2150

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.12 DECEMBER 2015

| PAPER Special Section on Parallel and Distributed Computing and Networking

Ultrasmall: A Tiny Soft Processor Architecture with Multi-Bit

Serial Datapaths for FPGAs

Shinya TAKAMAEDA-YAMAZAKI'®, Member, Hiroshi NAKATSUKA ™),
Yuichiro TANAKA "9, Nonmembers, and Kenji KISE"'Y, Member

SUMMARY Soft processors are widely used in FPGA-based embed-
ded computing systems. For such purposes, efficiency in resource utiliza-
tion is as important as high performance. This paper proposes Ultrasmall,
a new soft processor architecture for FPGAs. Ultrasmall supports a sub-
set of the MIPS-I instruction set architecture and employs an area efficient
microarchitecture to reduce the use of FPGA resources. While supporting
the original 32-bit ISA, Ultrasmall uses a 2-bit serial ALU for all of its
operations. This approach significantly reduces the resource utilization in-
stead of increasing the performance overheads. In addition to these device-
independent optimizations, we applied several device-dependent optimiza-
tions for Xilinx Spartan-3E FPGAs using 4-input lookup tables (LUTs).
Optimizations using specific primitives aggressively reduce the number of
occupied slices. Our evaluation result shows that Ultrasmall occupies only
84% of the previous small soft processor. In addition to the utilized re-
source reduction, Ultrasmall achieves 2.9 times higher performance than
the previous approach.

key words: soft processor, processor architecture, FPGA

1. Introduction

FPGA is an emerging hardware to accelerate large-scale
computing in various applications, such as high frequency
trading, web search, and database. In both such modern
and large-scale FPGA systems, and embedded systems, soft
processors have become a common and important compo-
nent. In contrast to general hard macro processors, soft pro-
cessors are realized by utilizing on-chip fabrics on FPGAs,
such as lookup tables (LUTs), registers, and memory blocks.
To achieve adequate efficiency in performance and energy
consumption, FPGA-based computing systems employ op-
timized dataflow pipelines using inherent FPGA resources.

A soft processor is often used to handle the accessorial
and non-performance-critical parts of the target application.
Since it is easier to design and implement an application
as software than to design a dedicated hardware, employ-
ing a soft processor improves the development efficiency of
FPGA-based systems.

FPGA vendors provide such general soft processors

Manuscript received January 9, 2015.
Manuscript revised May 18, 2015.
Manuscript publicized September 15, 2015.
"The author is with Nara Institute of Science and Technology,
Tkoma-shi, 630-0192 Japan.
""The authors are with Tokyo Institute of Technology, Tokyo,
152-8552 Japan.
a) E-mail: shinya@is.naist.jp
b) E-mail: nakatsuka@arch.cs.titech.ac.jp
¢) E-mail: tanaka@arch.cs.titech.ac.jp
d) E-mail: kise@cs.titech.ac.jp
DOI: 10.1587/transinf.2015PAP0022

as Xilinx MicroBlaze [1] and Altera Nios [2] on their EDA
tools. These soft processors have a large capability to exe-
cute various kinds of applications. Unfortunately, these soft
processors consume a large amount of FPGA resources and
energy. Such inefficiency in resource utilization and energy
is critical to embedded systems that use small low-end FP-
GAs. To overcome this inefficiency, various small soft pro-
cessors have been proposed by FPGA vendors, academia,
and open source communities. To reduce the amount of oc-
cupied FPGA resources, previous researches on soft proces-
sor have focused on two approaches.

The first approach is to employ a narrow instruction set
architecture (ISA), such as an 8- or 16-bit ISA. Since the
general soft processors provided by the vendors usually use
a 32-bit ISA, they require wide datapaths and control units.
In contrast, datapaths and control units for narrow ISAs can
be implemented by utilizing many fewer resources. How-
ever, they cannot directly execute the original 32-bit instruc-
tions.

The other approach employs bit serial structures in-
stead of the original bit parallel structures. Since a bit serial
unit can generate a partial result of an instruction, a unique
bit serial unit is used multiple times for generating a com-
plete result. For example, to execute a 32-bit instruction
on a 1-bit serial unit, the unit is repeatedly used 32 times.
Therefore, the execution stage takes 32 or more clock cy-
cles. By employing a narrow datapath, the amount of occu-
pied FPGA resources is efficiently reduced, while the origi-
nal wide ISA is supported. However, the maximum perfor-
mance is obviously reduced by the bit serial structure.

In this paper, we propose Ultrasmall, which is a tiny
soft processor architecture that supports a subset of the
MIPS-I instruction set architecture. For higher resource ef-
ficiency, Ultrasmall uses a 2-bit serial ALU for all opera-
tions instead of the original 32-bit ALU. By employing a
32-bit MIPS ISA, many existing development environments
are available, such as compilers, debuggers, and manuals.
Therefore, designers can develop applications using Ultra-
small with less effort.

Ultrasmall is based on Supersmall [3], a previous tiny
soft processor of the MIPS ISA with a 1-bit serial ALU. Su-
persmall has a multi-cycle structure, not a pipelined struc-
ture, for low resource utilization. Therefore, most instruc-
tions require 32 or more clock cycles to complete execu-
tion. In this work, we found that employing a 2-bit serial
datapath improves the efficiency in both the performance

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers

TAKAMAEDA-YAMAZAKI et al.: ULTRASMALL: A TINY SOFT PROCESSOR ARCHITECTURE WITH MULTI-BIT SERIAL DATAPATHS FOR FPGAS

and resource utilization more than the original 1-bit serial
datapath. Additionally, Ultrasmall employs several device-
specific optimizations using primitives for Spartan-3E FP-
GAs with 4-input LUTs to further reduce the required hard-
ware resources.

