IEICE TRANS. INE. & SYST., VOL.E98-D, NO.12 DECEMBER 2015

2187

| LETTER Special Section on Parallel and Distributed Computing and Networking

Fast Control Method of Software-Managed TLB for Reducing
Zero-Copy Communication Overhead

Toshihiro YAMAUCHI'®, Member, Masahiro TSURUYA", Nonmember, and Hideo TANIGUCHI', Member

SUMMARY Microkernel operating systems (OSes) use zero-copy
communication to reduce the overhead of copying transfer data, because
the communication between OS servers occurs frequently in the case of
microkernel OSes. However, when a memory management unit manages
the translation lookaside buffer (TLB) using software, TLB misses tend to
increase the overhead of interprocess communication (IPC) between OS
servers running on a microkernel OS. Thus, improving the control method
of a software-managed TLB is important for microkernel OSes. This pa-
per proposes a fast control method of software-managed TLB that manages
page attachment in the area used for IPC by using TLB entries, instead of
page tables. Consequently, TLB misses can be avoided in the area, and the
performance of IPC improves. Thus, taking the SH-4 processor as an ex-
ample of a processor having a software-managed TLB, this paper describes
the design and the implementation of the proposed method for AnT oper-
ating system, and reports the evaluation results of the proposed method.
key words: microkernel, interprocess communication (IPC), software-
managed TLB, operating system

1. Introduction

Microkernel operating systems (OSes) [1], [2] architecture
involves the implementation of near-minimum OS functions
as a kernel; these include scheduling, memory management,
and interprocess communication (IPC) functions. Other OS
functions are implemented as processes (OS servers). OS
servers include, among other functions, a file management
function and various types of driver functions. Microkernel
OSes can introduce new functions as OS server processes
without modifying the kernel. OS servers are relatively re-
liable because most OS servers are developed by expert OS
developers.

Microkernel OSes use zero-copy communication to re-
duce the overhead of copying transfer data, because the
communication between OS servers occurs frequently in the
case of microkernel OSes. However, zero-copy communi-
cation [3], [4], which occurs when sharing or replacing data
between two virtual spaces, causes a translation lookaside
buffer (TLB) miss during communication, because the asso-
ciated page table must also be updated. In particular, embed-
ded processors often have a software-managed TLB. When
a memory management unit (MMU) manages TLB using
software, TLB misses tend to increase the overhead, because
the overhead of TLB misses in a software-managed TLB is

Manuscript received January 9, 2015.
Manuscript revised May 19, 2015.
Manuscript publicized September 15, 2015.
"The authors are with Graduate School of Natural Science and
Technology, Okayama University, Okayama-shi, 700-8530 Japan.
a) E-mail: yamauchi@cs.okayama-u.ac.jp
DOI: 10.1587/transinf.2015PAL0003

larger than that of TLB misses in a hardware-managed TLB.

This paper proposes a fast control method for software-
managed TLB that manages page attachment in the area
used for IPC using TLB entries instead of page tables. In a
previously proposed method [5], OS servers share the TLB
entries of the data communication area with Application
Program (AP) processes. In order to improve the IPC per-
formance of OS servers, the proposed method allocates the
TLB entries of the data communication area to OS servers.
The proposed method can avoid TLB misses of OS servers
in the area, and as a result, the performance of OS servers
improves. This paper describes the design and the imple-
mentation of the proposed method for an operating system
with Adaptability and Toughness (AnT) [6] that is based on
the microkernel architecture. For this design and implemen-
tation, we consider the SH-4 processor that has a software-
managed TLB. Furthermore, this paper reports the evalu-
ation results of the packet transmission performance tests
comparing the proposed method with two control methods
of AnT and a method of ART-Linux [7], which is a mono-
lithic kernel OS.

2. Control Method of Software-Managed TLB
2.1 Point of View

The zero-copy communication method has two overheads.
First, the page table of the process needs to be updated while
processing page attachment and detachment. Second, the
TLB miss handler must be executed because the TLB entry
related to page attachment and detachment must be flushed
during its processing. In particular, when an MMU manages
TLB using software, the TLB miss handler leads to a large
overhead. Another problem is that the shared data can be
destroyed by other processes that are part of the zero-copy
communication of sharing a data between processes.

