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SUMMARY  This study introduces large-scale field experiments of
VoiceTra, which is the world’s first speech-to-speech multilingual trans-
lation application for smart phones. In the study, approximately 10 million
input utterances were collected since the experiments commenced. The us-
age of collected data was analyzed and discussed. The study has several
important contributions. First, it explains system configuration, commu-
nication protocol between clients and servers, and details of multilingual
automatic speech recognition, multilingual machine translation, and mul-
tilingual speech synthesis subsystems. Second, it demonstrates the effects
of mid-term system updates using collected data to improve an acoustic
model, a language model, and a dictionary. Third, it analyzes system us-
age.
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1. Introduction

Speech translation technologies realize smooth communi-
cation between people from different parts of the world
who speak different languages. The demand for these tech-
nologies has steadily increased in the last few years with
the spread of the Internet and globalization of the econ-
omy [1], [2]. This has triggered research and development
activities related to speech translation systems in several
countries around the world.

In Japan, both the Advanced Telecommunications Re-
search Institute International (ATR) and the National In-
stitute of Information and Communications Technology
(NICT) are engaged in the research and development activ-
ities of speech translation systems [4] through field experi-
ments by assuming actual use environments [2], [3]. Addi-
tionally, the Verbmobil project [S] in Germany conducts re-
search on speech translation between Japanese, English, and
German, and the NESPOLE! project in the EU [6] and TC-
STAR [7] conduct research on speech translation technolo-
gies utilized in international conferences to translate lec-
tures. In the United States, active research on speech transla-
tion technologies was conducted by the TransTac project as
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well as the GALE project [8] of the Defense Advanced Re-
search Projects Agency (DARPA). These projects focused
specifically on translating languages such as Arabic and
Chinese to English with the aim of extracting information.
In Asia, eight countries (Japan, China, Korea, Thailand, In-
donesia, Malaysia, Vietnam, and Singapore) that are collec-
tively termed the Asian Speech Translation Advanced Re-
search Consortium (A-STAR) [9] are engaged in collabora-
tive research and development activities on speech recogni-
tion, translation, and text-to-speech technologies, and col-
lection of speech and text corpora. Recently, an inter-
national research consortium called U-STAR [10], which
includes 26 institutes from 23 different countries (as of
Oct., 2013) including NICT, has collaboratively developed a
network-based speech-to-speech translation system by mu-
tually connecting speech recognition, machine translation,
and text-to-speech servers developed by each member of the
consortium via the network.

This study describes “VoiceTra,” which is the world’s
first network-based speech-to-speech translation system that
is operated on smart phones, and a large-scale field ex-
periment conducted using VoiceTra. The experiment was
launched in July 2010 with the aim of analyzing collected
speech data and improving the system using the collected
speech data. The VoiceTra system consists of a client
app that is capable of displaying the speech recognition/
translation results and playing synthesized speech. It also
includes servers that handle speech recognition, translation,
and text-to-speech processes. The client app was first devel-
oped for Apple’s iPhone and is available on the App Store
for free. The Android version was released in April 2011
to reach a wider audience and is also available for free on
the Android Market. The apps together comprised 700,000
downloads and over 10 million accesses by the end of 2012.
This study details the system configuration of VoiceTra as
well as the multilingual speech recognition, translation, and
text-to-speech technologies utilized by the system. To re-
view user statistics, the analysis results of the collected
large-scale real use speech data that were created by ac-
tually monitoring and analyzing the data by hand are dis-
cussed. The collected data were used to apply unsupervised
adaptation on the acoustic and language models for speech
recognition as part of the experiment. The study also dis-
cusses the improvements involved in speech recognition and
translation accuracies with the application of unsupervised
adaptation.

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers
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This paper is organized as follows. Section 2 gives
an overview of VoiceTra and its user interface, communica-
tion protocol between the client and the server, and system
configuration of actual servers. Section 3 describes multi-
lingual speech recognition, translation, and text-to-speech
technologies used in VoiceTra. Section 4 discusses manu-
ally monitored and analyzed results of the collected speech
data and evaluates speech translation accuracies. Finally,
Sect. 5 presents the conclusions.