This paper is based on our previous works [4], [5],
where we proposed the baseline architecture and showed
preliminary evaluation results. The following are this pa-
per’s main supplementary contributions: the first contribu-
tion is to present a more detailed architecture and imple-
mentation of Ultrasmall. As a whole, we have described
overall sections in a careful manner. Especially, we intro-
duce the finite state machine (FSM) structure and FSM se-
quence of each instruction. Then, we present how to imple-
ment a byte- and half-word load/store instructions on Xil-
inx Spartan-3E FPGAs without byte-enable access capabil-
ity. The second contribution is a detailed discussion why
Ultrasmall achieves the better resource utilization and why
its maximum clock frequency is lower than the others.

The rest of this paper is presented as follows. In Sect. 2,
we discuss previous related works. In Sect. 3, we describe
the motivation of our research and Ultrasmall’s architecture.
Section 4 compares Ultrasmall’s evaluation results in terms
of performance and hardware resource utilization to previ-
ous work. Finally, a summary is provided in Sect. 5.

2. Related Work
2.1 Previous Soft Processors

FPGA vendors provide some general soft processors. Mi-
croBlaze [1] is one of the most famous 32-bit soft processors
provided by Xilinx, which has various configuration options
in pipeline depth, floating point unit, cache memory, mem-
ory management, and bus interface. By using XPS [6] or
Vivado [7], designers can make a customized soft proces-
sor with adequate performance and resource utilization for a
specific application. Nios [2], which is a widely used 32-bit
soft processor in Altera FPGAs, also has various architec-
tural options. Nios is also customizable on the EDA tools
provided by the vendor. These soft processors have modern
on-chip interconnection interfaces, such as AMBA AXI4
and Altera Avalon. Designers can easily integrate various
application IP-cores with soft processors, which can access
and control the IP-core through the interconnection.

Unfortunately, these advanced features require a cer-
tain amount of overhead in hardware resource utilization.
The increase of required hardware resources is especially
critical for small, low-end FPGAs. Xilinx also provides
MicroBlaze MCS (Micro Controller System) [8], a simple
32-bit soft processor without cache memory and other ad-
vanced features that are possessed by the original MicroB-
laze. MicroBlaze MCS has no on-chip interconnection in-
terfaces that connect with other IP-cores using common bus
interfaces, such as AMBA AXI4. These features reduce
the required amount of hardware resources, compared to the
original MicroBlaze.

2151

32

5 1
Instruction Register
Memory 5 File 1
Ai
Program Next —
1| Program
Counter le/— ~0inter <—| Branch Resolution Unit

Fig.1 Supersmall architecture

Using another approach, Xilinx provides PicoBlaze [9].
In contrast to standard 32-bit soft processors, PicoBlaze
employs 8-bit architecture for its small footprint. For fur-
ther footprint reduction, it has device-specific optimization
that directly uses such primitive components as LUT4 and
MUXFS5. As a result, PicoBlaze consumes just 96 slices
on Spartan-3 FPGAs. However, the size of the instruction
memory is limited by the architecture to 1024 instructions.
The size of the data memory is also limited to 64 bytes.
Since 8-bit architecture is used, computations of multi-byte
values take long latencies.

Not only by FPGA vendors, some soft processor ar-
chitectures have been developed by the research and open-
source community. Leros[10] is a small soft processor
that is designed as an accumulator machine for reduc-
ing resource usage. It is implemented using 188 slices
on a Spartan-3E FPGA, which supports an original 16-
bit ISA and has a similar design concept as PicoBlaze.
Therefore, when processing multi-byte data, Leros requires
longer operation cycles than the other 32-bit soft proces-
sors. ZPU[11] is a small 32-bit soft processor that reduces
FPGA resource usage with a stack machine architecture.
While ZPU uses its original 32-bit ISA, a customized GCC
toolchain is available.

In some projects, new ISAs are proposed with RTL
implementations. OpenRISC[12] is an open-sourced ISA
whose Verilog HDL implementation as a soft processor is
released on OpenCores[13], which has a memory man-
agement capability, an operating system support, and a
wishbone interconnection interface [14]. RISV-V [15] is an
open-sourced ISA for more efficiency in performance, en-
ergy efficiency, and code size. The RTL implementation of
RISC-V is written in Chisel [16], a domain specific language
in Scala. The implementation also has operating system
support. Since these soft processor implementations require
additional hardware resources for memory management and
interconnection supports, they are not suitable for low-end
small FPGAs.

2.2 Supersmall Soft Processor

The purpose of Supersmall [3], a small soft processor that
supports a subset of the MIPS-I ISA, is to implement a
32-bit microprocessor within a limited and small hardware
amount of FPGAs. Figure 1 shows Supersmall’s archi-
tecture. It employs non-pipelined, multi-cycle architecture

2152

for reducing the required hardware resources and has some
standard elements, an instruction memory, a register file,
and a data memory. These memory components are imple-
mented using inherent on-chip memory blocks that standard
FPGAs have, such as block RAMs. Supersmall’s key fea-
ture is employing 1-bit serial ALU architecture. It has two
32-bit shift registers, A and B, to pass data from the register
file to the ALU.

For every clock cycle, the shift registers 1-bit output
from 32-bit operand data. The 1-bit serial ALU receives the
serial data from the shift registers and calculates the par-
tial result of an instruction for every clock cycle. Therefore,
it takes 32 clock cycles to perform a 32-bit operation; se-
rialization obviously degrades the performance. However,
since the amount of wires is dramatically reduced using se-
rial lines between the register file and the ALU, Supersmall
requires fewer hardware resources than conventional 32-bit
soft processors. To the best of our knowledge, Supersmall
is the smallest 32-bit soft processor implementation for FP-
GAs, except for our proposal.

In order to access to the data memory, an address value
and data value are passed from the shift register A and B,
respectively. The path between the shift register B and the
data memory is used for data, and its width is 32-bit. The
path between the shift register A and the data memory is
used for address, and the its width depends on the capacity
of the data memory. In the figure, the width is represented
as Ad. As well as the address path for the data memory,
the path between the program counter and the instruction
memory depends on the capacity of the instruction memory.
In the figure, the width is represented as Ai.

