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Distributed Pareto Local Search for Multi-Objective DCOPs
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SUMMARY Many real world optimization problems involving sets of
agents can be modeled as Distributed Constraint Optimization Problems
(DCOPs). A DCOP is defined as a set of variables taking values from finite
domains, and a set of constraints that yield costs based on the variables’
values. Agents are in charge of the variables and must communicate to find
a solution minimizing the sum of costs over all constraints. Many appli-
cations of DCOPs include multiple criteria. For example, mobile sensor
networks must optimize the quality of the measurements and the quality
of communication between the agents. This introduces trade-offs between
solutions that are compared using the concept of Pareto dominance. Multi-
Objective Distributed Constraint Optimization Problems (MO-DCOPs) are
used to model such problems where the goal is to find the set of Pareto op-
timal solutions. This set being exponential in the number of variables, it is
important to consider fast approximation algorithms for MO-DCOPs. The
bounded multi-objective max-sum (B-MOMS) algorithm is the first and
only existing approximation algorithm for MO-DCOPs and is suited for
solving a less-constrained problem. In this paper, we propose a novel ap-
proximation MO-DCOP algorithm called Distributed Pareto Local Search
(DPLS) that uses a local search approach to find an approximation of the
set of Pareto optimal solutions. DPLS provides a distributed version of
an existing centralized algorithm by complying with the communication
limitations and the privacy concerns of multi-agent systems. Experiments
on a multi-objective extension of the graph-coloring problem show that
DPLS finds significantly better solutions than B-MOMS for problems with
medium to high constraint density while requiring a similar runtime.
key words: multi-objective, distributed constraint optimization problem,
pareto local search

1. Introduction

A Distributed Constraint Optimization Problem (DCOP) [1],
[2] is a fundamental problem that can formalize various
applications related to multi-agent cooperation, e.g., dis-
tributed resource allocation problems including meeting
scheduling [3], sensor networks [4], and synchronization of
traffic lights [5]. A DCOP consists of a set of agents, each
deciding the value assignment of its variables so that the sum
of the resulting costs is minimized.

Many real world optimization problems involve mul-
tiple criteria that should be considered separately and opti-
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mized simultaneously. For example, we can imagine wire-
less sensor networks where multiple criteria are considered,
e.g., data management, quality and quantity of observa-
tion data, and electrical consumption, or distributed meeting
scheduling problems where we care about total meetings at-
tended, travel times, and the preferences of the participants.
In such multi-objective optimization problems, since trade-
offs exist among objectives, there generally does not exist an
ideal assignment optimizing all objectives simultaneously.
Therefore, the optimal solution of a multi-objective prob-
lem is characterized by using the concept of Pareto optimal-
ity. An assignment is a Pareto optimal solution if there does
not exist another assignment that can weakly improve all
the objectives. We then call Pareto front the set of objective
vectors generated by the Pareto optimal solutions.

Some frameworks have been introduced for represent-
ing multi-objective problems in constraint optimization. In
the centralized case, a Multi-Objective Constraint Optimiza-
tion Problem (MO-COP) [6]–[8] represents the problem of
finding the set of Pareto optimal solutions. In the distributed
case, a Multi-Objective Distributed Constraint Optimiza-
tion Problem (MO-DCOP) [9]–[11] was proposed as the ex-
tension of a mono-objective DCOP. Compared to DCOPs
and MO-COPs, there exists only a few works for MO-
DCOPs, all of them based on previous works for DCOPs.
The Bounded Multi-Objective Max-Sum (B-MOMS) algo-
rithm [9] is an approximation MO-DCOP algorithm extend-
ing the bounded max-sum algorithm [12]. A distributed
search method with bounded cost vectors [10] generalizes
ADOPT [1], a popular DCOP algorithm, and can guarantee
to find a single Pareto optimal solution. Finally, the Multi-
Objective Lp-norm based Distributed Pseudo-tree Optimiza-
tion Procedure (MO-DPOPLp ) [11] is an incomplete algo-
rithm combining DPOP [2], a dynamic programming DCOP
algorithm, with scalarization techniques to find an incom-
plete set of Pareto optimal solutions.

