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Analysis∗
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SUMMARY Oblivious RAM is a technique for hiding the access pat-
terns between a client and an untrusted server. However, current ORAM
algorithms incur large communication or storage overhead. We propose a
novel ORAM construction using a matrix logical structure for server stor-
age where a client downloads blocks from each row, choosing the column
randomly to hide the access pattern. Both a normal construction and recur-
sive construction, where a position map normally stored on the client is also
stored on the server, are presented. We show our matrix ORAM achieves
constant bandwidth cost for the normal construction, uses similar storage to
the existing Path ORAM, and improves open the bandwidth cost compared
to Path ORAM under certain conditions in the recursive construction.
key words: ORAM, secure communication, secure access pattern, secure
protocol

1. Introduction

Oblivious RAM (ORAM) [1] is seen as beneficial for cloud
computing, specifically for hiding access patterns from
client to server. Encrypting the data before uploading to the
server is not sufficient for privacy as it has been shown that
the sequence of server storage locations read/written by the
client may reveal valuable information to the server [2], [3].
Therefore, ORAM can be used to hide the access pattern by
making the reads/writes indistinguishable from random ac-
cesses to the server. When a client wants to access (read or
write) a block of data on the server, the client reads multi-
ple blocks (including the block of interest) and writes back
multiple blocks. The multiple blocks accessed are selected
to make it impossible for the server to identify which block
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is of interest to the client and what operation is being per-
formed. Despite many ORAM schemes being designed [4]–
[12], achieving a satisfactory performance tradeoff remains
a challenge. Key performance objectives for ORAM are:

• Minimize client storage, the persistent and temporary
storage needed on the client.

• Minimize bandwidth cost, the total blocks transferred
between client and server in order to access one block
of interested data.

• Maximize server storage usage efficiency, that is, given
the server can store N blocks of data, ensure as much
as possible is available for storing real data.

In this paper we introduce a new ORAM that uses a
matrix data structure on the server, called M-ORAM. The
design of the matrix data structure allows us to keep the
bandwidth cost independent of the number of blocks stored
on the server, thereby reducing bandwidth cost compared
to other ORAM schemes. In addition, M-ORAM’s read
and write operations are performed using a simple pseudo-
random function without any complex operations such as
shuffling, sorting and merging.

1.1 Related Work

ORAM algorithms can generally be divided by the server
storage structure: either a hierarchical structure [4]–[12]
where each layer is independent of each other; or a tree–
structure [13]–[16] where nodes in neighboring layers have
a relation of child and parent.

1.1.1 Hierarchical Based ORAM

The original ORAM was introduced by Goldreich et. al [1]
with a hierarchical structure (pyramid structure) which each
level is larger than its previous level. The accessing is done
by reading from the most top level to the lowest bottom
level. For each level of not the target information, a dummy
information will be retrieved. The target information will
be read, updated, and then uploaded to the most top level of
ORAM. To protect the each level from buffer overflow, the
eviction scheduling must be done at a particular level when
it is accessed by given number of operation. The element
from nth level will be evicted then merged and shuffled with
element of the next below level (n + 1)th, and stored at this
level without leaking any critical information to the server.

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



GORDON et al.: A MATRIX BASED ORAM: DESIGN, IMPLEMENTATION AND EXPERIMENTAL ANALYSIS
2045

It incurs O(log3 N) bandwidth cost with O(1) client storage.
Partition ORAM or SSS-ORAM is an altered hierar-

chical structure ORAM that was introduced by Stefanov
et. al [12] for cloud storage. Instead of using single ORAM,
SSS-ORAM provides multiple ORAM partitions which can
concurrently access by the client via the local reshuffling
management module. By using this module, SSS-ORAM
can manage to reduce the number of request to the server
and achieves O(log N) bandwidth cost with O(N) client stor-
age. In addition, they proposed the recursive ORAM which
reduces client storage to O(

√
N) by storing logical address

of data in other SSS-ORAM on the server. Although the
new method can reduce local storage requirement, it incurs
increasing the bandwidth cost when compared to the normal
SSS-ORAM construction.

1.1.2 Binary Tree Based ORAM

Binary tree based ORAM was first proposed by Shi
et al. [14] with O(log2 N) bandwidth cost, and O(N) client
storage under normal construction and O(log3 N) bandwidth
cost and O(1) client storage under recursive construction.
Unlike the hierarchical structure, the block (node) in the ad-
jacent layer is related as parent and child. Every node at the
bottom layer has a unique ID, called leafID, which identifies
the path to access; the target information of interest is on that
path. Even once the target information is found, the client
continues to access other nodes in the path so that the server
cannot identify the target data. Similar to hierarchical-based
ORAM, the recently accessed information will be put in the
top layer of the binary tree. To protect the top node from
overflowing, an evict operation will be invoked every con-
stant period of time which is called background eviction.
During background eviction, two nodes from each layer will
be randomly chosen. The element from the parent node will
be mixed with its children nodes and randomly put to one
of them. The remaining children nodes will be filled with
dummy information.