3. Ultrasmall

We propose Ultrasmall, a new tiny soft processor architec-
ture with a 2-bit datapath and an ALU for FPGAs. Ultra-
small is based on Supersmall, the tiny 32-bit soft processor
with a 1-bit serial ALU, as described above. Ultrasmall has
two goals: (1) to reduce the occupied hardware resources
on an FPGA and (2) to increase performance just by archi-
tectural improvement. In this section, we describe why we
chose a 2-bit width for the datapath and ALU and show its
overall architecture and implementation.

3.1 Motivation: Are 1-bit Datapath and ALU Optimal?

The original Supersmall soft processor employs a 1-bit se-
rial datapath and ALU architecture to reduce hardware us-
age. Even though this approach does reduce the occupied
resources on FPGAs, it also degrades the computing perfor-
mance by increasing the cycle per instruction (CPI) ratio.
Since the increase of the CPI also increases the complexity
of the finite state machine on the processor, it requires addi-
tional hardware resources. To achieve higher performance,
the CPI rate should be as small as possible.

Most FPGAs have island-style architecture with many
logic and switch blocks. Each logic block has LUTs to re-

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.12 DECEMBER 2015

Table 1 Implementation result of serial ALU on a Spartan-3E FPGA
when changing ALU bit width

ALU bit width | 1-bit 2-bit 4-bit 8-bit 16-bit
Reg 2 2 2 2 2
LUT 8 9 12 20 36
Slice 4 5 7 12 20
Table 2 Implementation result of Supersmall with 1- and 2-bit serial

ALU architectures

Datapath width | 1-bit 2-bit
Reg 164 141
LUT 253 244
Slice 164 163

alize combinational circuits and flip flops (FFs) to realize
sequential circuits. For instance, a logic element (called a
slice) on an Xilinx Spartan-3E FPGA has 2 LUTs [17]. The
logic synthesizer of EDA tools determines which LUT is
consumed based on the RTL design. Not all of the LUTs on
each logic block are usually utilized due to the patterns of
the target logic. Finally, the amount of occupied resources
is increased if the target logic is not suitable for logic blocks
on FPGAs. To avoid reducing the number of occupied LUTs
but to reduce the number of occupied logic blocks for the
final resource reduction, constructing logic-block-friendly
logics is important; the LUTs in each logic slice must be
efficiently utilized.

To achieve higher efficiency of resource utilization for
soft processors with serial datapaths, we estimate the im-
pact of datapath width on soft processors and evaluate the
resource usage of a serial ALU that has a different datapath
width. The experimental setup is the same as the one de-
scribed in Sect. 4. Table 1 shows the resource usage of each
ALU setup. The result shows that the 2-bit serial ALU is
very efficient because it requires only one additional slice
compared to the baseline 1-bit ALU; the 2-bit serial ALU
can compute a result at twice the speed of the 1-bit serial
ALU. In contrast, the other ALUs, 4-bit, 8-bit, and 16-bit,
require more slices. Additionally, using the 2-bit ALU sim-
plifies the finite state machine because the elapsed clock cy-
cles are reduced for each instruction. Using the 2-bit serial
ALU improves performance and maintains small hardware
occupation.

According to the above estimation, employing the 2-
bit serial ALU improves the efficiency of the performance
and resource utilization. Next we implemented and evalu-
ated two setups of serial soft processors. The first is a soft
processor with the 1-bit serial datapath and ALU. The orig-
inal Supersmall is designed for Altera’s FPGAs. We devel-
oped its transplant implementation for Xilinx’s FPGAs. The
other has a 2-bit serial datapath and ALU. Table 2 shows
the resource usage of each processor setup. The amount of
required hardware resources for the entire processor is re-
duced by employing the 2-bit datapath and ALU, compared
to the original 1-bit serial datapath and ALU. We chose the
2-bit datapath and ALU architecture for the baseline of our
proposal.

TAKAMAEDA-YAMAZAKI et al.: ULTRASMALL: A TINY SOFT PROCESSOR ARCHITECTURE WITH MULTI-BIT SERIAL DATAPATHS FOR FPGAS

32

5 32
7> +’| 32-bit Shift Register A
Instruction Register 2
Memory 5 File 32
#—h' 32-bit Shift Register B |
Ai Ad
P Next 7 Data ||
rogram 2 Program - - 32 Memory
Counter &7~ o inter <—| Branch Resolution Unit

Fig.2 Ultrasmall architecture

3.2 Architecture

Figure 2 shows the architecture of Ultrasmall, which em-
ploys a non-pipelined, multi-cycle architecture with the
2-bit serial datapath and ALU. Ultrasmall has instruction
memory, a register file, and data memory, like Supersmall.
These memory components are implemented using on-chip
memory blocks, such as block RAM. Two shift registers also
pass operand data from the register file to the ALU. As well
as Supersmall, the bit width of the path between the shift
register A and the data memory depends on the capacity of
the data memory, and it is represented as Ad. The bit width
of the path between the program counter and the instruc-
tion memory also depends on the capacity of the instruction
memory, and it is represented as Ai. In contrast to the orig-
inal Supersmall, Ultrasmall has advanced datapaths for op-
timizing both the performance and the resource occupation.
There are two key enhancements. The first is employing
the 2-bit serial datapath and ALU for the execution unit,
while the original Supersmall has a 1-bit serial datapath to
reduce the amount of occupied resources. The other is em-
ploying a 32-bit parallel register file that supplies operand
data to the shift registers in parallel. The output port of the
register file in Supersmall is 1-bit. In contrast, Ultrasmall
has a standard register file structure as well as the other soft
processors.