Since in a multi-objective problem all assignments can
produce non-dominated solutions, finding all Pareto opti-
mal solutions becomes easily intractable for large-scale in-
stances. This is why it is important to study fast approaches
that can approximate the Pareto front. Moreover, using MO-
COP techniques in a distributed setting would require that
one agent gathers all information about the problem and per-
forms all computations. However, agents in a distributed
system generally care about their privacy and are limited in
their communication and computation capabilities, thus re-
quiring an MO-DCOP algorithm.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Example of mono-objective DCOP.

In this paper, we develop a novel approximation algo-
rithm called Distributed Pareto Local Search (DPLS) algo-
rithm for solving an MO-DCOP. This algorithm is the exten-
sion of the well-known Pareto Local Search (PLS) [13] de-
signed for approximating the Pareto front of multi-objective
optimization problems. PLS is the generalization of the hill-
climbing method for optimization problems with multiple
criteria. With the DPLS, we propose an extension of this
method for MO-DCOPs. In the experiments, we evaluate
the performances of DPLS with different problem settings
and show that the local search technique is suitable for solv-
ing an MO-DCOP. We also compare DPLS with the state-of-
the-art approximation MO-DCOP algorithm B-MOMS, and
empirically show that our proposed algorithm DPLS outper-
forms the state-of-the-art B-MOMS.

The work presented in this paper is a revised and ex-
tended version of the conference paper [14]. Compared to
the preliminary version, the algorithm proposed in this paper
uses an exploration parameter e to adjust the number of as-
signments whose neighborhood should be explored at each
iteration. It also fully respects the assumption that agents
can only communicate with each other if their variables
share a constraint. Moreover, experimental results were pre-
viously shown on random instances but are now performed
on a multi-objective extension of graph-coloring.

The rest of the paper is organized as follows. In Sect. 2,
the formalism of a DCOP and an MO-DCOP are introduced,
as well as the Pareto Local Search. In Sect. 3, we present
a new approximation algorithm for MO-DCOPs which ex-
tends the Pareto Local Search to a distributed environment.
In Sect. 4, we evaluate the performance of our proposed
algorithm on instances of multi-objective graph-coloring
problem and compare these results with the state-of-the-art
approximation algorithm for MO-DCOPs. In Sect. 5, we
present the related works before concluding in Sect. 6.

2. Preliminaries

In this section, we briefly describe the formalizations of
Distributed Constraint Optimization Problems (DCOPs) and
Multi-Objective Distributed Constraint Optimization Prob-
lems (MO-DCOPs), and introduce the basic idea behind de-
signing a local search in a multi-objective problem.

2.1 Distributed Constraint Optimization Problem

Definition 1 (DCOP): A Distributed Constraint Optimiza-
tion Problem (DCOP) [2] is defined as a tuple DCOP =

(X,V,D,C, F) where X = {x1, . . . , xn} is a set of agents,
V = {v1, . . . , vn} is a set of variables, D = {D1, . . . ,Dn}
is a set of domains, C = {C1, . . .Cc} is a set of constraint
relations, and F = { f1, . . . , fc} is a set of cost functions.
Each agent xi is in charge of a variable vi ∈ V that takes
its value from a finite, discrete domain Di ∈ D. A con-
straint relation C j ∈ C,C j ⊂ V means that there exists a
constraint between the variables vi ∈ C j. The cost function
f j : ×∀vi∈C j Di → R≥0, f j ∈ F, represents the cost generated
by constraint C j based on the values taken by its variables.
An assignment A is a set of values such that Ai ∈ Di is the
value assigned to variable vi. When an assignment A is com-
plete, i.e., |A| = |V |, we can evaluate its quality by summing
the costs of all constraints:

R(A) =
∑
C j∈C

f j(A)

The solution of a DCOP is an optimal assignment Ao

minimizing the sum of all cost functions, given as Ao ∈
arg minA R(A).