Stefanov et al. enhance Shi’s scheme by removing the
background eviction operation from their design which is
called Path ORAM [15]. Same as Shi’s scheme, each data
item in Path ORAM is associated with the leafID which
identifies the path in the binary tree. Instead of access-
ing one by one on the path, every element in the path is
downloaded and temporarily stored in the client. The leafID
that is associated with the target information is randomly
changed, then the client will try to upload the elements that
are stored in its buffer to the previous downloaded path, un-
der the condition that each element must be located on a
path starting at its leafID. In the case that there are no el-
ements that can be stored in the node, dummy information
will be stored instead. Path ORAM has O(log N) bandwidth
cost with O(N) client storage using a normal construction,
and O(log2 N) bandwidth cost with O(log N) · ω(1) client
storage when using a recursive construction (where ω(1) is
some constant number).

1.1.3 Contribution

One aspect of ORAM’s inefficiency is the bandwidth cost.
To hide access patterns, ORAM requires the client to down-
load/upload multiple blocks, even though it is interested in
either reading or writing just one of those blocks. The num-
ber of blocks to access usually depends on the total number
of blocks the server may store. This paper provides an al-
ternative ORAM structure, called M-ORAM. It makes the
bandwidth cost independent of the total number of blocks,
instead dependent on the matrix height which is controllable
by the designer.

Unlike any existing schemes, M-ORAM is built upon
a matrix data structure for server storage. With the normal
construction, it achieves O(1) bandwidth cost, the constant
size of stash buffer, and N blocks of position-map. For
the recursive construction, M-ORAM can achieve the best
bandwidth cost at O(log N) under O(log N) client storage.
Therefore, our major contributions are:

• The design of normal and recursive constructions
for M-ORAM. We present the detailed design of the
M-ORAM normal construction and show how it can
be modified to recursively store the position map in
ORAM. Both constructions have a slightly different op-
eration for retrieving the information of interest from
the server.

• Bandwidth cost independent from the ORAM size.
We introduce the first matrix based ORAM structure
where the number of downloaded blocks per access
request is independent of the size of ORAM storage.
Therefore, it can achieve the improved bandwidth cost
with any size of ORAM compared with the existing
schemes, and especially Path ORAM.

• Maximize and efficient stash usage. In our construc-
tion the reserved space for stash buffer is being used
about 90% of the time and never overflows (whereas
there is a very small probability that an overflow oc-
curs in Path ORAM). Also with an appropriate stash
width, M-ORAM can utilize a smaller stash than Path
ORAM.

• Theoretical performance analysis. We give the theo-
retical performance models of both normal and recur-
sive constructions and compare to Path ORAM under
same conditions. In addition, we give a novel proof of
the appropriate height of M-ORAM in order to achieve
the same security when transmitting information as
Path ORAM.

• Experimental analysis. To provide further insights
into M-ORAM performance and security not given
by the theoretical analysis, we have implemented
M-ORAM and provide experimental analysis of the
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Table 1 Notation

Parameter Description

N Size of ORAM [blocks]
H Height of ORAM logical structure [blocks]
W Width (length) of each stash buffer [blocks]
SecretKey Common secret key for encryption/decryption key generator
K Encryption/Decryption key
dataID Data identification number
stash Temporary buffer for downloaded information
(x, y) Position of rows and columns in matrix structure
m Number of addresses in single block of ORAM position-map
counter Individual counter of each information
Pos[i] [counter, (x, y)], Position map of dataID i
loclist Temporary address list of downloaded data
oldlist Address list of previous access operation
PRF() Pseudo-Random Function

bandwidth cost, stash usage and probability of read-
ing/writing information to the same location.

The design of the M-ORAM normal construction has
been reported in [17]. In addition to providing updated
design details in this paper, we also introduce the recur-
sive construction, its analysis and comparison with Path
ORAM, new security analysis and results from the exper-
imental analysis.

1.1.4 Paper Organization

The remainder of this paper is structured as follows. We pro-
vide an overview of M-ORAM storage structure in Sect. 2,
and then its constructions and operations are presented in
Sect. 3. In Sect. 4 the theoretical performance analysis of
M-ORAM is provided and used to compare M-ORAM to
other schemes. Section 5 gives a discussion of M-ORAM’s
security analysis. The experimental results from our imple-
mentation compared with Path ORAM are given in Sect. 6,
and we conclude in Sect. 7. The notation used in this paper
is summarized in Table 1.

2. M-ORAM Storage Structure

Two key design decisions for ORAM are the logical address
structure and the operation for accessing information. In this
section we describe the server and client storage structures
used by M-ORAM (Fig. 1), while its operations will be de-
scribed in Sect. 3.

2.1 Server Storage Structure

In other ORAM schemes, the bandwidth cost depends on the
total number of the blocks stored on the server. For example,
Path-ORAM [15] has bandwidth cost O(log N) for N blocks
of ORAM. Our aim is to improve on this bandwidth cost.
We do so by introducing a matrix structure for server stor-
age which is illustrated in Fig. 1. The physical addresses of
server storage are mapped to the set of logical addresses in
the matrix format, rows (height): xi and columns (width): y j

where i ∈ {0, 1, . . . ,H} and j ∈ {0, 1, . . . , N
H }. Those logical

Fig. 1 M-ORAM structure

addresses are stored in the client and they will be accessed
whenever the client needs to retrieve content from the server.
The motivation for the matrix data structure is that the band-
width cost depends on its height, but it is independent of the
width. Therefore, we can keep the bandwidth cost constant
for any size of ORAM by varying the width of the structure.