2. “VoiceTra” Network-Based Multi-Lingual Speech-
to-Speech Translation System

2.1 System Overview

VoiceTra is a network-based multi-lingual speech-to-speech
translation system realized using servers for speech recog-
nition, language translation, and speech synthesis prepared
on a network such as the Internet. Translation is performed
by processing speech on each server in that order, and the
speech is translated into a foreign language. These pro-
cesses typically require large amounts of calculation on
the server and therefore could utilize large-scale models
for speech recognition and language translation. There-
fore, VoiceTra realizes speech translation with higher per-
formance than a stand-alone system that performs all pro-
cesses on a smart phone.

Figure 1 shows the structure of the VoiceTra system.
The VoiceTra client works for speech input, displays a trans-
lation result, and plays the synthesized speech. The Voice-
Tra server consists of multiple servers wherein each server
performs a specific process such as speech recognition, lan-
guage translation, and speech synthesis. Speech recognition
and speech synthesis servers are prepared for each language,
and a language translation server is prepared for each lan-
guage pair. Hence, it is possible to update a model and
server software for a specific language or language pair
without shutting down all servers. Table 1 shows a list of
languages that can be used in VoiceTra. As shown in this
table, the VoiceTra client can access speech recognition and
speech synthesis servers for six languages: Japanese, En-
glish, Chinese, Indonesian, Vietnamese, and Korean. Lan-
guage translation servers for 210 language pairs between 21
languages are available. Additionally, text input and output
is available for a language not supporting speech input and
output. Text input and output continues to be an important
function to communicate with foreigners in situations where
speech recognition and speech synthesis are not available
such as very noisy environments or libraries.

2.2 Communication Protocol between the Client and the
Server

Speech Translation Markup Language (STML)[11] is used
to communicate between the client and the server. Follow-
ing a speech input from the client, three processes, namely
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Table 1  List of available languages that can be translated by VoiceTra

Available to use text
input and output

Available to use speech
input and output

Japanese
English
Chinese

Indonesian
Vietnamese
Korean

Japanese
English
Chinese

Indonesian
Vietnamese
Korean
Taiwanese Mandarin
French
German
Hindi
Ttalian
Malay
Portuguese
Portuguese (Brazil)
Russian
Spanish
Tagalog
Thai
Arabic
Dutch
Danish

speech recognition, language translation, and speech syn-
thesis, are executed by receiving a request of speech recog-
nition from the client <SR_IN>, sending a recognition result
from the server <SR_OUT>, requesting language translation
from the client <MT_IN>, sending a translation result from
the server <MT_OUT>, requesting speech synthesis from the
client <SS_IN>, and sending synthesized speech from the
server <SS_OUT> via the network.

Multipurpose Internet Mail Extensions (MIME) are
used to convert necessary information for speech transla-
tion (such as source language, target language, and speech
waveform) to a text, and then a Hypertext Transfer Protocol
(HTTP) is used to transfer the text.

A speech translation system can be easily realized by
using a single server in which speech recognition, language
translation, and speech synthesis are performed. However,
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it is easy to extend STML to a language or language pair for
speech recognition, language translation, and speech syn-
thesis. Specifically, STML was proposed as a protocol to
realize multilingual speech translation by integrating multi-
ple servers in several companies and research institutions for
speech recognition, language translation, and speech syn-
thesis. Hence, it is possible to perform speech translation
using these servers by only registering information includ-
ing newly added speech recognition, language translation,
and speech synthesis servers to the client. Hence, STML
was adopted in this study from the viewpoint of future ex-
pansions of a potential translation language.

1. Request of speech recognition <SR_IN>
Information necessary for speech recognition, such as
maximum number of N-best (MaxNBest), language
of input speech (Language), speech codec (Audio),
and sampling frequency (SamplingFrequency), is de-
scribed in STML format and transferred to a speech
recognition server. Utterances spoken to the VoiceTra
client are recoded by 16 kHz 16-bit sampling and com-
pressed by ADPCM to 1/4. This is followed by trans-
ferring the compressed speech data to the server. In a
normal use scenario, the maximum number of N-best is
set as one. Therefore, language translation and speech
synthesis are performed for a recognition result of 1-
best.

2. Sending the recognition result <SR_OUT>
The STML format is used to describe the word se-
quence (NBest) obtained by speech recognition, and
then the recognition result is transferred to the client.
Additionally, UTF-8 is used for the character coding.