A DCOP can be represented using a hypergraph, called a
constraint hypergraph, in which nodes represent variables
and edges represent constraints.

Example 1 (DCOP): Figure 1 shows a DCOP with three
variables v1, v2 and v3. Each variable takes its value assign-
ment from a discrete domain D1 = D2 = D3 = {a, b}. The
table shows three cost tables among three variables. The op-
timal solution of this problem is Ao = {(v1, a), (v2, a), (v3, a)},
with an optimal cost R(Ao) = 6.

2.2 Multi-Objective Distributed Constraint Optimization
Problem

Definition 2 (Multi-Objective DCOP): A Multi-Objective
Distributed Constraint Optimization Problem (MO-DCOP)
[9]–[11] is defined as a tuple MO-DCOP = (X,V,D,C,F )
where X = {x1, . . . , xn} is a set of agents, V = {v1, . . . , vn}
is a set of variables, D = {D1, . . . ,Dn} is a set of domains,
C = {C1, . . .Cc} is a set of constraint relations, and F =
{F1, . . . , Fm} is a set of sets of cost functions. For an objec-
tive l (1 ≤ l ≤ m), a cost function f l

j : ×∀vi∈C j Di → R≥0, f l
j ∈

Fl, represents the cost generated by constraint C j for the ob-
jective l. We can now represent the quality of a complete
assignment A by a cost vector R(A) = (R1(A), . . . ,Rm(A))
where

Rl(A) =
∑
C j∈C

f l
j(A)
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Table 1 Example of bi-objective DCOP.

v1 v2 cost vector v2 v3 cost vector v1 v3 cost vector
a a (5,2) a a (0,1) a a (1,0)
a b (7,1) a b (2,1) a b (1,0)
b a (10,3) b a (0,2) b a (0,1)
b b (12,0) b b (2,0) b b (3,2)

Algorithm 1 Pareto Local Search
1: Input: A0 an initial set of assignments
2: A ← ND(A0)
3: archive← A
4: while archive � ∅ do
5: A← random assignment in archive
6: for each A′ ∈ N(A) do
7: A ← ND(A∪ {A′})
8: end for
9: explored(A)← true

10: archive← {A ∈ A|¬explored(A)}
11: end while
12: Output: A, an approximation of the Pareto front

Finding an assignment that minimizes all objective func-
tions simultaneously is ideal. However, trade-offs can exist
among the different objectives and there usually does not ex-
ist such an ideal assignment. Therefore, optimal solutions of
an MO-DCOP are characterized using the concept of Pareto
optimality.

Definition 3 (Dominance): For an MO-DCOP and two
cost vectors R(A) and R(A′), we call that R(A) dominates
R(A′), denoted by R(A) ≺ R(A′), iff R(A) is partially less
than R(A′), i.e., it holds Rl(A) ≤ Rl(A′) for all objec-
tives l, and there exists at least one objective l′, such that
Rl′ (A) < Rl′ (A′).

Definition 4 (Pareto optimal solution): For an MO-DCOP,
an assignment A is said to be a Pareto optimal solution, iff
there does not exist another assignment A′, such that R(A′) ≺
R(A).

Definition 5 (Pareto Front): For an MO-DCOP, the Pareto
front is the set of cost vectors obtained by the Pareto optimal
solutions.

Solving an MO-DCOP consists in finding its Pareto
front whose size is, in the worst case, exponential in the
number of variables.

Example 2 (MO-DCOP): Table 1 shows an MO-DCOP
with two objectives, extending the DCOP of Example 1.
Each variable takes its value from a discrete domain
{a, b}. The Pareto optimal solutions of this problem are
{{(v1, a), (v2, a), (v3, a)} and {(v1, a), (v2, b), (v3, b)}}, and the
Pareto front is {(6, 3), (10, 1)}.