Since Ultrasmall is built on MIPS-I ISA, the operand
IDs are directly specified as a bit vector in an instruction. At
first, two 32-bit operands are fetched from the register file
using the bit vector in an instruction. These operand data are
written to the shift registers, A and B, within a 1 clock cy-
cle. These shift registers have 2-bit wide output ports. After
that, the 2-bit data from the LSB side in the shift registers are
sequentially supplied to the 2-bit serial ALU, which builds
a complete execution result of an instruction by consuming
the given 2-bit partial data. The ALU calculates a tempo-
ral consequence of the instruction with the given data. The
temporal result into the MSB side of shift register A is done
sequentially. Since the ALU takes 1 clock cycle per partial
operation with two inputs of the 2-bit partial operand data,
ALU operation with all 32-bit operands requires 16 clock
cycles for execution.

Since Ultrasmall is based on MIPS-I ISA, which is a
major and simple 32-bit ISA, many existing environments
are available as is. Programmers can use existing eco-

2153

systems, such as the compiler, for implementing software
for Ultrasmall. Note that Ultrasmall supports almost all
of the elementary instructions defined in the MIPS-I ISA.
However, some instructions, such as privileged instructions,
multiply and divide instructions, and unaligned load and
store instructions are not supported in the current implemen-
tation.

3.3 State Machine

As described above, Ultrasmall has a multi-cycle, non-
pipelined architecture. Every instruction (except shift in-
structions) requires a fixed clock cycle for its execution. The
number of elapsed cycles to execute a shift instruction de-
pends on the amount of shifts. Figure 3 illustrates a finite
state machine of Ultrasmall. Each square in the figure rep-
resents a state. The first line in a state represents the state’s
name. The second line in a state represents the number of
elapsed clock cycles. Figure 4 shows the list of state ma-
chine sequences with the number of elapsed clock cycles for
each instruction. For example, the ADDU (Add Unsigned)
instruction takes 20 cycles to complete, including instruc-
tion fetch, execution, and writeback steps.

Every instruction takes two common states: START_1
and START.2. At these states, instruction fetch, regis-
ter fetch, and instruction decode are processed in 3 clock
cycles. Then the branch instructions take two states:
BRANCH_1 and BRANCH_2. At BRANCH_1, the con-
dition of the conditional branch is determined. At state
BRANCH_2, the value of the next program counter is writ-
ten in the program counter (PC) register. Since each of these
two states takes 16 clock cycles, they require 35 (=2 + 1 +
16 + 16) clock cycles to execute a branch instruction. In
contrast, since the jump instructions (j and jr) only require
the state to writeback the next PC at the JUMP_1 state, they
require 19 (= 2 + 1 + 16) clock cycles. The jump-and-link,
arithmetic, and logical instructions require 16 clock cycles
for the third state and 1 clock cycle for the writeback step
from the shift register to the register file. Therefore they
require a total of 20 (=2 + 1 + 16 + 1) clock cycles.

The store-word instruction requires 16 clock cycles for
calculating its destination address and 1 cycle for writing
back its stored data in the data memory. Therefore, it takes
atotal of 20 (=2 + 1 + 16 + 1) clock cycles. The load-word
instruction also requires 16 clock cycles for calculating its
destination address and 2 clock cycles for getting the data
from the data memory and writing them in the register file.
Therefore, it takes 22 (=2 + 1+ 16 + 2 + 1) clock cycles.

3.4 Shift Operation

Both Supersmall and Ultrasmall handle shift operations by
using their shift registers. The number of elapsed clock cy-
cles depends on the shift amount. In Supersmall, the shift
operations can be naturally processed by using the bit-serial
shift registers. The target data saved in the shift register are
rotated and the unnecessary bits are discarded bit by bit. In

2154

LOADSTORE_1
16 cycle

LOADSTORE_1

16 cycle

START_1

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.12 DECEMBER 2015

ALUI_1
16 cycle

ALU_1
16 cycle

SHIFTL 2
16 cycle

2 cycle

| sTART 2

L 1 cycle

SHIFTL_1 q
16 cycle J

WRITEBACK_1
1 cycle

BRANCH_2
16 cycle

BRANCH_1
16 cycle

JUMP_1

16 cycle

A

SHIFTR_1
16 cycle

SHIFTR_2
various cycle

SHIFTR_3

17 cycle

Fig.3 Finite state machine of Ultrasmall
:feqz, lﬁ‘e;v;iu’ [START_I | START 2] BRANCH_1 | BRANCH 2] Total 35 cycle
> bl 2cyele 1 oycle 16 cycle 16 cyele

Jor l START _1 | START 2 l JUMP_1 l Total 19 cycle
2 cycle 1 cycle 16 cycle

fal, jalr [starti [start2 | sumel [writeBACK 1] Total 20 cycle
2 cycle 1 eycle 16 cycle 1oycle

add, addu, sub, subu, and, l START 1 | START 2 | ALU_I | WRITEBACK_1] Total 20 cycle

or, xor, nor, slt, sltu
2 cycle 1oycle 16 cycle 1 cycle

addi, addiu, sii, sltiu, [starti [start2 | ALUL | [writeBACK 1] Total 20 cycle

andi, ori, xori, lui
2 cycle 1eycle 16 cycle Teyele

sw, sb [sTART1 | START2 | LOADSTOREI | LOADSTORE2 | Total 20 cycle
2 cycle 1 oycle 16 cycle 1 oycle

Iw, b [START1 | START2 | LOADSTORE ! | LOADSTORE 2 | WRITEBACK I Total 22 cycle
2cycle Teycle 16 cycle 2 cycle 1 cycle