2.2 Client Storage Structure

Similar to other ORAM schemes, the client uses a buffer
called stash for temporarily storing the downloaded blocks,
and another buffer called position map for mapping the log-
ical addresses to dataIDs. However unlike other schemes,
M-ORAM uses a separate stash for each row as illustrated
in Fig. 1. In the normal M-ORAM construction, every ad-
dress of the data is in the client’s position map. To reduce
the client storage requirements, the recursive construction is
used, where most of the position map information is stored
on the server, while leaving a small amount of position map
information on the client. We denote each stash buffer as
stashi where i is the matrix rows number.

3. M-ORAM Construction and Operation

We introduce two new matrix ORAM constructions: the
normal construction, and the special construction for the
client with constrained storage space called recursive con-
struction. For both constructions, the operations can be cat-
egorized as Read, Write, Add, Delete, and Secret Key Man-
agement. Both constructions share the same Key Manage-
ment, Add, and Delete operations; the other operations dif-
fer in details. Table 2 lists the functions used by some of the
operations.

3.1 M-ORAM Normal Construction

As mentioned in the previous section, the bandwidth cost of
M-ORAM is independent of the size but dependent on the
height of ORAM. It gives us the ability to control the system
bandwidth by keeping the height at some constant value. We
use the same concept as Path-ORAM by hiding the data of
interest among other real data (rather than dummy data as
used by the hierarchical based structure and Shi’s binary tree
ORAM). Hence, we can maximize the efficiency of storage
usage to 100% for containing the client’s information. An-
other advantage of the matrix based structure is the indepen-
dence of the block in the different levels of the hierarchy.
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Table 2 Description of M-ORAM functions

Function Name Description

ReadBl(x, y) Read information from server at position x and y
RndStash(data) Randomly put data to stashes without duplication
RndData(stashi) Randomly pick up data from stashi without

duplication
RndOld(oldlist, n) Randomly pick up n addresses from oldlist
UpdatePos(i, (x, y)) Update position-map of dataID i
WriteBl(data, (x, y)) Write information to the server at position x and y

Therefore, the client can freely choose a block from each
hierarchical level, which makes M-ORAM’s operations se-
cure with respect to indistinguishable access of information
(Sect. 5.3). In this section, Read/Write, Add/Delete, and Se-
cret Key Management operation will be introduced respec-
tively.

3.1.1 Read/Write Operation

In M-ORAM whenever the client wishes to read or write
data, it must actually read multiple blocks and then write
multiple blocks back and forth to the server. One of the
downloaded blocks must be the information that is required
by the client, whereas the set of uploaded blocks is not nec-
essarily the same set of previously downloaded blocks. The
operation will begin whenever the client requests informa-
tion from the server. The address of requested information
is derived from the position map by using its dataID, then
the read operation is invoked. The intersection of a distinct
xi and y j is represented as the block position of information.
As described in Algorithm 1, y j will be uniformly randomly
chosen if xi does not belong to the requested information.
The information in that location will be retrieved whether
it is real information or not. The same process will be re-
peatedly applied to the next row and so on. The dummy
contents are thrown away, while the real information is ran-
domly spread to stashi without duplication (see Fig. 2 (a)).
With this method, the location in X–axis of every content is
changed and is independent from its original position.

The randomization in the Y–axis will take place during
the write operation as illustrated in Fig. 2 (b). The informa-
tion will be uploaded by selecting from each stash uniformly
at random, starting from stash0 through to stashH . This is
to ensure the write access pattern is deterministic over in-
distinguishable information. As a block is selected from
the entire stashi, an emply block may be selected. In this
case dummy information is uploaded. The chosen content
from stashi will be stored at the previously accessed posi-
tion (xi, y j). However to avoid the server being able to iden-
tify whether one access is of the same or different data as
the previous access, at least one block location of the previ-
ous access must be randomly selected for the current access.
In Sect. 4.1 we analyse how many elements from a previous
access must be re-used in the current access, proving that
choosing randomly between 1 and 3 blocks will given simi-
lar functionality as Path ORAM.