2.3 Pareto Local Search

The idea of a local search is to iteratively improve a solu-
tion by exploring its neighborhood. The best solution within
this neighborhood is kept and its own neighborhood is in

turn explored. This is repeated until no improvement can be
found in the neighborhood of the current best solution. In
the mono-objective case, a total ordering of the solutions ex-
ists, making the selection of the improving solution straight-
forward. However, in the multi-objective case, multiple so-
lutions can offer an improvement when using the dominance
relation, requiring new dominance-based algorithms.

For centralized Multi-Objective Optimization Prob-
lems, the Pareto Local Search (PLS) [13] was proposed as
an extension of the standard local search from the mono-
objective case to the multi-objective case. Algorithm 1
shows the PLS framework, which can be used to centrally
solve an MO-DCOP. PLS takes as input an initial set of as-
signments A0 which forms the initial set of non-dominated
assignments A (line 1) to be returned at the end of the
search. At each iteration, an assignment A is randomly
taken from the archive (line 1), the set of assignments in
A not yet explored. Using an operator ND, which returns
all the non-dominated solutions in a given set, we add all
non-dominated neighbors of A to A (line 1) and consider
A to now be explored. PLS terminates once the archive is
empty, meaning that all non-dominated assignments in A
have been explored.

Similarly to a mono-objective local search, PLS re-
quires to define a neighborhood operator N(A) (line 1) that
generates the neighborhood of A by applying small changes
to it. Common neighborhood operators change the value of
one variable at a time or swaps values between two vari-
ables. Compared to a mono-objective local search where
only one local optimal solution need to be considered at a
time, PLS requires to maintain a set of locally optimal solu-
tions (denoted byA in the algorithm).

In the next section, we propose to distribute the PLS in
order to solve MO-DCOPs in a distributed fashion.

3. Distributed Pareto Local Search Algorithm

In this section, we propose a novel approximation algorithm
for MO-DCOPs called Distributed Pareto Local Search
(DPLS). This algorithm extends the Pareto Local Search
(PLS) [13] presented in Sect. 2.3, from a centralized to a dis-
tributed setting.

To adapt the PLS for distributed settings, we assume
that: (i) an agent only knows the cost functions involving its
own variable, and (ii) two agents can only communicate if
a constraint exists between their variables. To comply with
the first assumption, we suppose that an agent xi only knows
its local cost functions which include variable vi. To comply
with the second assumption, agents are ordered in a pseudo-
tree, a popular graph structure for DCOP algorithms [15]. In
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Fig. 2 Example of the first iteration of DPLS

a pseudo-tree, all variables sharing a constraint are required
to be part of a same path between the root and a leaf. Such
structure can be obtained using a depth-first traversal of the
constraint hypergraph. Each agent xi can only send or re-
ceive messages to or from its parent parenti, and children
childreni, in the pseudo-tree.

The DPLS has two phases. In the first phase, an initial
set A0 of solutions is generated. In the second phase, a lo-
cal search is performed in a distributed fashion, maintaining
a set of non-dominated solutions A, initialized using A0.
At each iteration, the neighborhoods of some solutions inA
are explored in an attempt to find new non-dominated so-
lutions. Figure 2 shows an example of the first iteration of
DPLS. From a random set of solutions (A0), only the non-
dominated solutionsA are considered. Their neighborhood
N(A) is explored, offering new non-dominated solutions.
To perform this search in a distributed way, each agent xi

uses a local operator Ni such that Ni(A) generates the set of
assignments that differs from A only by the value of vari-
able vi. At each iteration, the root sends the assignments
to explore down the pseudo-tree. Each agent then com-
putes its corresponding local neighborhood and sends the
new non-dominated solutions up the tree. To limit the num-
ber and size of messages, an agent waits for the solutions
from its children before sending its own neighborhood. In
addition, it compares its own neighborhood with the ones
received from its children and discards all solutions that are
dominated. The iteration finishes once the root has received
neighborhoods from all its children and updated the set of
optimal solutions accordingly. The assignments explored at
each iteration are randomly selected within the set of unex-
plored non-dominated solutions and a parameter e is used
to adjust the number of solutions selected. Increasing this
number can lead to faster convergence, decreasing the num-
ber of messages used by DPLS but increasing their size.
This can be an important adjustment in distributed systems
depending on the quality of the communication network.