We took advantage of the software-managed TLB’s
ability to register information to the TLB by software.
Specifically, we devised methods of registering information
to TLB in order to avoid TLB misses in the data communica-
tion area, which is used to transfer data between processes.
In this way, we are able to eliminate the need to update the
page table. In addition, TLB misses do not occur when
accessing the data communication area in IPC processing.
Furthermore, TLB misses only occur when unattached area
of data communication is accessed. The TLB misses are
treated as data protection exceptions, and the number of

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers

2188

TLB misses in the data communication area is decreased.
Accordingly, the following are expected:

1. Update of the page table is unnecessary.

2. Reduction in processing overhead by avoiding TLB
misses.

3. Protection of the data exchanged between processes by
treating TLB misses as data protection exceptions.

2.2 Feature of SH-4 MMU

We describe the features of the SH-4 MMU in the following
lines:

1. A multiple virtual storage (MVS) is divided into five
areas that have different access credentials and address
translation methods for each area; therefore, usage is
limited. For example, the area to be used as a kernel
space is directly mapped to physical memory and is ac-
cessed without checking the page table.

2. Users can choose from 1 KB, 4 KB, 64 KB, 1 MB, or
a combination of different page sizes.

3. The TLB is composed of 64 entries. Users can choose
any TLB entry with which to register the information
of the page table. If users do not choose the TLB entry
themselves, the system selects the entry based on the
value of the random counter on the hardware.

4. If users want to use MVS, the TLB entry holds an iden-
tifier for each virtual space; therefore, it is not neces-
sary to flush TLB entries when switching from one vir-
tual space to another.

2.3 Fast Control Method of Software-Managed TLB

This paper proposes a fast control method of software-
managed TLB. Our main goal is to manage page attachment
in the data communication area by using TLB entries instead
of page tables. When attached page exists in data communi-
cation area, the an entry of that page is always registered in
TLB. Thus, TLB misses are avoided, and updating the page
table becomes unnecessary.

With the proposed method, the control of the data com-
munication area attachment is undertaken in the following
manner:

1. When attaching the data communication area to a pro-
cess of the AP, obtain a TLB entry and register the ad-
dress translation information in the TLB entry.

2. When detaching the data communication area from the
process, delete the address translation information and
free the TLB entry.

3. OS servers are allowed to read from and write to the
entire data communication area. The address transla-
tion information of the data communication area for OS
servers is always registered in TLB entries.

In addition, the address translation information of the data
communication area resides only in the TLB entry. Fur-
thermore, this method does not use page table entries of the

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.12 DECEMBER 2015

TLB (64 Entries)

Entry 0
. (A) For OS servers
- (X Entries)
(1) Data co'mmunication area Entry X-1
(N Entries) Entry X
. B) For AP processes
p
- (N-X Entries)
Entry N-1
Entry N
(2) Process area Page size: Al‘]EE
64-N Entri !
(ntries) 64 KB,
Entry 63 or 1 MB

Fig.1 Allocation of TLB entries.

data communication area. If processes try to access the data
communication area that is not attached, a TLB miss oc-
curs. By treating TLB misses as data protection exceptions,
this method can prevent data corruption and unauthorized
access without including the overhead of checking the page
table entry.

This control method distinguishes AP processes from
OS servers, and focuses on OS servers that are more reli-
able and communicate more frequently than AP processes.
Thus, the TLB entry of the entire data communication area
is always registered for each OS server. Therefore, it is not
necessary to update page tables and TLB entries. In addi-
tion, the number of the TLB entries used by OS servers can
be reduced by using a large page size in the data communi-
cation area.

In order for a control to make the best use of previously
described features, it must allocate TLB entries in the data
communication and other areas, such as the text part and the
data part of the process area, and then manage those entries.
Figure 1 shows the allocation of TLB entries.

The control method allocates N entries (from 0 to N —
1) to the data communication area. X entries are allocated
to OS servers; therefore, the data communication area of
AP processes can use up to N — X pages. It allocates the
remaining entries (from N to 63) to the process area.