Algorithm 1 Read operation
Input: dataID,UpdateData
(xd , yd)← Pos[dataID]

n
$←{1, 2, 3}

o← RndOld(oldlist, n)
for i ∈ {0, 1, 2, 3, . . . ,H} do

if xi = xd then
data← ReadBl(xd , yd)
loclist ← loclist ∪ {(xd , yd)}
if update operation then

data← UpdateData
end if
RndStash(data)

else
if xi ∈ o then

loclist ← loclist ∪ {(xi, y∗)}
RndStash(ReadBl(xi , y∗))

else

y j
$←{0, 1, 2, 3, . . . , N

H }
loclist ← loclist ∪ {(xi, y j)}
RndStash(ReadBl(xi , y j))

end if
end if

end for
return data

Algorithm 2 Write operation
Input: loclist, stash
for i ∈ {0, 1, 2, 3, . . . ,H} do

(xi, y j)← loclist[i]
loclist ← loclist − {(xi, y j)}
dataID, data← RndData(stashi)
UpdatePos(dataID, (xi, y j))
WriteBl(data, (xi, y j))

end for

Fig. 2 M-ORAM read and write operations

3.1.2 Add/Delete Operation

In M-ORAM an Add operation involves the client putting
new data in the a stash buffer (with the position chosen uni-
formly at random). There are no communications with the
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Algorithm 3 Secret key management
Input: dataID, SecretKey
counter← Pos[dataID]
K ← PRF(dataID, counter, SecretKey)
text ← DecryptK (data)
counter← counter + 1
Pos[dataID]← counter
K ← PRF(dataID, counter, SecretKey)
data← EncryptK (text)
return data

server. A Delete operation is identical to a Read operation,
hwoever after data to be deleted is downloaded, it is not
stored in the stash buffer.

3.1.3 Secret Key Management

As with other ORAM schemes, data is re–encrypted using
symmetric key encryption. A new fresh key is applied to an
information before it is uploaded. Therefore, the server can-
not identify even if a subsequent upload is the same data as
a previous upload. The details of the encryption algorithm
and management of encryption keys differ amongst ORAM
schemes. In our construction we use AES as our encryption
method; use the counter, dataID, and a common secret key
as the initial elements for generating the block’s encryption
key. Every counter is kept within the position map along
with its associated block location, and it is increased when-
ever the information has been downloaded. To generate the
encryption key, the client will use those three elements as
input into a pseudo-random function (PRF) as described in
Algorithm 3.

3.2 M-ORAM Recursive Construction

The position map on the client can introduce a significant
overhead for a client with limited storage size. Different
ORAM schemes [12], [14], [15] have therefore proposed a
recursive construction where the majority of the position
map is stored on the server with ORAM, and the remaining
part of the position map is on the client. In this section the
discussion of the difference between M-ORAM normal and
recursive constructions is given. Then, as they differ from
the normal construction, Read/Write operations for the re-
cursive construction are introduced. Finally, the bandwidth
cost for the recursive construction is discussed.

3.2.1 Difference between Normal Construction and Recur-
sive Construction

In M-ORAM normal construction, all of the position map is
stored on the client. Suppose the ORAM has the capacity
to contain N data blocks, the space requirement for the po-
sition map on the client is bounded by O(N) blocks. On the
other hand in the recursive construction, client storage space
reduction can be achieved by storing the position map of the
data also in ORAM, and a position map of that position map
being stored on the client. This can be applied recursively
to reduce the client storage requirements. Suppose that there

Fig. 3 Read operation for recursive construction

are m addresses be stored within a block, which is called a
position map block, and these addresses point to either the
data block or another position map block in next recursion.
With N data blocks, logm N recursions for retrieving the po-
sition map block are needed to cover every address of the N
data blocks and allow the client to store only O(1) blocks for
the position map. Therefore, this recursive construction can
keep the client storage usage at particular constant value but
consumes more bandwidth cost as a trade-off as each access
to a position map requires communication overhead.

3.2.2 Read/Write Operation of Recursive Construction

Let the position map block contains m block’s addresses of
next recursion, and H blocks are downloaded in each re-
cursion from N blocks ORAM, where H ≤ m < N. The
Read/Write in recursive construction, the H logm N blocks
will be downloaded and randomly put into any empty blocks
within arbitrary stashes. Then the same amount of infor-
mation will be randomly chosen and uploaded back to the
server. However, the blocks that have been chosen must
relate to each other as a link list, because the information
which is kept in the position map block will be used to deter-
mine the address of either data block or position map block
for next recursion. The new address is randomly assigned
for each chosen block. By the reason that every downloaded
block is logically related, its new address in the position map
block can be updated without failure.

To be more precise, the toy example is given as the
Fig. 3. Suppose recursive M-ORAM has a height equal to
2 blocks, and the position map block contains m = 2 ad-
dresses of the next round operation. Therefore, 2 blocks will
be randomly downloaded for each round. The first round
(Round 0) position map that is stored on the client will point
to two blocks of the next round position map (Round 1). At
this point, another two blocks that are pointed from the posi-
tion map of current round will be randomly picked up. The
same procedure will be applied for each round until reaching
the data block in the final round (Round logm N). During the
write operation, the same number as previous downloading
of “related block” will be randomly chosen from the stash.
The new location of each related position map block will
be randomly chosen by the client then uploaded back to the
server.
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3.2.3 Bandwidth Cost of Recursive Construction

The bandwidth cost of the M-ORAM normal construction
with height H is 2H. With the recursive construction with
logm N recursions the bandwidth cost is therefore 2H logm N
blocks. As described in the previous section, the read/write
operations differ slightly from what was used in the normal
construction. Rather than downloading and then uploading
for an access to the position map in ORAM, and then down-
loading and uploading for an access to the data in ORAM, in
the M-ORAM recursive construction the client downloads
all necessary blocks from both the position map and data
ORAM, stores necessary blocks in the stash, and then up-
loads back to the server. This increases the stash size nec-
essary for the client, which will be bounded by O(logm N)
(in the normal construction it was O(1)). Despite the extra
stash size needed for the recursive construction, the overall
client storage requirements (stash plus position map) for re-
cursive construction (O(logm N)) is less than that needed for
the normal construction (O(N)).