3.1 Algorithm

Algorithm 2 shows the pseudo-code for generating a random

Algorithm 2 Distributed Generation of a Solution for xi

1: pAi ← random value in Di
2: ri ← 0
3: for each x j ∈ childreni do
4: xi receives (pAj, r j) from x j
5: pAi ← pAi ∪ pAj
6: ri ← ri ⊕ r j
7: end for
8: ri ← ri ⊕ Ri(pAi)
9: send (pAi, ri) to parenti

10: Output: a random solution pA (at root agent)

Algorithm 3 Distributed Pareto Local Search for xi

1: Input: A0 an initial set of assignments; e the maximum
number of assignments to explore at each iteration

2: A ← ND(A0)
3: if xi is root then
4: archive← A
5: subarchive← selectSubset(archive, e)
6: send (subarchive) to each x j ∈ childreni
7: neighborsi ← ND(Ni(subarchive))
8: end if
9: while ¬terminatedi do

10: xi receives message M
11: if M = (terminate) then
12: terminatedi ← true
13: send (terminate) to each x j ∈ childreni
14: end if
15: if M = (subarchive) then
16: send (subarchive) to each x j ∈ childreni
17: neighborsi ← ND(Ni(subarchive))
18: if xi is leaf then
19: send (neighborsi) to parenti
20: end if
21: end if
22: if M = (neighbors j) then
23: neighborsi ← neighborsi ∪ neighbors j
24: if xi received all neighbors j,∀x j ∈ children j then
25: neighborsi ← ND(neighborsi)
26: send (neighborsi) to parenti
27: if xi is root then
28: explored(A)← true,∀A ∈ subarchive
29: A ← ND(A∪ neighborsi)
30: archive← {A ∈ A|¬explored(A)}
31: if archive = ∅ then
32: terminatedi ← true
33: send (terminate) to each x j ∈ childreni
34: else
35: subarchive← selectSubset(archive, e)
36: send (subarchive) to each x j ∈ childreni
37: neighborsi ← ND(Ni(subarchive))
38: end if
39: end if
40: end if
41: end if
42: end while
43: Output: A, an approximation of the Pareto front

solution. Starting from the leaf agents in the pseudo-tree, the
idea of this algorithm is to propagate a partial assignment
pA up the pseudo-tree, along with its cost. Each agent xi

starts by selecting a random value from its variable domain
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Di (line 2) that is added to the partial assignments received
from its children (line 2). A partial cost ri is computed by
adding the costs received from the children r j (line 2) with
the local cost generated by the partial assignment Ri(pA)
(line 2). Due to the requirement that variables sharing a
constraint are part of a same path between the root of the
pseudo-tree and a leaf agent, an agent xi can compute a lo-
cal cost vector Ri(pAi) corresponding to the costs generated
by all the constraints involving xi and its descendants. This
partial cost, along with the partial assignment, is sent to the
parent or, in the case of the root agent, the assignment is
complete and we know its corresponding cost vector.

Algorithm 3 shows the pseudo-code of the search
phase. Similarly to the centralized PLS, we maintain a
set of non-dominated solutions A from which we consider
archive, the set of solutions in A not yet explored. A and
archive are initialized with the set of non-dominated solu-
tions generated using Algorithm 2. At each iteration, the
root selects a subset subarchive of size e from the archive
(line 3). This subarchive is sent down the pseudo-tree and
corresponding non-dominated neighbors are sent back up
the tree. Upon reaching the root, the new non-dominated
solutions are added toA and the archive is updated accord-
ingly. This is repeated until all solutions in A have been
explored.