1L, sllv (even shift amount) [staRT1 | START2 | SHIFILI | WRITEBACK I | Total 20 cycle
2 cycle 1eyele 16 cycle 1 eycle

s, sllv (odd shift amount) [start1 | START2 | SHIFTL1 | SHIFTL2 | WRITEBACK I | Total 36 cycle
eyele 2cycle 16 cycle 16 cycle 1 cyele

st stlv, sra, srav (evenshift amount) | START_I | START2 | SHIFTLI | SHIFTL2 | WRITEBACK I | Total 20 + X cycle
1 oycle 2eycle 16 cycle X cyele (*) 1 cycle

st stlv, sra, srav (odd shift amount) | START_I [start2 [sHIFTR1 | SHIFTR2 | SHIFTR3 | WRTIEBACK I Total 37+ X cycle
1 cycle 2 cycle 16 cycle X cycle (¥) 17 cycle 1 cycle

= (shift amoun + ound down to the nearest decimal
*X hift t) /2+1 (Round d th t d 1
Fig.4 State machine sequences

contrast, since Ultrasmall has 2-bit shift registers, an odd-
numbered shift amount presents some challenges to deal
with the shift operation. For even-numbered shift amounts,
the unnecessary bits are removed 2-bit by 2-bit from the
shift register. In contrast, since odd-numbered shift amounts
finally require a 1-bit shift, the shift register should origi-
nally support both the 2- and 1-bit shifts, which increases
the hardware complexity.

To overcome this problem, we designed an area effi-
cient shift register structure for the 2-bit serial datapath. We

assume a shift register with 4-bit entries to simplify the ex-
planation while the actual shift registers in Ultrasmall have
32-bit entries.

Figure 5 (a) shows the behavior of the 3-bit shift-right
operations on the 1-bit datapath of Supersmall. The 3-bit
shift-right operation is performed in 3 clock cycles. In gen-
eral, an n-bit shift operation takes n clock cycles to complete
on the 1-bit datapath of Supersmall. For the 2-bit datapath
on Ultrasmall, 2-bit shift operation is completed in a 1 clock
cycle. Therefore, an n-bit shift operation can be done in n/2

TAKAMAEDA-YAMAZAKI et al.: ULTRASMALL: A TINY SOFT PROCESSOR ARCHITECTURE WITH MULTI-BIT SERIAL DATAPATHS FOR FPGAS

cycle 1 (shift)

cycle 2 (shift)

cycle 3 (shift)

(a) 3-bit right shift on the
1-bit wide datapath

(b) 3-bit right shift on the
2-bit wide datapath

Fig.5 3-bit right shift on: (a) 1-bit wide datapath and (b) 2-bit wide
datapath

clock cycles where n is an even number. However, it is dif-
ficult to handle an n-bit shift operation where n is an odd
number.

Figure 5(b) illustrates our implementation for effi-
ciently supporting odd-numbered shift amounts when the
shift amount is 3 again. A small but crucial modification
is using the tmp register. The second bit from the LSB is
stored on the tmp register at the next clock cycle. In the
example, n; is stored on the tmp register at the first clock
cycle. For (2n + 1)-bit shift operation, several clock cycles
are required to do several 2-bit shift operations. There is
a residual bit, because the shift amount of the operation is
odd-numbered. Therefore, it takes extra clock cycles for 2-
bit rotations using the tmp register. In the example, cycles
2, 3, and 4 belong to the rotation processes. On the actual
Ultrasmall, since the shift registers have 32-bit entries, 17
extra clock cycles are required to complete the 2-bit rota-
tions using the tmp register after n clock cycles for the 2-bit
shift operations.

3.5 Optimization for Spartan-3E FPGAs

For further hardware resource reduction of Ultrasmall, we
applied device-dependent but aggressive optimizations em-
ploying the characteristics of inherent FPGA resources. We
chose Xilinx Spartan-3E FPGAs as the target device. To
show the optimization details, we first describe the archi-
tecture of the slice and BRAM on Spartan-3E FPGAs. A
slice is a logic element with LUTs, FFs, carry-chain logics,
and multiplexers. LUTSs are used to implement combina-
tional circuits. A slice on Xilinx Spartan-3E FPGA has 2
4-input LUTs and 2 FFs[17]. If the LUTS in each slice are
efficiently utilized, the number of occupied slices will be
reduced. Therefore, designing slice friendly logic is impor-
tant.

In addition, an FPGA has an on-chip SRAM block
called a block RAM (BRAM), which is usually used for
memory systems, such as an instruction memory and a reg-
ister file. A block RAM entry on Spartan-3E FPGAs has
18K-bit capacity and 2 synchronous read/write ports (dual-
ports). A block RAM has two output registers with a clock

2155

32-to-1 MUX 32-bit
(16 slices) shift register
’ (16 slices)
¥ ; Slice
>," 9

Register 32 |1 = [T o |4
File
(BRAM) 1
LD LD . D“

32
(a) Resource usage of shift register B in 1-bit datapath Supersmall (in this case,
32-bit data from BRAM are serially transferred to shift register B 1-bit at a time)

32-to-2 MUX 32-bit
(8 slices) shift register

(16 slices)

¥ Slice

/
1 X

Register | 32
File |——>
(BRAM) 1

F FF

o @O

CIC

(b) Resource usage of shift register B in 2-bit datapath Supersmall

32-bit
shift register
(16 slices)

Register Slice
File

(BRAM) b /o 1141

(c) Resource usage of shift register B in Ultrasmall (in this case, 32-bit data
from BRAM are serially transferred to shift register B 2-bit at a time)

Fig.6 Resource mappings of datapath from register file to shift register

enable port and a reset port. In Ultrasmall, the reset signals
are effectively used to provide a specific value as an output.

3.5.1 Datapath from Register File to Shift Register

The memory components in Ultrasmall, such as instruction
memory, data memory, and register file, use block RAMs.
While the datapath width of Ultrasmall is 2-bit, these mem-
ory components use 32-bit port instead of 2-bit, and each bit
of these ports is directly connected to each bit entry of the
shift registers. Since the shift register uses 32 FFs, it can be
composed on 16 slices. So there are 32 available LUTSs on
the slices.