4. Performance Analysis

The key aim of M-ORAM is to decrease the bandwidth cost
when the client accesses data on the server. To optimize the
bandwidth cost, we first give a proof in Sect. 4.1 that the
height in our construction is bottom bounded by 5 blocks.
In Sects. 4.2 and 4.3, we analyze the bandwidth cost in both
normal and recursive constructions of M-ORAM. Then we
show in Sect. 4.4 that to achieve the better bandwidth cost
comparing with Path ORAM, it depends on two factors: the
number of addresses in position map block and the number
of data block in ORAM. We also show in Sect. 4.5 that it
is impossible to overflow the M-ORAM stash if the recom-
mended size is used.

4.1 Lower Bound of the Height of M-ORAM Construction

The design of M-ORAM means we can freely choose any
height for constructing the ORAM regardless of the num-
ber of blocks to be stored. However, varying the height
may change the bandwidth cost and the security level of the
ORAM. Therefore, we should consider the appropriate min-
imum/maximum height for M-ORAM. To do so, we com-
pare our construction with Path ORAM.

As outlined in Sect. 3, M-ORAM requires one access
operation to download some blocks which were accessed in
the previous operation. If this wasn’t the case, if the client
accesses the same data consecutively, then there will be one
block accessed through both operations. If the client, how-
ever, accesses different data, then the set of blocks accessed
would be distinct. Hence, the server could distinguish if
an operation is on the same data or different data. There-
fore, M-ORAM requires om blocks (data blocks, in the case
of recursive construction) from the previous operation to be
accessed in the next operation. To determine an appropriate

value of om we aim to provide equivalent functionality as
Path ORAM. In Path ORAM the average number of previ-
ous buckets chosen to be downloaded at height H, op is:

op =

∑H
i=1 2i−1

2H−1
(1)

where i ∈ {1, 2, . . .H}. A proof is given in Appendix. Con-
sidering as a geometric series, as H tends to infinity, op tends
to 2. Therefore, M-ORAM should download on average
2 blocks from the previous operation. To achieve this the
client can choose 1, 2 or 3 blocks from the previous opera-
tion, uniformly at random, to download.

As the M-ORAM client may select 3 blocks from the
previous operation to download, and one new block (the data
of interest), the matrix height, H, must be at least 5 (i.e. 2
new blocks, 3 old blocks) to ensure the server cannot iden-
tify the data of interest.

4.2 Bandwidth Cost of M-ORAM: Normal

Using the normal construction, the M-ORAM client must
download H blocks and upload H blocks for every access
operation. Hence, the bandwidth cost is 2H. The matrix
height, H, can be set independently from the ORAM size,
N. The height can be kept constant as the ORAM grows.
However, there are limits on the height: those limits and
the impact on security are discussed in Sect. 5. Assuming
these limits are considered, we claim that the bandwidth
cost of the M-ORAM normal construction is independent
of ORAM size and bounded by O(1).

4.3 Bandwidth Cost of M-ORAM: Recursive

Using the recursive construction and assuming r recursions,
the M-ORAM client must download H blocks and upload H
blocks r times. Hence the bandwidth cost is 2rH. Suppose
each position map block contains m addresses of blocks for
the next recursion, then logm N rounds are needed to keep
the number of blocks of the first recursion to be 1. As with
the normal construction, the matrix height is independent of
N, and therefore the M-ORAM recursive construction can
achieve O(logm N) bandwidth cost.

4.4 Bandwidth Cost Comparison: M-ORAM and Path
ORAM

With the normal construction, the bandwidth cost of our
proposed M-ORAM is better than existing schemes such as
Path ORAM [15]. M-ORAM has an O(1) bandwidth cost
and Path ORAM is O(log N).

With the recursive construction, we have shown that the
M-ORAM bandwidth cost is bounded by O(log N), which
is better than Path ORAM (bounded by O(log2 N)). In
Sect. 4.1 we give a discussion about the lower bound of
bandwidth requirement. In this section the upper bound
of bandwidth is discussed. In the normal construction, as
long as the height of M-ORAM is less than Path ORAM, we
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can achieve better bandwidth cost with any size of ORAM.
However in the recursive construction, the bandwidth cost is
depends on the the number of recursions, and the number of
recursions depends on the number of addresses within a po-
sition map block. Therefore, the number of addresses within
a position map block is another parameter (as well as height)
that affects the bandwidth cost of recursive M-ORAM.