To perform the search, three messages are used. To
propagate the assignments to explore, we use subarchive
messages (line 3). The search is started when the root agent
sends the first subarchive to explore. Upon receiving this
message, an agent first forwards it to all its children before
computing its local neighborhood (line 3). If the agent is
a leaf in the pseudo-tree, it can directly send this neighbor-
hood to his parent. The neighbors message (line 3) is used
to bring the neighborhood of each agent back to the root. An
agent receives this message from its children, combining the
received neighborhood with its local one (line 3). Once the
neighborhood of each children have been received, the re-
sulting set of non-dominated solutions are sent to the parent
node (line 3). In the case of the root agent, we now have
the complete set of non-dominated solutions of the current
subarchive. We consider assignments in the subarchive to
now be explored (line 3), and the newly found solutions are
added to A (line 3). A new archive (line 3) and subarchive
(line 3) are generated, and a new iteration is started by
sending the subarchive to the children. If at this point the
subarchive is empty, the search terminates and A contains
the non-dominated solutions encountered during the search.
To end the algorithm, the root sends terminate messages
(line 3) that are propagated by every agent down the pseudo-
tree (line 3).

3.2 Properties

Property 1 (Termination): DPLS terminates when all en-
countered non-dominated solutions (A) have been explored,
i.e., we searched their neighborhood for new solutions. This
means that in the worst case, DPLS terminates once the

whole search space has been explored.

Proof 1: DPLS terminates once the archive, the set of as-
signments in A that are not yet explored, becomes empty.
Since a problem has a finite number of possible assignments
and at each iteration some assignments in A become ex-
plored, the archive eventually becomes empty and DPLS
terminates.

Property 2 (Anytime): DPLS is anytime, i.e., at the end of
each iteration the root knows all the non-dominated solu-
tions encountered so far (maintained inA).

Proof 2: At each iteration, we explore the neighborhoods
N(A),∀A ∈ subarchive. After that, non-dominated solu-
tions within the neighborhoods are added to A and all as-
signments in the subarchive are considered explored. Since
a solution in A is discarded only if it is dominated by an-
other solution, we can guarantee the following at the end of
each iteration: A = ND(

⋃
A|explored(A)

N(A)).

4. Experimental Evaluation

In this section, we evaluate the performances of DPLS for
various settings and compare it with B-MOMS [9], the state-
of-the-art approximation algorithm for MO-DCOP.

4.1 Experimental Setting

In our evaluations, we consider an extended graph-coloring
problem originally proposed for evaluating the perfor-
mances of B-MOMS. While this is an abstract problem, it is
used in real applications such as scheduling problems [16]
and wireless sensor networks [17]. In this problem, each
agent xi owns a variable vi taking its value from the domain
Di = {1, 2, 3}. Three cost functions corresponding to three
objectives are defined:

f 1(vi, v j) =

⎧⎪⎪⎨⎪⎪⎩
0 vi � v j

1 vi = v j
, f 2(vi, v j) =

⎧⎪⎪⎨⎪⎪⎩
0 if |vi − v j| = 1

1 otherwise
,

f 3(vi, v j) =

⎧⎪⎪⎨⎪⎪⎩
0 if i < j and v j < v j

1 otherwise

The first objective represents the common graph-coloring
conflict function. The second objective aims towards having
a distance of one between the values of the variables. The
third objective considers that variables with higher indexes
should take higher values.

To produce our instances, random connected graphs
were generated by specifying |V | the number of variables
and δ the density of the graph. When δ = 0, the number of
edges in the graph is equal to |V | − 1 and when δ = 1, the
number of edges is equal to |V |2 (|V | − 1).

In order to evaluate the performances of DPLS and
compare them with B-MOMS, we use three different met-
rics, namely minimum Euclidean distance, fraction of
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Fig. 3 Results for DPLS and B-MOMS on multi-objective graph-coloring instances with |V | = 14.

