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SUMMARY By the deployment of Internet of Things, embedded sys-
tems using microcontroller are nowadays under threats through the network
and incorporating security measure to the systems is highly required. Un-
fortunately, microcontrollers are not so powerful enough to execute stan-
dard security programs and need light-weight, high-speed and secure cryp-
tographic libraries. In this paper, we port NaCl cryptographic library to
ARM Cortex-MO0O(MO0+) Microcontroller, where we put much effort in fast
and secure implementation. Through the evaluation we show that the im-
plementation achieves about 3 times faster than AVR NaCl result and re-
duce half of the code size.
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1. Introduction

Nowadays Internet of Things(IoT) is one of the most emerg-
ing technologies by the spread of the smartphone and low-
price wireless module. Some types of IoT are composed
of embedded systems using microcontroller. Such systems
are connected through the Internet and it is unavoidable to
take some security measure against threats through the net-
work. Unfortunately, microcontrollers are not so power-
ful enough to execute standard security programs and need
light-weight, high-speed and secure cryptographic libraries.

The microcontroller is one-chip controller that contains
CPU, RAM, program memory and peripherals. It does not
have enough power, but the cost is quite cheaper than the
personal computer. It has been embedded in product that
performs a simple control. The microcontroller’s RAM and
program memory are often have a very small size, e.g. the
general Cortex-MO(MO+) memory size is about §-KB to
128-KB. Therefore, the program used in microcontroller is
required to have a small code size and a small amount of
RAM. If the microcontroller has large memory, the maker
can implement more application to one microcontroller in
order to reduce the cost. Therefore, the cryptographic li-
brary is expected to have a small size. In addition, the pro-
gram is required to achieve high-speed for energy-saving
and shorten the response time for efficiency. A typical mi-
crocontroller has 8, 16 or 32-bit length architecture and one
of these architectures is selected depending on the purpose.
The bit length of the architecture is related to data length
that can be processed at a time. For example, 32-bit mi-
crocontroller can process a 32-bit value at a time. Such a
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microcontroller is 4 times faster than 8-bit microcontroller.
Therefore, it is preferable to use high-speed 32-bit micro-
controllers in order to manage the process for the network-
ing and security.

ARM Cortex-MO0O(and M0O+) microcontroller is one of
the 32-bit microcontrollers that have characteristics of low-
cost and power-saving. They are expected to be used for
the communication of the sensor nodes. In addition, the ad-
vent of mbed [1] platform will allow high-speed prototyping
more easily by using ARM microcontroller. ARM micro-
controllers will presumably continue to deploy further in the
world. Therefore, we should support mbed platform at the
time of make programs, in order to spread the programs for
ARM microcontroller.

The Networking and Cryptography library NaCl pro-
nounced “salt”[2] is a cryptographic library for secur-
ing Internet communication, developed by Daniel J Bern-
stein. This library has been designed for easy-usability,
high-security and high-speed. NaCl has been re-designed
as uNaCl for the microcontroller, and developed to AVR
NaCl[3] for the AVR microcontroller. Unfortunately, AVR
microcontrollers are not so powerful enough for encryption
and communication for sensors.

Later, MONaCl [4] was developed, that is uNaCl im-
plementation for ARM Cortex-M0 microcontroller. How-
ever, only high-speed Curve25519 was implemented, and
full function of NaCl cannot be used.

In this paper, we port full function of NaCl crypto-
graphic libraries to ARM Cortex-MO(MO+) microcontroller,
where we put much effort in fast and secure implementation,
and evaluate the implementation.

This paper is organized as follows. In Sect.2, we ex-
plain the NaCl and ARM Cortex-M0O(M0+) microcontroller.
Section 3 describes the implementation of NaCl. Results,
comparison with previous work and discussion are given in
Sect. 5.

2. Background

2.1 Networking and Cryptography Library(NaCl) and
uNaCl

The Networking and Cryptography library NaCl pro-
nounced ‘“‘salt” [2] is a cryptographic library for securing
Internet communication, developed by Daniel J Bernstein.
This library has been designed for easy-usability, high-
security and high-speed.
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Table1  NaCl Primitives
DH-Key exchange protocol Curve25519[5]
Stream Cipher Salsa20 [6]
Public-key Digital Signature | Ed25519
MAC Poly1305[7]
Hash SHA2-512 (8]

NaCl provides primitives shown in Table 1. In addition,
NaCl provides APIs which allow one to perform encryption
and decryption using NaCl primitives.

NaCl and uNaCl is designed to protect following
known vulnerability issues [2, Section3] [3, Section3.1] .

(1) Secret load addresses.

Normal CPU but not embedded one has cache memory and
the data in the cache can be accessed faster than those in
memory. Attackers use such a time difference for timing at-
tacks. We should avoid secret-key dependent load address,
which is called secret load address in [3]. Some microcon-
trollers such as AVR and ARM Cortex-MO do not have a
CPU cache memory, and they are free from the attack.