Figure 6 shows the mapping of LUTs and flip flops for
the datapath between the register file and shift register B on
each architecture. In the 1-bit datapath on Supersmall in
Fig. 6 (a), each bit is selected from the 32-bit output of the
register file, and the bit is serially connected to shift regis-
ter B. To this end, an additional multiplexer is used that se-
lects 1 bit from 32 bits and consumes 16 slices. Figure 6 (b)
shows the mapping in the case of a naive 2-bit datapath with
a multiplexer that select 2 bits from 32 bits. This multi-
plexer consumes eight slices, because each slice has 2 LUTs
that are naturally utilized. However, in these two cases, the
LUTs in the slices, which are used for the shift register, are

2156
Register Register
File File
(BRAM) a reset (BRAM)
sel 0
00 (seL.0)
Shift b d Shift
Relisler 01 Register | |
(FF) reset (FF)
ﬁ 10 (~sel_0)

sel 1 — J

sl 0 sel_1

(a) 3-to-1 multiplexer containing more
than 2 inputs from BRAM or FF.

(b) 3-to-1 multiplexer with uncommon usage
of reset signals (only 1 LUT is required).

Fig.7 3-to-1 Multiplexer

not utilized.

Figure 6 (c) shows the mapping of LUTs and flip flops
in Ultrasmall. Each bit of the 32-bit output is connected to
each corresponding LUT in the slices in parallel. The LUTs
are synthesized as a 2-to-1 multiplexer that selects a bit from
a bit of the register file and a bit of the previous stage of the
shift register. Finally, the LUTs and the FFs in the slices
are effectively utilized, making the additional multiplexer
no longer necessary. It saves eight slices compared to the
naive 2-bit datapath implementation in Fig. 6 (b).

3.5.2 3-to-1 Multiplexer on Shift Register

As shown in Fig. 2, there are three inputs into shift register
A: from the previous stage of the shift register or the ALU,
from the register file, and the data memory. Each bit entry
of the shift register uses the 3-to-1 multiplexer that has 5 bits
as input, which consists of 3 bits for data (a, b, and c), and
2 bits for selection, (sel_0 and sel_I). It usually requires two
4-input LUTSs to emulate such a 5-bit function, as shown in
Fig.7 (a). In Ultrasmall, the 3-to-1 multiplexer for the shift
register is realized by just utilizing a single LUT with the
reset functionality of the output register on the block RAMs,
and the flip flops, as shown in Fig.7 (b). In this situation,
Fig. 7 (b) is equivalent to Fig. 7 (a).

We configured the value of an output register with a
specific value when the reset port is asserted. By using the
synchronous reset on an output register of a block RAM,
an output register can have an initial and reset value. Both
input port A and input port B of 3-to-1 multiplexer use zero
as the initial and reset value, but they use the country reset
condition each other. sel_0 is connected to the reset port
of the output registers on the register file, but the logic is
reversed. When the reset port is asserted, the value of the
output register is 0. By combining this characteristic and a
logical OR, a temporal 2-to-1 multiplexer is realized. By
selecting one from the temporal result and another input, a
3-to-1 multiplexer is implemented using a single LUT.

3.5.3 Load/Store Instructions with Byte and Half Word
Size

Supersmall uses an FPGA by Altera that has TriMatrix

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.12 DECEMBER 2015

memory [18] to implement the data memory. TriMatrix
memory supports the byte enable function for accessing the
memory in the byte unit. Supersmall utilizes the byte enable
function to implement the byte/half word load instruction
(Ib, Ihw) and the store byte/half word instruction (sb, shw).
Unfortunately, the block RAMs on Xilinx Spartan-3E FP-
GAs do not support the byte enable function. In Ultrasmall,
we address this issue by supporting byte access but not half
word access. Block RAM on Spartan-3E FPGAs has two
independent output ports. One is used for byte access and
the other is used for the word (4 bytes) access; Ultrasmall
supports both the byte/word load and byte/word store in-
structions.

3.6 Implementation Issue

In this implementation using Xilinx Spartan-3E FPGAs, the
number of BRAM s is restricted that Ultrasmall can use to
implement the data memory. There are only four choices: 1
BRAM (the width of two ports is configured as 8- and 32-
bits), 2 BRAMs (the width of two ports is configured as 4-
and 16-bits), 4 BRAMs (the width of two ports is configured
as 2- and 8-bits), and 8§ BRAMs (the width of two ports is
configured as 1- and 4-bits). Therefore, the size of the data
memory is restricted to 2KB, 4KB, 8KB, and 16KB.

In addition to the optimizations provided by the
logic synthesis tools, we manually use FPGA primitive-
optimizations to further reduce the required hardware re-
sources. Generally, in a development targeting FPGA, the
logic synthesis tool optimizes the HDL code and translates
the described circuits into FPGA primitives. After that, an
FPGA bitstream file is created by the place and route tools.
However, there are some insufficient optimization parts in
the current logic synthesis tools. We found that Xilinx
ISE inadequately handles multiplexer and carry-chain prim-
itives. By the manually instantiation of these FPGA primi-
tives as well as in PicoBlaze, it is possible to optimize the
resource utilization further. In Ultrasmall, we manually in-
stantiate the FPGA primitives to optimize the multi-stage
multiplexers and 2-bit adders.

4. Evaluation

In this section, we evaluate Ultrasmall in terms of hardware
utilization and performance. We implemented it based on
our proposed architecture and optimization techniques in
Verilog HDL. Ultrasmall’s source codes are very compact:
only about 2,000 lines of code.

We used Stanford integer benchmarks [19] for the CPI
evaluation and the Xilinx ISE WebPack 14.7 as the synthesis
tool. The optimization goal of the synthesis is the area-first
mode, and the optimization effort level is high. The target
FPGA is Spartan-3E XC3S500E with a speed grade of —5,
which is a common low-end and small FPGA. The bench-
mark programs were compiled with GCC 4.3.6 with an 02
optimization level.