3. Requesting language translation <MT_IN>
The STML format is used to describe the source
language of translation (Sourcelanguage), target
language (TargetLanguage), and word sequence
(NBest) in the source language. Following this, the
language translation request is transferred to a lan-
guage translation server.

4. Sending the translation result <MT_OUT>
The STML format is used to describe the source
language of translation (SourceLanguage), target
language (TargetLanguage), and word sequence
(NBest) in the target language, and then the translation
result is transferred to the client.

5. Requesting speech synthesis <SS_IN>
The STML format is used to describe the speech codec
(Audio), sampling frequency (SamplingFrequency),
language for speech synthesis (Language), and word
sequence (NBest). This is followed by transferring the
speech synthesis request to the speech synthesis server.

6. Sending synthesized speech <SS_OUT>
The STML format is used to describe the speech codec
(Audio), sampling frequency (SamplingFrequency),
and language for speech synthesis (Language), and
then the sent synthesized speech is transferred to the
client. In a manner similar to <SR_IN>, the synthe-
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Fig.2  Translation panel (left) and language selection panel (right)

sized speech waveform is transferred by ADPCM to
the client.

2.3 User Interface

Figure 2 shows a screen-shot of VoiceTra. The left side cor-
responds to a translation screen, and the right side corre-
sponds to the language selection screen. The screen shown
in this example involves a translation from Japanese to En-
glish. The speech input is timed to commence when the user
brings the iPhone close to his/her ear and to stop when the
iPhone is placed down. The vibration of the terminal indi-
cates the commencement of speech input to the user. The
application of proximity sensors to disable touch panel op-
eration while talking made such an interface possible. Al-
though this speech input interface corresponds to a natural
action for the user, it is possible to forcibly close the distance
between the microphone and the mouth. Thus, a relatively
high signal-to-noise ratio (SNR) is obtained.

The top row displays the speech recognition results of a
Japanese utterance that corresponds to “7E 27KV F L7z, BR
13 &2 TH P, and the bottom row displays the translation
results that correspond to “I’m lost. Where is the station?”
The synthesized speech is played from the iPhone following
the display of the translation results. The Japanese charac-
ters in the middle row indicate the English translation re-
sult that was translated back into Japanese, i.e., back trans-
lation [12]. The user can verify the accuracy of the trans-
lation against the speech recognition result by comparing
these back-translation results with the meaning of the speech
recognition results.

2.4 Speech Translation Server

It is necessary for a speech translation system to translate
a user’s speech in real time. Additionally, it is desirable to
obtain the speech translation result in a very short time with
respect to the end of the utterance. Decoding parameters,
such as beam width, were adjusted to the real time factor
(RTF) that is 1.0 or less to ensure that the speech recogni-
tion result was obtained at the time when the utterance ends.
The RTF of the language translation process corresponded
to 0.05. Finally, the speech translation system was adjusted
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Table2  Number of servers for language translation Table3  Corpus size for building acoustic models
Target lang. Language | Utterances Hours Speaking style
Source lang. | Japanese  English  Chinese Korean  Others Japanese 227k+60k | 390.0 + 57.5 | read speech+field speech
Japanese - 9 9 9 3 English 256k 267.3 read speech
English 9 - 3 3 3 Chinese 495k 509.8 read speech
Chinese 9 3 - 3 3 Indonesian 84k 79.3 read speech
Korean 9 3 3 - 3 Vietnamese 23k 19.4 radio speech
Others 1 1 1 1 1 Korean 149k 271.3 read speech

so that the translation result was obtained within 1.05 times
the utterance length with the exception of a network delay.

The specs of the required server were estimated for the
general public VoiceTra. It was assumed that each of 0.5M
clients utilized approximately 10 s per week. Furthermore,
it was assumed that two times the access of the above as-
sumption occurred at the time of the peak. Given these as-
sumptions, a speech of 10M s (= 0.5M clients X 10 s X 2)
would be translated in a week. The RTF was adjusted to
approximately 1.0, and thus a CPU time of 10M s was also
required to translate a speech of 10M s. Given that a week
has approximately 0.6M s, 16.7 CPU cores (= 10M/0.6M)
were required to satisfy these assumptions. This is equiva-
lent to a process involving a speech of 1000 s per min.