(2) Secret branch conditions.

Attackers can perform timing attack by measuring the dif-
ference of execution time of each branch. Reasons why
such attacks can be performed are the existence of secret-
key dependent branch conditions [9] and success/failure of
branch prediction [10]. We should avoid secret-key depen-
dent branch conditions, which are called secret branch con-
dition in [3].

In the similar vein, NaCl incorporates the following
measures against the attacks.

e Remove the conditional branch that depends on the se-
cret information.
e Make loop counts deterministic.

AVR microcontroller also adopts these measures. AVR
and ARM Cortex-M0O microcontroller do not have branch
predictor and secure against the attack.

(3) Avoiding unnecessary randomness.

In 2008, it is discovered that OpenSSL generates a pre-
dictable random number(CVE-2008-0166) [11]. The cause
of the problem is that the code for the OpenSSL random
number generation was patched by a wrong code. To avoid
the problem NaCl has centralized the random number gen-
eration to the OS random number generator [2, Section3
Centralizing randomness] . In addition, NaCl avoids un-
necessary use of randomness to reduce the problems arisen
from random numbers [2, Section3 Avoiding unnecessary
randomness] .

2057

2.2  ARM Cortex-M0 and MO+ Microcontroller

ARM Cortex-M microcontroller series are 32-bit RISC ar-
chitecture microcontrollers developed by ARM Inc. Cortex-
MO and MO+ have characteristics of low-cost and power-
saving and they are expected to be used for the communica-
tion of sensor nodes. Hereafter, we simply write Cortex-MO
without describing both of them as long as it does not cause
confusion.

Cortex-MO architecture has thirteen 32-bit general-
purpose registers(RO-R12) and three special registers(R13-
R15). In particular, RO-R7 are called “low-register”’, and
R8-R12 are called “high-register”. Among special register
R13-R15, R13 is a stack pointer(SP), R14 is a link regis-
ter(LR) and R15 is a program counter(PC).

Cortex-MO uses Thumb instruction set that is 16-
bit(half-word) fixed length instruction. The Thumb instruc-
tion set has some limitation such that a lot of instruction
cannot use high-register. However, we can write highly-
efficient and small code using the Thumb instruction set.

In addition, Cortex-MO has 3-stage(MO+ has 2-stage)
pipeline. If it is possible to use these units effectively, it can
speed up the execution.

Although Cortex-M0 hardware multiplier is optional, it
can calculate 32 x 32 bit multiplication and output the lower
32-bit result. The execution cycle of the multiplication in-
struction(MUL) is dependent on multiplier unit implemen-
tation. One out of two types, “fast” and “small”, of multi-
plier unit can be implemented at the time of processor man-
ufacturing. The “fast” implementation can perform a multi-
plication in 1-cycle. Although the “small” implementation
requires 32-cycle for multiplication, but its implementation
size can be reduced.

3. Implementation

The core part of AVR NaCl is written in about 6,000-line
AVR assembly language for optimization and safety im-
provement. We rewrite this AVR assembly code to ARM
Thumb assembly code, and uNaCl is implemented to work
on the ARM Cortex-M0. Moreover, we attempt small secu-
rity fix and optimization.

Main points of our implementation are as follows,

e Adoption of the pseudo-random number generation
method whose entropy source is the initial value of
SRAM.

e Importing MONaCl’s 256-bit multiplication code with
the balance of speed and code size.

Other point of the implementation is the treatment of
branch conditions. We remove branch instructions as much
as possible for the improvement of speed. The removal also
allows us to prevent unknown security breaches caused by
branch instructions which have indirect relation with secret
key.
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3.1 Pseudo-Random Number Generation Method

Two random number generation methods proposed in the
paper of AVR NaCl [3, Section3.1 Randomness generation]
have the following problems. The first method uses an exter-
nal random number generator, which increases the cost due
to the addition of the external device. The second method
uses jitter of RC oscillator [12], for which frequency injec-
tion attack [13] has been discovered.

We adopt a pseudo-random number generation method
using Salsa20 as encryption scheme and the initial value
of the SRAM[14] as a random seed. The process of
the pseudo-random number generation is based on that of
“arc4random” of OpenBSD, and the encryption scheme
ChaCha20 is replaced with Salsa20 and the random seed is
replaced with the initial value of the SRAM. The advantage
of this method is the use of the existing Salsa20, whose code
size has already been reduced and the random seed genera-
tion which is low cost and has not yet been attacked.

The procedure of the pseudo-random number genera-
tion method is as follows.