To compare Ultrasmall with the original Supersmall,

TAKAMAEDA-YAMAZAKI et al.: ULTRASMALL: A TINY SOFT PROCESSOR ARCHITECTURE WITH MULTI-BIT SERIAL DATAPATHS FOR FPGAS

1200
973 ® MicroBlaze MCS
1000
ZPU
800
¥ Supersmall
600 ~ ®Ultrasmall

253935 215

Occupied Resources
N
o
o

Slice LUT FF

Fig.8 Amount of occupied hardware resources of soft processors sup-
porting 32-bit ISA

we modified the Verilog HDL source code of Supersmall for
Xilinx FPGAs. Supersmall uses TriMatrix memory as the
instruction and data memory, which is an on-chip memory
element on Altera’s FPGAs. It supports byte-enable access
to change a portion of the data on the destination location
by byte. Supersmall supports byte and half-word load/store
instructions naturally by using the byte-enable access func-
tion. Supersmall uses a direct definition of memory primi-
tive that creates an instance of TriMatrix memory.

However, Xilinx FPGAs have just a block RAM as
an on-chip memory element, instead of TriMatrix memory.
Therefore, the part of the instruction memory and data mem-
ory should be modified in order to use block RAM on Xilinx
Spartan-3E FPGAs. We have replaced the source code of the
instances of TriMatrix memory with the device independent
descriptions that the synthesis compiler can infer an on-chip
memory element from the source code. Other than TriMa-
trix memory, there are no device-dependent descriptions in
Supersmall, so that we have easily developed the implemen-
tation of Supersmall on a Xilinx Spartan-3E FPGA.

We compared the hardware resource utilization of Ul-
trasmall with previous soft processors: MicroBlaze MCS,
ZPU, and Supersmall. Figure 8 shows the amount of oc-
cupied hardware resources of each soft processor. All of
these soft processors have 32-bit ISA. Ultrasmall’s result
is lower than the other processors. It consumes 137 slices,
which correspond to 84% of the number of occupied slices
of Supersmall. Since the slices around the datapaths are ef-
ficiently utilized by employing the 2-bit datapath and ALU,
the amount of occupied slices is reduced. Additionally,
since employing the 2-bit datapath and ALU reduces the rate
of cycles per instruction, the circuit is also reduced for a fi-
nite state machine.

We then measured the performance of Ultrasmall in
terms of the rate of cycles per instruction (CPI) and the max-
imum clock frequency. Cycles per instruction represent the
average value of the clock cycles elapsed for each instruc-
tion; a lower CPI is better. Table 3 shows the CPI rates
of Ultrasmall and Supersmall. In this experiment, we se-
lected the following five programs from the Stanford integer
benchmarks: bubble sort (Bubble), permutations (Perm),

2157
Table3 Cycles per instructions (CPI) of Ultrasmall and Supersmall
Bubble Perm Queens Quick Towers Average
Supersmall 714 720 716 713 71.7 71.2
Ultrasmall 237 214 225 232 22.1 22.3
Table4 Max frequency of soft processors that supports 32-bit ISA
MCS ZPU Supersmall Ultrasmall
Max Freq [MHz] | 112.2 113.7 70.3 65.0

eight-queens (Queens), quick sort (Quick), and the towers
of Hanoi (Towers).

On average, the CPI rate of Ultrasmall was reduced by
68% from that of Supersmall. The largest part of the per-
formance improvement was achieved by employing the 2-
bit datapath and ALU, which obviously reduces the num-
ber of clock cycles for a computation on ALU. The other
reason is the optimization of the finite state machine. In
the original Supersmall, since the next value of the program
counter (PC) is originally calculated on the ALU for com-
putation, it increases the performance overheads to update
the PC. In Ultrasmall, the branch resolution unit has an ad-
ditional arithmetic unit to calculate the next PC. Actually, it
requires additional hardware resources and also reduces the
complexity of the original ALU, because it does not calcu-
late the PC value any longer.

Table 4 shows the maximum clock frequencies of Ul-
trasmall, Supersmall, ZPU, and MicroBlaze MCS. The max-
imum clock frequencies of Ultrasmall and Supersmall are
65.0 MHz and 70.3 MHz. The maximum clock frequency
of Ultrasmall is less than that of ZPU and MicroBlaze MCS.
The lower frequency is due to the uncommon use of re-
set signals for constructing the 3-to-1 multiplexers. On the
other hand, compared to MicroBlaze MCS and ZPU, the re-
quired hardware resources of Ultrasmall are significantly re-
duced. In particular, the amount of occupied slices of Ultra-
small is about two to four times smaller than the amount of
occupied slices of MicroBlaze MCS and ZPU.

Based on the evaluation results of the CPI rates, we es-
timated the actual performance in million instructions per
second (MIPS), which was estimated using the maximum
clock frequency and the average CPI. The MIPS rates of
Ultrasmall and Supersmall are 2.90 and 0.98. Ultrasmall
achieves 2.9 times better performance in spite of smaller
hardware resource utilization.

According to [1], the original Microblaze archives ap-
proximately 1 DMIPS per MHz (1757 MIPS), so that the
CPI rate of Microblaze is about 0.57, which is less than 1.0.
Note that the performance of such standard soft processors
is very high compared to the serial processors.

5. Conclusion

In this paper, we presented Ultrasmall, a tiny soft proces-
sor architecture that supports a subset of the MIPS-I in-
struction set architecture. Ultrasmall uses the 2-bit serial
ALU for all operations, instead of the original 32-bit ALU,

2158

for high resource efficiency. It achieves better performance
than the previous tiny soft processor with a 1-bit datapath
and a serial ALU. In addition to these device-independent
optimizations, we applied several device-dependent op-
timizations for Xilinx Spartan-3E FPGAs using 4-input
LUTs. Primitive-based optimizations aggressively reduce
the amount of occupied slices. Our evaluation result shows
that Ultrasmall occupies only 84% of the previous small soft
processor. In addition to the utilized resource reduction, Ul-
trasmall achieves 2.9 times higher performance than the pre-
vious one.