Fig. 4 Results with δ = 0.5 and varying |V |.

Pareto optimal solutions found and the hypervolume indi-
cator. Let PO be a set of all Pareto optimal solutions of
an MO-DCOP and P̃O be an approximation of PO obtained
by DPLS and B-MOMS. The minimum Euclidean distance
measure the minimum distance between solutions A ∈ P̃O
and an optimal solution Ao ∈ PO. The fraction of Pareto

optimal solutions found is expressed as:
|P̃O ∩ PO|
|PO| . The

hypervolume indicator [18] is a measure of the volume of
the objective space covered by a set of solutions. This last
measure has the advantage of not requiring the exact set of
Pareto optimal solutions, requiring instead a reference point
to define the range of the objective space. For the multi-
objective graph-coloring problem, the cost of each objective
is bounded by the number of constraints in the problem and
we use these bounds as reference point.

To compute PO, we use a brute-force optimal algo-
rithm whose complexity is exponential in the number of
variables (|V |). We thus could not compute PO for large
instances and only report the distance and fraction of Pareto

optimal solutions for problem instances with |V | = 14. For
|V | > 14, we use the hypervolume indicator to measure the
ratio of optimal solution space covered by P̃O. We consider
as optimal solution space the hypervolume ranging from the
reference point to the utopia point where all objectives are
equal to 0.

For all experiments, DPLS was started with 100 ran-
domly generated assignments and each iteration explored
the neighborhood of one assignment (e = 1).

4.2 Experimental Results

Figure 3 shows the results obtained with B-MOMS and
DPLS over 40 multi-objective graph-coloring instances with
|V | = 14 and varying the density. Figure 3 (a) shows the
minimum Euclidean distance between P̃O and PO, and
Fig. 3 (b) shows the ratio of Pareto optimal solutions found
by B-MOMS and DPLS. At low densities, DPLS easily fall
into a local optima where changing the value of a single vari-
able does not improve the solution cost. This causes the
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quality of DPLS to vary a lot depending on the instances,
sometimes finding the full Pareto front and other times not
finding a single Pareto optimal solution. This leads, for den-
sity δ < 0.2, to finding an average of only around 40% of
all Pareto optimal solutions. B-MOMS, which is exact for
δ = 0, can still provide 80% of the Pareto solutions for
δ = 0.1. When density increases and each variable is in-
volved in more constraints, the chances for improvements
using local search also increases and DPLS finds more than
60% of all optimal solutions when density is above 0.3.
B-MOMS, which relies on removing edges from the con-
straint hypergraph, suffers a great decline in solution quality
when the density increases, finding less than 25% of PO for
δ > 0.4.

We now consider results obtained when varying |V | be-
tween 10 and 80 with density δ = 0.5. Figure 4 shows the
average runtime and hypervolume indicator obtained over
40 instances. We first notice that the runtime of both B-
MOMS and DPLS increases exponentially with the number
of variables, following the increase in the size of the search
space. Regarding the quality of the solutions obtained, we
see that for quite dense graphs, DPLS always finds better
approximations, with the gap between the two algorithms
increasing from a 5% difference for |V | = 10 to a 20% dif-
ference for |V | = 80.

In summary, we showed that DPLS is able to find sig-
nificantly better solutions than B-MOMS on problem of
medium and high density, finding more optimal solutions for
density δ > 0.25. For reference, graph-coloring instances
based on geographical constraints can have a density of up
to δ = 0.63. While DPLS is slightly slower than B-MOMS,
both algorithms share a similar time complexity that is ex-
ponential in the number of variables. DPLS however has the
advantage of being anytime.

5. Related Works

The DPLS uses local search approaches that have been
already addressed in DCOPs [19] and also been extended
to Multi-Objective Optimization Problems (MOOP) [13].
Compared to the centralized Pareto Local Search (PLS),
DPLS adds an exploration parameter e allowing to adjust
between the strategy of PLS consisting in exploring one so-
lution per iteration, and exploring all non-dominated solu-
tions [20].