1. Get an 12,800-bit initial value of SRAM.

2. Input the initial value to SHA2-512 to create a random
seed.

3. Set the random seed to an internal state of Salsa20.

4. Calculate Salsa20 to output a 256-bit pseudo-random
number.

3.1.1 Security of Random Number

In uNaCl, random numbers only in 32-byte key generation.
We discuss are required entropy required for random num-
bers. As recommended in NIST SP800-90 [15] entropy of
the random number seed should be more than 1.5 times the
amount of the shared key. Therefore, the entropy of the ran-
dom number seed should be more than 384 bits. The ini-
tial value of SRAM entropy is 3% per 1-bit [16]. Therefore,
12,800 bits (1,600byte) should be extracted from the SRAM
as an initial value. 20,000-bit random numbers generated
on MKL25Z128VLK4(Cortex-M0+) by using this method
have passed the test of FIPS 140-2.

3.2 Importing MONaCl’s 256-bit Multiplication Code
with the Balance of Speed and Code Size

The Curve25519 code of MONaCl is very fast, but its code
size is large. According to [4], the Curve25519 code size is
7,900-bytes, but program flash size of many Cortex-MO mi-
crocontrollers is less than 32-KB. If we use the Curve25519
code of MONaCl as it is, about 25 % of the program flash are
occupied and it becomes difficult to implement other crypto-
primitives and user application codes. Therefore, we import
the Curve25519 code of MONaCl with the following change
to save code size.
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e Using 256-bit multiplication instead of 256-bit squar-
ing.

e Reimplementation of 256-bit multiplication using 128-
bit multiplication.

3.2.1 Reimplementation of 256-bit Multiplication Using
128-bit Multiplication

The 256-bit multiplication code of MONaCl treats Cortex-
MO multiplication instruction as 16-bit multiplication
instruction, and uses three-level Subtract Karatsuba
method [4, Section 5.2 Multiplication] . This 256-bit multi-
plication code uses 128-bit and 64-bit Subtract Karatsuba
method multiplications and 32-bit schoolbook multiplica-
tion. The cause of large code size is that 256-bit multipli-
cation of MONaCl does not reuse any long-multiplication
code, so these codes are written one by one. Therefore, we
reuse 128-bit multiplication for 256-bit multiplication code
in order to save code size.

We call “fast” code is the original 256-bit multiplica-
tion code, and “small” code is the improved one with saved
code size with 128-bit multiplication. The user can select
“small” or “fast” according to the purpose. Both benchmark
results are given in Sect. 4.1.

4. Benchmark Results

In this section, we show the benchmark results of our imple-
mentation described in Sect. 3.

4.1 256-bit Multiplication Benchmark Result

“fast” and “small” 256-bit multiplication codes have the fol-
lowing differences.

We show in Table 2 that “small” code can save its size
about half. Table 2 and Table 3 show “small” multiplication
code is about 20% slower than “fast” code.

4.2  AVR NaCl versus Cortex-M0/MO+

There are fast version and small version of AVR NaCl.
Benchmark results of the fast version of the AVR and our
work are shown in Table 5. Note that the benchmark results
are obtained in environments shown in Table 4.

The Table 5 shows that this implementation is about 3
times faster than AVR result and reduces half of the code
size. Compared with the results of the AVR NaCl, the
code size is smaller than even “small” version whose size is
18,328-byte. Theoretically, Cortex-MO can perform 4 times