In order to reduce TLB misses, the proposed method
manages the state of the TLB entries that are allocated to
the process area. Specifically, when they register the address
translation information with the TLB, they choose the TLB
entry that has not been used. If all entries have been used,
the entry is selected based on the random counter on the
hardware, thereby, reducing TLB misses better than using
all the entries at random. In addition, we chose the page
size and the number (N) of TLB entries to be allocated to
the data communication area by considering the form of the
IPC and operating environment.

There are three drawbacks of the proposed method.
First, the reliability is reduced because OS servers can al-
ways access the entire data communication area. If an OS
server destroys a memory region of the data communica-
tion area, it can negatively affect the system. Second, the
number of OS servers that can run concurrently is restricted.
The maximum possible number of concurrently running OS
servers equals the number of TLB entries available for OS

LETTER

servers. Third, the performance of TLB-intensive applica-
tions may degrade because number of TLB entries of pro-
cess area is reduced.

3. Design and Implementation for AnT
3.1 AnT Operating System

The AnT operating system is based on the microkernel ar-
chitecture. The program consists of the OS and service. The
OS comprises of the kernel, which is referred to as the in-
ternal core, and the external core, which is executed as pro-
cesses (OS server). Service consists of AP processes that
execute the applications program. The internal core is the
program component that guarantees the execution for a min-
imum number of common functions in all the systems. The
external core is the necessary to adapt to the use cases of the
systems. It has a dynamically reconfigurable structure. For
example, AnT offers the functions of input/output control,
file management, and device driver as processes. Service
is the program component that offers services. The virtual
space in AnT consists of multiple virtual storages.

In order to improve the IPC performance, AnT in-
cludes a data zero-copy communication function that uses
an Inter-core Communication Area (ICA). This area is used
by the internal core, the external core, and the service for
data communication.

Inter-Server Program Communication (ISPC) mech-
anism [8] implements zero-copy communication between
processes by using ICA. Specifically, the information about
communication control and the arguments (request informa-
tion) to be passed to the OS server are stored in the ICA for
control (control ICA), and the transfer data is stored in the
ICA for transfer data (data ICA). In addition, the kernel uses
request and result queues for each process for communica-
tion. In addition, it offers the user a choice of synchronous
or asynchronous communication.

3.2 Design and Implementation of the Proposed Method

AnT uses ICA as the data communication area. There-
fore, we implemented ICA attachment and detachment. In
this paper, we describe the implementations of the proposed
method and the previously proposed method [5] for AnT,
which we will refer to as AnT proposed method and AnT
previously proposed method, respectively. AnT previously
proposed method is used for the evaluation of the proposed
method. In addition, the original AnT considers the random
counter on the hardware to choose the TLB entry to use as
Linux for SH-4. In this case, the original AnT will be called
AnT random. AnT random also searches all TLB entries
and deletes the target entry, including the address transla-
tion information.

The implementation of AnT proposed method and
AnT previously proposed method are as follows: The ICA
attachment and detachment of AP processes register and un-
register the address translation information to and from the

2189

TLB, instead of the page table. In addition, when unreg-
istering the address translation information, it chooses the
TLB entry directly, instead of using the random counter on
the hardware. The OS servers of AnrT proposed method
need not perform these processes because OS servers do not
share the TLB entries of the data communication area with
AP processes.

4. Evaluation
4.1 Measurement Environment

For the test, we used a computer with an SH-4 (SH7751R
240 MHz) processor, and we used ART-Linux (kernel-
2.4.29) for evaluations. ART-Linux also uses the random
counter on the hardware to choose the TLB entry to use. In
the case, ART-Linux will be called ART-Linux (random). In
this study, we compiled AnT and ART-Linux using the same
compiler (gcc-3.2.3). On AnT previously proposed method
and AnT proposed method, we also allocated 32 entries of
the TLB to the data communication area and the remaining
32 entries to the process area. A total of 8§ TLB entries of
the data communication area are allocated to OS servers on
AnT proposed method.