Six servers, in which each server included four CPU
cores, were used in the actual operation, and thus a total
number of 24 cores existed. The numbers of speech recog-
nition, language translation, and speech synthesis servers for
each language were determined from the ratio of the ac-
tual access. The number of speech recognition servers for
Japanese and English was nine and four, respectively, and
the number of speech recognition servers for Chinese, In-
donesian, Vietnamese, and Korean was two. The number
of speech synthesis servers was equivalent to the number
of speech recognition servers for each language. Table 2
shows the number of language translation servers. As shown
in the table, there were more than two language translation
servers for language pairs involving Japanese, English, Chi-
nese, and Korean to continue the service, even in the event
of failure of a server.

The actual average access time was 25.8 s per min.
However, when VoiceTra was introduced in a TV program,
a delay occurred in the speech translation process because
it was necessary to process speech data up to 1551.1 s per
min.

3. Multilingual Speech-to-Speech Translation System
3.1 Multilingual Speech Recognition

The speech recognition system used in VoiceTra consisted
of a frontend, which performed noise suppression using
particle filtering [13] and acoustic analysis, and a backend,
which performed large vocabulary continuous speech recog-
nition (LVCSR) using ATRASR [14].

A feature vector consisted of 12 MFCCs, 12 A MFCCs,
and A pow extracted from a 20-ms window size with a 10-
ms frame shift for a speech waveform recorded by a sam-

pling frequency of 16 kHz. Two-pass Cepstrum Mean Sub-
traction (CMS) is widely used to normalize the channel
characteristics of a microphone. However, while using a
two-pass CMS, it is necessary to wait for the utterance to
end in order to start the recognition process. This is unsuit-
able for a VoiceTra system in real time. Additionally, it is
not possible to use one-pass CMS using the average cep-
strum of the previous utterance because it is difficult to store
the last speech of each of the terminals on the server side. In
the system proposed in the study, a successive channel char-
acteristics normalization using a prior distribution given by
the following equation was used.

TP+ Y e
= »

<M= -, )

Here, ¢;"? and ¢ denote cepstrum vectors before and
after normalization at time ¢, respectively. Furthermore, s”"
denotes a prior distribution, and the average vector calcu-
lated from a large amount of speech data collected by ter-
minals supported by VoiceTra, such as an iPhone, is used as
the prior distribution. Additionally, T denotes the weight for
the prior distribution, and s, denotes the average cepstrum
used for normalization at time 7.

The Japanese acoustic model involved approximately
390 h of read speech in which approximately 4,500 adult
speakers were used. Gender-dependent triphone hidden
Markov models (HMMs) with 5,660 states were estimated
using the read speech that was contaminated by noise
sources, such as train stations, department stores, restau-
rants, and cars, at 10-30 dB SNR. Each state had 10 mix-
ture components. Finally, the Japanese acoustic model was
estimated by the MAP adaptation [15] using the speech col-
lected in the field experiments conducted in five regions in
Japan [2]. The acoustic models for English, Chinese, Ko-
rean, and Indonesian were estimated using read speech. The
acoustic model for Vietnamese was estimated using radio
speech and related transcriptions. In a manner similar to
Japanese, gender-dependent triphone HMMs for these lan-
guages were estimated using a speech corpus that was con-
taminated by several types of noise at 10-30 dB SNR. Ta-
ble 3 shows the corpus size used for building acoustic mod-
els.

Multiclass composite bi-gram [16] and word tri-gram
language models were estimated using a text corpus col-
lected from travel conversations. Table 4 shows the cor-
pus size required to estimate the language model for each
language. Japanese, English, and Chinese language models
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Table 4  Corpus size for building language models
Language | # of utterances | # of words ] Lexicon size
Japanese 803k 8,154k 63k

English 703k 5,967k 44k
Chinese 715k 4,266k 45k
Indonesian 170k 1,121k 15k
Vietnamese 162k 1,432k 8k
Korean 330k 2,948k 43k
Table 5  Corpus size for building machine translation systems
Language # of # of Lexicon
pair sentences | words size

Japanese, English 701k 6,350k 43k

Japanese, Chinese 508k 4,035k 33k

Japanese, Korean 392k 2,964k 29k

Japanese, Other languages 160k 1,180k 16k

were estimated with sentences from the Basic Travel Ex-
pression Corpus (BTEC) [20] and the transcribed text of the
speech collected in the field experiments involving five re-
gions in Japan. Indonesian, Vietnamese, and Korean lan-
guage models were estimated using only the BTEC. The
lexicon size of the Vietnamese language model was smaller
than those of other languages because the lexicon consists
of phonemes and syllables [17].

