

From 16, the collision probability will be:

q∑
l=1

Pr
[

innerTricoll
l,(E f ,Eb,Ek),ext.WCM

]
=

q∑
l=1

1
2n
≤ q

2n
(17)

ivsubGamecoll
(E f /Eb/Ek),ext.WCM

. Under this subgame,

Table 6 Number of queries under ICM, WCM, ext. WCM model

Proposed Scheme
ICM WCM ext. WCM

q = 2125.31 q = 2126.70 q = 2125.42

there is a possibility for a collision such as (xl, yl) = (x0, y0).
Therefore, the probability of collision will be:

q∑
l=1

Pr
[

ivTricoll
l,(E f ,Eb,Ek),ext.WCM

]
=

q∑
l=1

2
2n
≤ 2q

2n
(18)

Theorem 3 will be proved after summing the values of 13,
17 and 18.

7. Result Analysis

The proposed scheme satisfies the two calls of 2n bit block-
cipher, where the number of cycle is two. The collision se-
curity bound of this scheme is q = 2125.31 under the ICM(
q = number of queries

)
. The probability of adversarial ad-

vantage comes from Theorem 1, which is used for finding
the number of queries.

Let N = 2n and AdvICMcoll

HNEW (q) ≤ q2+q
(2n−2q)2 +

2q
(2n−2q) from Theorem 1. According to basic primitive,

n = 128
(
block-length/message

)
and AdvICMcoll

HNEW (q) = 1
2(

due to birthday attack
)
. Therefore, the value of q will be

2125.31 under the ICM. In similar way, the total number of
queries under the WCM and ext.WCM will be evaluated and
mentioned in Table 6.

8. Conclusion

There are many studies on the blockcipher cryptographic
hash

(
compression function

)
where the security proof model

plays an important role [17], [18], [20], [29], [30], [34].
Usually, the ICM is used as a model for the security proof,
that depends on the ideal environment [3]–[5], [11], [12],
[14], [16], [23], [24], [34]. However, the ICM is far away
from the real world scenario [29], [34]. Therefore, it is ob-
vious to use the security proof model, which is close to the
real world such as the WCM [19], [20] and ext.WCM. Cur-
rently, none of the existing schemes are secure under more
than one security proof model. In this article, the proposed
(n, 2n) blockcipher compression function is secure under
three types of security proof model such as the ICM, WCM
and ext.WCM (Table 6). The proposed scheme follows sin-
gle key scheduling under the Matyas Meyer mode. The ef-
ficiency rate and number of calling blockcipher are respec-
tively 1/2 and 2. However, the proposed scheme is not suit-
able for small message encryption and also it can not encrypt
without padding. Additionally, this scheme is secure only
under the Maytas Meyer Mode. Hence, there is a chance to
provide a scheme which will be suitable for small domain
encryption as well as padding free encrytion. Additionally,
it will be secure under any mode of the PGV [17], [18].
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