4.2 Performance of Basic Operations

We describe the basic operations. When testing the basic op-
erations, we measured communication time between the re-
quest AP process and the OS server. In this test, the control
ICA does not have any arguments or return values to pass
to the OS server. We evaluated synchronous request, asyn-
chronous request, synchronous return, and asynchronous re-
turn. We also evaluated ISPC with data ICA and without
data ICA. The data ICA size was 4 KB when data ICA was
used. In order to determine the overhead of the communica-
tion mechanism, the OS server performs only the operations
involved in the communication. The processing time of ba-
sic operations are shown in Fig. 2.

Each basic operation consists of process switch, first
ICA access, ICA detachment, ICA attachment, system call,
and other operations. Figure 2 shows that processing time
of AnT proposed method is shorter than that of AnT previ-
ously proposed method by about 0.6-2.2 us (about 6-19%).
This is because the address translation information of the
data communication area for OS servers in AnT proposed
method always exists in TLB entries. It does not need to
register and delete the address translation information in a
TLB entry. In addition, Fig. 2 illustrates that the processing
time of AnT proposed method decreased from AnT random
by about 2.9-9.4 us (about 29-49%). This results show the
overhead of TLB misses of AnT random.

4.3 TCP/IP Communication Performance

AnT provides TCP/IP communication by using OS servers:

2190
200 B ART-Linux (random) B AnT random
%160 OAnNT previously proposed OAnNT proposed
=4
"2 120
E
o 80
£
(7]
o
<
& o A . A A
256 512 768 1024 1280

Data size (B)

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.12 DECEMBER 2015

200 OART-Linux (random) B ANnT random
160 OAnNT previously proposed OAnT proposed
=1
o 120
E
=1
w 80
£
(7]

o 40
153
14
& 0 . : : .
256 512 768 1024 1280
Data size (B)

Fig.3 Processing time of packet transmission (left: without other process, right: with other process).

Leftmost: AnTrandom Left: AnT previous proposed method
Right: AnT proposed method (OS server ¢ OS server)
Rightmost: AnT proposed method (AP process «>OS server)

20

Processingtime (1 s)
) P
1

3]

0 NIA NIA NIA N/A|
Without| With | Without| With |Without| With | Without| With
data ICA |data ICA |data ICA |data ICA |data ICA |data ICA |data ICA [data ICA

Sync Async Sync Async
Request Return
‘ O Process switch B FirstICA access O ICA detachment
B |CA attachment M System call O Other operations

Fig.2 Processing time of basic operations.

the network protocol control server and the Network Inter-
face Controller (NIC) driver. We measured the processing
time of one packet transmission by connecting the eval-
uation computer (Processor: SH7751R 240 MHz, NIC:
Intel GD82551ER) and the receiver computer (Processor:
Pentium4 3.4 GHz, NIC: Intel 82558, OS: FreeBSD 4.3-
RELEASE) through a hub.

We evaluated two cases where another process exists
and where another process does not exist. In the case,
the coexisting process performs repeated memory accesses
(read/write) to and from an area that is 32 KB (the same
size as the data cache of SH7751R). In addition, the prior-
ity assigned to the coexisting process was the lowest among
all processes. The processing time of packet transmission
is shown in Fig. 3. The horizontal axis shows the size of a
transmitted packet. From this figure, we can draw the fol-
lowing conclusions:

1. The packet transmission time of AnT proposed method
was shorter than that of AnrT previously proposed
method by about 2.9-11.1 us (about 4-10%). This is
because the address translation information of the data
communication area for OS servers in AnT proposed
method always exists in TLB entries.

2. The packet transmission time of AnT proposed method
was about 36.5-38.7 us (about 26-34%) shorter than
that of AnT random. This is because the overhead of
ISPC was reduced.

3. The packet transmission time of AnT proposed method
was about 18.0-37.8 us (about 16-28%) shorter than
that of ART-Linux (random). This is because AnT
does not need to create the packet during the packet
transmission operation. In contrast, ART-Linux creates
memory region of packets during the packet transmis-
sion operation.

5. Related Works

In order to reduce TLB misses, the following methods have
been proposed: utilizing TLB entries efficiently by enlarg-
ing the page size [9], pre-registering the information in the
page table by estimating TLB misses [10], and scheduling
processes to prevent TLB misses [11].