For MO-DCOPs, the Bounded Multi-Objective Max-
Sum (B-MOMS) algorithm [9] is the first and only ex-
isting approximation algorithm. It is an extension of
the Bounded Max-Sum algorithm [12] designed for mono-
objective DCOPs. B-MOMS works on a factor graph where
each constraint and each variable are nodes. Max-Sum is a
dynamic programming algorithm that can find the optimal
solution of a DCOP if its factor graph is a tree (no cycle).
In the Bounded Max-Sum, a bounding phase is used to re-
move the least important edges of the graph and obtain a fac-
tor graph without any cycle. Based on the edges removed,
an approximation ratio is provided to guarantee the quality

of the solutions obtained. In B-MOMS, both the bounding
phase and the Max-Sum phase are adapted to solve MO-
DCOPs, offering a complete algorithm on cycle-less graphs,
and providing a posteriori quality guarantee otherwise. B-
MOMS was recently used to solve the real problem of man-
aging water resources systems [21]. Compared to this algo-
rithm, DPLS cannot provide guarantee on the quality of its
solutions. However, B-MOMS is not anytime and requires
to wait the end of the solving before any solution can be
used.

MO-ADOPT [10] is the other existing algorithm de-
signed specifically for MO-DCOPs. It extends ADOPT [1],
a popular search algorithm for DCOPs, and guarantees to
find a Pareto optimal solution. However, it searches for a
single solution and not for a set of solution or the whole
Pareto front. In DPLS, we propose to find an approximation
of the Pareto front, which often involve finding a large set of
solutions.

For MO-COP, various approximation algorithms have
been developed, e.g., Multi-Objective Mini-Bucket Elimi-
nation (MO-MBE) [6], Multi-objective Best-First AND/OR
search algorithm (MO-AOBF) [22], and multi-objective A∗
search algorithm (MOA∗) [23]. Most of these algorithms
are extension of existing search and inference based mono-
objective COP algorithms. In comparison, DPLS is a local
search based algorithm, and our experiments revealed that a
local search technique is suitable for solving an MO-DCOP.

6. Conclusion

In MO-DCOPs, since finding all Pareto optimal solutions
is not realistic, it is important to consider fast approxi-
mation algorithms. In this paper, we developed a novel
approximation algorithm called Distributed Pareto Local
Search (DPLS) algorithm. DPLS uses a local search ap-
proach to generate an approximation of the Pareto front of
an MO-DCOP. In the experiments, we evaluated the per-
formance of DPLS on randomly generated multi-objective
graph-coloring instances and compared the obtained re-
sults with B-MOMS, the state-of-the-art approximation al-
gorithm for MO-DCOPs. Our experiments showed that
DPLS finds better approximations than B-MOMS in prob-
lems with medium or high density.

As future works, we plan on further studying several
aspects of the DPLS. First, we want to experiment with the
anytime property of DPLS and study ways to improve this
property, by using specific exploration strategies for exam-
ple. This ability to stop the algorithm at any time with the as-
surance to have the best solutions encountered so far is very
important when the available processing time is not known
in advance. Another aspect we want to study is how to
adapt some neighborhood operators to a distributed environ-
ment. Some existing operators are very successful on spe-
cific problems and could be interesting to use for the DPLS.
However, these operators can involve several variables and
using them in distributed settings is not trivial as they can
produce overlapping local neighborhoods, requiring addi-
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tional coordination between agents. Similarly, exploration
and restart strategies should be implemented in distributed
settings as they proved to be quite successful for the cen-
tralized PLS [24]. Another method that should be studied
for DPLS is the Queued PLS [25] that delays the removal
of dominated solution from the archive as it can improve
the approximation found by the algorithm. Furthermore, we
intend to apply DPLS to challenging real world problems,
e.g., sensor network and scheduling problems.
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