In Path ORAM the number of access requests depends
on the height of binary tree structure: log N, and the num-
ber of addresses that is stored within a position map block:
m. Furthermore, after running logm N recursions, we can
construct the general equation of the total number of down-
loaded blocks (totalp) as:

totalp =

logm N∑
i=0

log
N
mi

=

logm N∑
i=0

log N −
logm N∑

i=0

log mi

= (log N)(logm N + 1)

− (log m)(logm N)(logm N + 1)

2

=
log2 N
2 log m

+
log N

2
(2)

Suppose M-ORAM has size N blocks with height equal
to H, and it uses logm N rounds for recursion. Therefore, the
total bandwidth for downloading during an access operation
(totalm) is:

totalm = H logm N (3)

Comparing Eq. (2) with Eq. (3), we see M-ORAM can
achieve better bandwidth cost than Path ORAM if:

H <

⌊
log N + log m

2

⌋
(4)

4.5 Stash Usage

In M-ORAM, the stash usage is bounded by the controllable
parameters the height of ORAM and the width of stash. In
the case of the recursive construction a third parameter, the
number of recurions, also impacts on stash size. However
in this paper we focus on the stash usage in the normal con-
struction, leaving the formalization for the recursive con-
struction as future work.

In the normal construction, ORAM’s height and stash’s
width are used to control the obfuscation property of the sys-
tem. We consider the obfuscation of the system as the prob-
ability that the block will be retrieved, then written back to
its original location in one access operation (called probabil-
ity of duplication). The lower probability means more ob-
fuscated and vice versa. We can create the equation of the
probability when a particular block has been put into one of
H stashes, and then written back to its previous location as
follows:

Fig. 4 Probability of duplication in M-ORAM

probability of duplication =
1

H ×W
(5)

where H is number of stash buffer (ORAM’s height) and W
is the width of each stash.

Figure 4 shows the plots of probability of duplication
with the different ORAM’s height and stash’s width. With
fixed height of the ORAM matrix, increasing the stash’s
width decreases the probability of duplication. For our con-
struction, we consider the probability of duplication must
not be over 0.01 (1%), giving a guideline for the recommend
stash width.

An important feature of our M-ORAM design is that
the stash will never overflow. As the number of downloaded
blocks is equal to the number of blocks that is uploaded back
to the server during an access operation, the stash always
has empty spaces for the upcoming downloaded elements
from next access operation. In addition, as we will show in
Sect. 6.1.1, the reserved space for stash is efficiently used,
i.e. almost 90% of its space is used all the time.

5. Security Analysis

In this section we state the security requirements of ORAM
and then explain why M-ORAM achieves the requirements.

5.1 ORAM Security Requirements

We can generally summarize the security requirements of
the ORAM problem as follows:

1. The server cannot observe the relationship between the
data and its address.

2. The server cannot distinguish between updated and
non-updated information when it is written back to the
server.

3. Two sequences of accesses to the server of the same
length are computationally indistinguishable.

To achieve these properties, random re-encryption (Sect. 5.2)
and the randomization over read/write operations (Sect. 5.3)
are needed.

We define a series of access requests from client that
the server will see as:
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A = (posi[dataIDi]), posi−1[dataIDi−1], . . . , pos1[dataID1])

where pos j[dataIDj] is the set of addresses that have been
accessed during retrieving information dataIDj where j ∈
{1, 2, . . . , i}. Each block of information is given in the format
(counter j, (xm, yn)), where counter j is a counter for the re–
encryption operation; xm and yn are the row m and column
n of the matrix, respectively.

5.2 Random Re-Encryption

Every time the client has data to upload, the client first en-
crypts the data using a different key for each upload. We use
the set of (dataIDj, counter j) together with a common Se-
cretKey as the input to a pseudo-random function (PRF) to
generate a key for encrypting the data. The reasons for using
these three inputs are as follows. First, the dataID is unique
per data block. Second, the counter is introduced so that
each time the same data block is uploaded, a different value
input to the PRF is used to ensure that the server cannot
identify multiple uploads of the same content. Third, the Se-
cretKey is secret, only known by the client and is necessary
as the server may be able to learn the dataID and counter.
Combining these three values as input to the PRF ensures
that a “unique secret encryption key” will be used before the
uploading. Hence, the SecretKey is secured and the server
cannot distinguish encrypted information uploaded by the
client.

5.3 Randomization over Access Pattern

In M-ORAM, the client downloads H blocks where, as de-
scribed in Sect. 3, the dummy blocks are selected from each
row with the column chosen uniformly at random for every
row that does not belong to the requested block. Then every
downloaded block is randomly pushed to each stash without
duplication. At this point the number of ways to arrange the
downloaded data in the stashes without duplication is H !.
Suppose each stash has W blocks. Therefore, the number of
ways to choose the data from each stash for writing back is
W. Hence, the probability that downloaded contents will be
written back to their previous location is:

Pr(pos j(dataIDj))norm =
1

H! ·WH
(6)

where j ∈ {1, 2, . . . , i}
Suppose we have access request sequence A of size i

and j < k ∈ i. When the pos j(dataIDj) is revealed to
the server, it will be randomly remapped to the new po-
sition by probability 1 − Pr(pos j(dataIDj)). Therefore the
pos j(dataIDj) is statistically independent of posk(dataIDk),
with dataIDj = dataIDk. In the case of dataIDj � dataIDk,
the address of different information does not have any re-
lation, then those addresses are statistically independent of
each other. Using Bayes rule, we can describe the probabil-
ity of remapping addresses over a series of access requests
A as:

Pr(A)norm =

i∏
j=1

Pr(pos j(dataIDs j))norm

=
(
H! ·WH

)−i
(7)

For now, lets assume M-ORAM has H and W = 2. There-
fore, Pr(A)norm =

1
23i which is computationally indistin-

guishable from a random sequence of bit strings As H and W
can be greater than 2, therefore, 1

(H!·WH)i ≤ 1
23i < ε. Hence,

Pr(A)norm is computationally indistinguishable from a ran-
dom sequence of bit strings for every H,W ≥ 2

In the recursive construction, a single access request
starts from reading the set of information and then writing
the set of information. We replace dataIDj with the set of
information, dataIDj[z], z ∈ {0, 1, . . . , r}, where dataIDj[z]
is a set of data d blocks during zth recursion, and r is the
total number of recursions. Therefore, the probability of
remapping addresses for a single request under the recursive
construction is:

Pr(pos j(dataIDi[z]))rec =

((d−1∏
k=1

(HW − (ϕ − k))
)

×
(d−1∏

k=1

(HW−(ω−k))
))−1

(8)

with HW − ω ≤ d ≤ HW − ϕ and where ϕ is the number of
remaining elements in the stash, ω is the number of blocks
that cannot be updated to the position map, and d is the num-
ber of data blocks among downloaded elements. Hence, the
probability of a sequence request i is:

Pr(A)rec =

i∏
j=1

Pr(pos j(dataIDj[z]))rec

=

((d−1∏
k=1

(HW−(ϕ−k))
)
×
(d−1∏

k=1

(HW−(ω−k))
))−i

(9)

In the same manner as the normal construction, we can
claim that a series of access requests using the recursive
construction is also computationally indistinguishable from
a random sequence of bit strings.

6. Experimental Results

Section 4 presented theoretical performance analysis of M-
ORAM, followed by security analysis in Sect. 5. However,
the impact of some parameters, especially stash size, is not
fully captured by this analysis. In this section, we present
experimental results using implementations of Path ORAM
and M-ORAM to compare their performance and security
properties. Performance comparison is limited to the normal
constructions and the experimental analysis of the recursive
construction is left for future work.
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Fig. 5 M-ORAM and Path ORAM Stash Usage

6.1 Performance Comparison

We implemented both Path ORAM and M-ORAM in
Python. Using a dataset of 20,000 strings from the UCI
Machine Learning Repository [18] as input, we measure
the performance of both ORAMs for random reads/writes
across the data set. In each experiment the data is randomly
stored in the ORAM, and then 4,000,000 accesses are made
(that is, adding the new data into ORAM is not included in
the experimental results).

The key performance metrics for ORAM are the client
storage size and bandwidth cost per access request. To com-
pare client storage size we consider only the stash size (as-
suming the position map of each ORAM is approximately
the same size). Bandwidth cost is defined as the number
of blocks uploaded and downloaded for each single block
accessed.

6.1.1 Comparison of Stash Usage

In both Path ORAM and M-ORAM, the stash size is the
main difference with respect to client storage requirements.
Path ORAM has a single stash while M-ORAM has H
stashes, all of the same width. Figures 5 (a) and 5 (b) show
the total stash usage for two selected experiments, one with
ORAM height of 6 and the other 8, for all access opera-
tions. The maximum stash usage across multiple experi-
ments is shown in Fig. 5 (c) and 5 (d) for different param-

eters. As mentioned in Sect. 4.1, the lower bound of M-
ORAM’s height is 5 blocks. However, we want the proba-
bility distribution of choosing the old block to be similar to
choosing the new block. Therefore, we first consider height,
H, equal to 6 blocks (3 from the old block and 3 from the
new block for worst case scenario). Figure 5 (a) compares
the stash usage of Path ORAM and M-ORAM with equiv-
alent sized server storage. The upper bound of stash usage
in M-ORAM is 96 blocks under 0.01 probability of duplica-
tion (stash width of 17); on the other hand, Path ORAM uses
only 34 blocks, significantly better than M-ORAM. How-
ever with a larger height (Fig. 5 (b)), although the average
stash usage of Path ORAM is still lower than M-ORAM,
the maximum stash usage exceeds M-ORAM. The maxi-
mum stash usage should be the allocated storage to avoid
overflow.

Analysis of Path ORAM maximum stash usage
(Fig. 5 (c)) shows it increases as the height of the construc-
tion increases. In contrast, the maximum stash usage of M-
ORAM is determined by two parameters: height and stash
width. Figure 5 (d) shows the maximum stash usage is con-
stant for every size of M-ORAM under the same probabil-
ity of duplication. However if we consider the probabil-
ity of duplication must be lower than 0.01, Path ORAM
has lower stash size requirements than M-ORAM when
ORAM’s height is lower than 8.
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Fig. 6 Bandwidth cost with height = 8

6.1.2 Recommended Parameters for M-ORAM

Observing the experimental results together with the theo-
retical analysis given in Sect. 4, we give recommended val-
ues for key M-ORAM parameters. To achieve a probability
of duplication of 0.01, we require 
 1

H×W � = 0.01. In this
case the matrix height, H, should be 8 ≤ H ≤ 50, while the
stash width, W, should be 2 ≤ W ≤ 13.