In [9], TLB misses are reduced by reducing the number
of TLB entries per memory size, whereas in [10] registers
the memory use in the TLB entry is registered before the
memory is accessed. In contrast, the proposed method man-
ages a specific area by using TLB entries without using page
tables. The method proposed in [11] is valid only on threads
running in the same virtual space and, therefore, cannot re-
duce TLB misses when communicating between processes,
which is an issue addressed by the proposed method.

6. Conclusions

This paper proposed a fast control method for the software-
managed TLB and described the design and implementation
of the proposed method. The proposed method reserves the
TLB entries of the data communication area of OS server.
Consequently, the registration and deletion of the TLB en-
tries are avoided in the area during IPC processing.

The evaluation results of the proposed method in AnT
were shown. The AnT proposed method can improve the
performance of IPC more than that of AnrT previously pro-
posed method by about 6-19% because the overhead of
ISPC of OS servers is reduced. The AnT proposed method
can also improve the performance of the packet transmission
further compared with AnT previously proposed method by
about 4-10%. These results show that the proposed method
is useful because the communication of OS servers occurs
frequently on microkernel OSes.

Acknowledgements

This work was partially supported by Grant-in-Aid for

LETTER

Young Scientists (B) Number 25730046.

References

(1]

[2]

[3]

(4]

(3]

J. Liedtke, “Toward real microkernels,” Commun. ACM, vol.39,
no.9, pp.70-77, 1996.

A.S. Tanenbaum, J.N. Herder, and H. Bos, “Can we make operating
systems reliable and secure?,” Computer, vol.39, no.5, pp.44-51,
2006.

D.L. Black, D.B. Golub, D.P. Julin, R.F. Rashid, R.P. Draves, R.-W.
Dean, A. Forin, J. Barrera, H. Tokuda, G. Malan, and D. Bohman,
“Microkernel operating system architecture and mach,” J. Inf. Pro-
cess., vol.14, no.4, pp.442-453, 1992.

K. Mouri and E. Okubo, “The design and implementation of the
lavender micro kernel,” Syst. Comput. Jpn., vol.31, no.7, pp.47-55,
2000.

M. Tsuruya, T. Yamauchi, and H. Taniguchi, “Implementation and
evaluation of software control method for TLB on microkernel
OS,” IEICE Trans. Inf. & Syst. (Japanese Edition), vol.J97-D, no.1,
pp-216-225, Jan. 2014.

(6]

(71
(8]

[9]

[10]

[11]

2191

AnT operating system, http://www.swlab.cs.okayama-u.ac.jp/lab/
tani/research/AnT/index.html

ART-Linux, http://www.dh.aist.go.jp/en/research/assist/ART-Linux/
K. Okamoto and H. Taniguchi, “Implementation and evaluation of
fast inter server program communication for AnT operating sys-
tem,” IEICE Trans. Inf. & Syst. (Japanese Edition), vol.J93-D,
no.10, pp.1977-1989, Oct. 2010.

T.H. Romer, W.H. Ohlrich, A.R. Karlin, and B.N. Bershad, “Reduc-
ing TLB and memory overhead using online superpage promotion,”
Proc. 22nd Annual International Symposium on Computer Architec-
ture, vol.31. no.9, pp.176-187, 1995.

A. Saulsbury, F. Dahlgren, and P. Stenstrom, “Recency-based TLB
preloading,” Proc. 27th Annual International Symposium on Com-
puter Architecture, vol.28, no.2, pp.117-127, 2000.

S. Yamada and S. Kusakabe, “Effect of context aware scheduler on
TLB,” IEEE International Parallel and Distributed Processing Sym-
posium, pp.1-8, 2008.

http://dx.doi.org/10.1145/234215.234473
http://dx.doi.org/10.1109/mc.2006.156
http://dx.doi.org/10.1002/(sici)1520-684x(200007)31:7<47::aid-scj6>3.0.co;2-v
http://dx.doi.org/10.1109/isca.1995.524559
http://dx.doi.org/10.1109/isca.2000.854383
http://dx.doi.org/10.1109/ipdps.2008.4536361