While we developed and evaluated 2-bit serial proces-
sor in this work, there is an opportunity to improve the re-
source efficiency by employing 4-bit or more data width, as
a future work. However, it seems that the increase of the
data width increases the complexity of shift operations. To
improve resource efficiency in spite of wider ALU, a sophis-
ticated shift register is mandatory.

References

[1] “MicroBlaze Soft Processor Core.”
http://www.xilinx.com/tools/microblaze.htm.

[2] “Nios II Processor: The World’s Most Versatile Embedded Proces-
sor.” http://www.altera.com/devices/processor/nios2/
ni2-index.html.

[3] J. Robinson, S. Vafaee, J. Scobbie, M. Ritche, and J. Rose, “The
supersmall soft processor,” Programmable Logic Conference (SPL),
2010 VI Southern, pp.3-8, March 2010.

[4] Y. Tanaka, S. Sato, and K. Kise, “The Ultrasmall Soft Processor,”
SIGARCH Comput. Archit. News, vol.41, no.5, pp.95-100, Dec.
2013.

[5] H. Nakatsuka, Y. Tanaka, T.V. Chu, S. Takamaeda-Yamazaki, and
K. Kise, “Ultrasmall: The smallest MIPS soft processor,” Field Pro-
grammable Logic and Applications (FPL), 2014 24th International
Conference on, pp.1-4, Sept. 2014.

[6] “Xilinx Platform Studio.” http://www.xilinx.com/tools/xps.htm.

[7]1 “Vivado design suite.”
http://www.xilinx.com/products/design-tools/vivado/index.htm.

[8] “MicroBlaze Micro Controller System (MCS).”
http://www.xilinx.com/tools/mb_mcs.htm.

[9] “PicoBlaze 8-bit Microcontroller.”
http://xilinx.com/products/intellectual-property/picoblaze.htm.

[10] M. Schoeberl, “Leros: A tiny microcontroller for fpgas,” Field Pro-
grammable Logic and Applications (FPL), 2011 International Con-
ference on, pp.10-14, Sept. 2011.

[11] M. Zandrahimi, H.R. Zarandi, and A. Rohani, “An analysis of fault
effects and propagations in zpu: The world’s smallest 32 bit cpu,”
Quality Electronic Design (ASQED), 2010 2nd Asia Symposium on,
pp-308-313, Aug. 2010.

[12] D. Lampret, C.M. Chen, M. Mlinar, J. Rydberg, M. Ziv-Av, C.
Ziomkowski, G. McGary, B. Gardner, R. Mathur, and M. Bolado,
“Openrisc 1000 architecture manual,” Description of assembler
mnemonics and other for OR1200, 2003.

[13] “Opencores.” http://opencores.org/.

[14] R. Herveille et al., “Wishbone system-on-chip (soc) interconnection
architecture for portable ip cores,” OpenCores Organization, 2002.

[15] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovic,
and K. Asanovic, “A 45nm 1.3ghz 16.7 double-precision gflops/w
risc-v processor with vector accelerators,” European Solid State Cir-
cuits Conference (ESSCIRC), ESSCIRC 2014 - 40th, pp.199-202,
Sept. 2014.

[16] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviZienis,
J. Wawrzynek, and K. Asanovi¢, “Chisel: Constructing hardware

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.12 DECEMBER 2015

in a scala embedded language,” Proceedings of the 49th Annual
Design Automation Conference, DAC *12, New York, NY, USA,
pp-1216-1225, ACM, 2012.

[17] “Xilinx DS312 Spartan-3E FPGA Family Data Sheet.” http://www.
xilinx.com/support/documentation/data_sheets/ds312.pdf.

[18] *“Stratix Device Handbook.” http://www.altera.com/literature/hb/stx/
stratix_handbook.pdf.

[19] J. Hennessy and P. Nye, “Stanford integer benchmarks,” Personal
communication, 1988.

Shinya Takamaeda-Yamazaki received the
B.E., M.E., and D.E. degrees from Tokyo Insti-
tute of Technology, Japan in 2009, 2011, and
2014 respectively. From 2011 to 2014, he was
a JSPS research fellow (DC1). Since 2014, he
has been an assistant professor of the Graduate
School of Information Science, Nara Institute of
Science and Technology, Japan. His research in-
terests include memory system, FPGA comput-
ing, high level synthesis and processor architec-
ture. He is a member of IEEE and IPSJ.

Hiroshi Nakatsuka received the B.E. de-
gree from Tokyo Institute of Technology, Japan
in 2014. He is currently a master course student
of the Graduate School of Science and Engineer-
ing, Tokyo Institute of Technology, Japan. His
research interests include electrical design au-
tomation and computer architecture.

Yuichiro Tanaka received the B.E. and
M.E. degrees from Tokyo Institute of Technol-
ogy, Japan in 2013 and 2015 respectively. His
research interests include electrical design au-
tomation and computer architecture.

Kenji Kise received the B.E. degree from
Nagoya University in 1995, the M.E. degree and
the Ph.D. degree from the University of Tokyo
in 1997 and 2000 respectively. He is currently
an associate professor of the Graduate School
of Information Science and Engineering, Tokyo
Institute of Technology. His research interests
include computer architecture and parallel pro-
cessing. He is a member of ACM, IEEE, and
IPSJ.

http://dx.doi.org/10.1109/spl.2010.5483016
http://dx.doi.org/10.1145/2641361.2641377
http://dx.doi.org/10.1109/fpl.2014.6927387
http://dx.doi.org/10.1109/fpl.2011.13
http://dx.doi.org/10.1109/asqed.2010.5548320
http://dx.doi.org/10.1109/esscirc.2014.6942056
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584