Note the stash width is more significant than height
with respect to randomization of a series of accesses
(Eq. (7)). We also should minimize the height to achieve
a low bandwidth cost. Therefore, H = 8 and W = 13 are
recommended values for a normal M-ORAM construction.

6.1.3 Comparison of Bandwidth Cost

Figure 6 shows the bandwidth cost (per access operation)
of Path ORAM and M-ORAM for different sized ORAMs
(i.e. server storage space). M-ORAM uses a height of 8.
In Path ORAM, there are two ways to increase the size of
ORAM: increasing the number of blocks within a bucket, or
increasing the height of the ORAM. However, both cause an
increase in bandwidth cost. With Path ORAM as the ORAM
size increases, the path length increases, leading to increas-
ing bandwidth cost. On the other hand, M-ORAM has a
fixed number of accessed block per access operation due to
the constant height of the storage structure. Although the
size of ORAM is increasing, the bandwidth cost in our M-
ORAM remains unchanged.

6.2 ORAM’s Randomization Characteristic Comparison

In Sect. 5 we show that a series of accesses using M-ORAM
is indistinguishable from random accesses. Here we look
closer at the accesses with different parameters, specifically
the probability that a client accesses the same set of blocks
in two read operations, and the probability that a client
writes data back to the same location. We compare with
Path ORAM, with the aim of showing the probabilities with
M-ORAM are no worse than Path ORAM.

Fig. 7 Probability client reads same set of blocks

Fig. 8 Probability client writes to same address

6.2.1 Probability of Reading Same Blocks

During the reading period, the randomization of read infor-
mation depends on the matrix’s width. We show in Fig. 7
that the probability that the client will access the same set of
information is decreases exponentially as the matrix width
increases (i.e. the ORAM size increases). For both M-
ORAM heights (6 and 8) and with a constant 2 blocks from
a previous operation downloaded, the probability of reading
the same location is less than Path-ORAM for all but very
small ORAMs measured.

6.2.2 Probability of Writing to Same Address

During the write operation, one block from each stash will
be randomly selected then uploaded back to the server. The
percentage of times information is written to its previous lo-
cation can be used to determine the randomization behavior
of ORAM’s writing operation.

In Fig. 8, we give a comparison between M-ORAM
and Path ORAM with different height (from 5 to 13 blocks)
and stash widths (2 to 10). M-ORAM with any height and
any stash’s width has less probability of writing information
back to its old location, compared to Path ORAM.
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7. Conclusion

M-ORAM uses a matrix storage structure to provide the
same security as other ORAM schemes while reducing the
bandwidth cost. In the normal construction, it gives O(1)
bandwidth cost with O(N) client storage, while the recursive
construction gives O(log N) bandwidth cost with O(log N)
client storage. To prevent the server from distinguishing be-
tween two consecutive access operations on different data,
we prove that the height of our construction should be at
least 5 blocks, where 1 to 3 blocks are randomly selected
from the previous operation. The results from the exper-
imental analysis show the appropriate range of height is
8 ≤ H ≤ 50 with stash width 2 ≤ W ≤ 13. With these
parameter values, M-ORAM can achieve better bandwidth
cost than Path ORAM at the same probability of duplication.
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Appendix: Proof of Average Number of the Same
Block Will be Downloaded between the Dif-
ference Operation in Path-ORAM

In this section we show how to calculate the average number
of blocks that are accessed in one Path ORAM operation,
which were also accessed in the previous operation. These
blocks are referred to as duplicate blocks.

Theorem 1: The average number of duplicate blocks
downloaded across two Path ORAM operations op, is:

op =

∑H
i=1 2i−1

2H−1
(A· 1)

where i ∈ {1, 2, . . .H}
Proof : Figure A· 1, which shows the binary-tree structure
of Path ORAM with height H, is used in explaining the
proof. Suppose that the set of blocks chosen during the pre-
vious access operation is represented as the gray circles in
the binary tree. There are 2H−1 possible paths from a leaf
node to a root of the tree. The next access operation down-
loads from one of the possible paths. As data blocks are
assigned random leaf IDs in Path ORAM (they are changed
for each accessing), and the next path is chosen uniformly
at random. There is only one possible path that could be
chosen out of 2H−1 that results in H duplicate nodes (i.e. the

Fig. A· 1 Possible path of H − i overlapped nodes
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exact same path as the previous operation). If the exact same
path is not chosen, then there are 2i−1 possible paths that re-
sult in H − i duplicate nodes, where i ∈ {1, 2, . . . ,H − 1}.
Therefore, the average number of duplicate nodes/blocks is:

op =
1

2H−1
H +

H−1∑
i=1

2i−1

2H−1
(H − i)

=

∑H
i=0 2i

2H−1
(A· 2)
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