Table2  Benchmark result of “fast” and “small” multiplication
fast small
Execution cycle 1350 | 1633
256-bit multiplication code-size(byte) | 2176 436
128-bit multiplication code-size(byte) - 664
Total of code size(byte) 2176 1100
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Table3  Benchmark result of using “fast” and “small” multiplication
API or Primitives fast small fast / small
crypto_box_curve25519xsalsa20poly 1305 keypair 4236162 | 4960910 85%
crypto_box_curve25519xsalsa20poly 1305 _beforenm 4215360 | 4940127 85%
crypto_box_curve25519xsalsa20poly 1305[1056-byte] 4390192 | 5114957 86%
crypto_box_curve25519xsalsa20poly 1305_open[1056-byte] | 4291964 | 5016725 86%
crypto_dh_curve25519 keypair 4236154 | 4960913 85%
crypto_dh_curve25519 4209862 | 4934628 85%
crypto_scalarmult_curve25519_base 4209866 | 4934628 85%
crypto_scalarmult_curve25519 4209843 | 4934603 85%
crypto_sign_ed25519 keypair 4590954 | 5326281 86%
crypto_sign_ed25519 5119331 | 5854948 87%
crypto_sign_ed25519_open 8764402 | 9923302 88%
Table4 Benchmark environment
Our work
AVR NaCl Cortex-M0+ Cortex-M0
Board Arduino MEGA2560 FRDM-KL25Z mbed LPC11U24
Microcontroller ATMEGA2560 MKL257Z128VLK4 LPC11U24
Source code avrnacl-20140813, fast - -
Compiler gec 4.8.1,-03 gee 4.8.3,-02 gcc 4.8.3,-02
Table 5  NaCl benchmark result
API Message Execute Cy/:lf:M Gain Stack
bytes AVR CortexMo+ T CortexMO AVR /MO+ | bytes
crypto-auth_hmacsha512256 1024 6367104 2730411 3818420 233% 940
crypto_auth_hmacsha512256_verify 1024 6367512 2730769 3818951 233% 940
crypto_box_curve25519xsalsa20poly 1305 keypair 23239860 4236162 5193420 549% 516
crypto_box_curve25519xsalsa20poly 1305 _beforenm 22853464 4215360 5165998 542% 532
crypto_box_curve25519xsalsa20poly 1305 1056 | 23342860 4390192 5390007 532% 596
crypto_box_curve25519xsalsa20poly1305_open 1056 | 23061840 4291964 5263031 537% 596
crypto_box_curve25519xsalsa20poly 1305 _afternm 1056 489830 174859 224058 280% 596
crypto_secretbox_xsalsa20poly 1305 1056 489812 174845 221060 280% 476
crypto_secretbox_xsalsa20poly 1305_open 1056 208536 76652 96734 272% 476
crypto_hash_sha512 1024 4773346 2046102 2835995 233% 884
crypto_dh_curve25519 keypair 23239836 4236154 5192245 549% 516
crypto_dh_curve25519 22836606 4209862 5157930 542% 516
crypto_stream_salsa20 1024 266092 87292 107253 305% 364
crypto_stream_salsa20_xor 1024 281300 98564 123578 285% 364
crypto_stream_xsalsa20 1024 282728 92809 113988 305% 412
crypto_stream_xsalsa20_xor 1024 298210 104095 130326 286% 412
Primitives
crypto_core_hsalsa20 17019 5527 6863 308% 268
crypto_core_salsa20 16930 5444 6768 311% 204
crypto_hashblocks_sha512 1024 4239316 1817297 2517098 233% 532
crypto_onetimeauth_poly 1305 1024 173767 64937 81257 268% 292
crypto_onetimeauth_poly 1305 _verify 1024 174005 65141 81549 267% 292
crypto_scalarmult_curve25519_base 22836588 4209866 5164352 542% 500
crypto_scalarmult_curve25519 22836588 4209843 5164176 542% 492
crypto_sign_ed25519_keypair 21913629 4590954 5678887 477% 1580
crypto_sign_ed25519 1024 | 22691528 5119331 6435293 443% 1676
crypto_sign_ed25519_open 1088 | 37562656 8764402 11100947 429% 1676
crypto_verify_16 383 236 338 162% 12
crypto_verify_32 553 396 578 140% 12
NaCl implementation — |Code size(bytes) S Dlﬂ“erence1 —
faster with only twice longer instructions than AVR micro- has been used.
controller. The results shown above mean that we have suc- Table 5 shows that stack size used in this library is less
ceeded in achieving about 70% of the efficiency in our im- than 2000-bytes. We expect the effect of footprint for utiliz-
plementation. In Table 5 the scores of programs related to ing the software library is enough small.

Curve25519 are high. This is because the code of MONaCl
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5. Concluding Remarks

In this paper, we implemented pNaCl in Cortex-MO micro-
controller for all primitives of MONaCl, only Curve25519 of
which has been implemented so far [4], and showed that the
implementation is 3 times faster than AVR NaCl. So far, we
have not yet succeed in optimizing all of the codes. We can
expect that uNaCl with higher-speed can be obtained after
the optimization.

Entropy contained in the SRAM has been estimated
from the results for STM32 microcontroller [16]. Since
there are many ARM microcontrollers e.g. NXP, FreeScale,
Atmel, we should examine the amount of entropy contained
in the SRAM of those microcontrollers.

If we can port this library into mbed environment, then
the security of many products using mbed can be improved
and many people can get benefit of the library. In the mean
time, program flash size is less than 32-KB in many Cortex-
MO microcontrollers supported by mbed. The program flash
size is not large enough for installing our implementation
with basic libraries, e.g. libgcc and libstdc++. The balance
of speed and size is quite important in the implementation.
A library having an appropriate balance be widely used in
mbed and other Cortex-MO microcontrollers.

Concerning preemptive multitasking, we expect that
preemptive multitasking is possible if the scheduler saves
registers and restore it correctly. Basically, the NaCl uses
only stack. Few global memory may be used but its use is
limited to store only read-only values e.g. SHA2-512’s con-
stant. Therefore, even if another process executes NaCl’s
encryption operation during the interruption of main pro-
cess, the process does not influence to the main process.
Since we have not yet fully checked the behaviors of pre-
emptive multitasking in our environment, these issues are
remained as the future work.
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