3.2 Multilingual Machine Translation System

The machine translation part consisted of a translation mem-
ory and a statistical machine translation system. The trans-
lation memory yielded output when the input sentence ex-
actly matched a sentence in the parallel corpus. A phrase
based statistical machine translation system was introduced,
and it worked only when the translation memory had no
output. The system involved eight features [18] including
source language to target language phrase unit translation
probability (translation model) and target language side 5-
gram language model.

Each model was trained using a Moses toolkit [19]. Ta-
ble 5 shows the details of the training corpus. The cor-
pus was used for both translation memory and statistical
machine translation training. As shown in the table, the
training set size was the largest in the Japanese and English
language pair. The size corresponded to 700,000 sentence
pairs, including the ATR travel conversation corpus [21] and
the BTEC. Subsets of the Japanese-English training set were
manually translated to obtain the training sets of the other
language pairs.

3.3 Multilingual Text-to-Speech Synthesis

The text-to-speech synthesis system was composed of two
modules: a text processing module and a speech signal pro-
cessing module. The former converted input text into a se-
quence of context-dependent phone labels by looking up
pronunciation lexicons and applying a set of rules developed
to analyze text in each language. The context-dependent
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Table 6  Size of the corpus that was used to build the speech synthesis
model of each language

Language | Number of utterances | Total duration of speech in hours
Japanese 19k 25.0
English 18k 17.4
Chinese 15k 20.3
Indonesian 2k 1.9
Vietnamese 1k 0.6
Korean 4k 8.9

phone label included various types of linguistic information
such as the phonetic type and phonetic context of the cur-
rent phone, the part-of-speech of the word that the phone
belonged to, the dependency of the word, and the posi-
tions of the phone within the sentence, clause, and phrase.
All the fore-mentioned types of linguistic information were
used in the subsequent speech signal processing module to
control the phonetic and prosodic aspects of speech to be
synthesized. With respect to languages involving a writ-
ten text with no spaces between words, such as Chinese
and Japanese, the input text was segmented into morphemes
prior to the fore-mentioned text-to-label-sequence conver-
sion to determine boundaries of words/phrases in the text.
The morphological segmentation of such text in Japanese
and Chinese involved the use of open-source analyzers
“Chasen” [23] and “Mecab” [24], respectively.

The speech signal processing module then synthesized
speech according to the context-dependent labels. This
process involved the use of a statistical method based on
HMMs [25], [26]. Among several types of HMMs, hid-
den semi-Markov models (HSMMs) with a five-state left-
to-right topology with no skip were utilized in the present
study. The models were trained in advance with acoustic
features that were extracted every 5 ms from prerecorded
speech sampled at 16 kHz. The features were composed of a
39-dimensional mel-cepstral vector, logarithmic fundamen-
tal frequency (Fy), and dynamic features (A and A%). The
mel-cepstral vectors were computed from the spectral en-
velopes obtained by the STRAIGHT analysis [27]. Table 6
lists the size of the speech corpus used to train the models
for each of the languages.

4. Field Experiments
4.1 Analysis of Collected Real-Use Speech Data

Figure 3 shows the cumulative number of accesses to the
VoiceTra server between July 2010 and January 2013. As
is evident from the figure, the number of accesses steadily
increased since the launch of the service. Approximately
10.54 million utterances were collected by the end of 2012.
The breakdown of the utterances by language is as follows:
Japanese, English, Chinese, Korean, Indonesian, and Viet-
namese utterances accounted for 74%, 19%, 4%, 2%, 1%,
and 1% of the total utterances, respectively. Accesses from
within and outside Japan corresponded to 94.7% and 5.3%,
respectively, and thus most of the accesses were from within
Japan. Figure 4 shows the country-wise breakdown of the
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overseas accesses. The accesses were mostly from China
(22.3%), followed by the United States (19.3%), Taiwan
(7.7%), and Korea (7.0%). Accesses from Indonesia and
Vietnam contributed to 2.4% and 5.0% of the utterances,
respectively, given that VoiceTra supported voice input in
Indonesian and Vietnamese.

Figure 5 shows the distribution of SNR that was com-
puted from speech collected in the field experiments. The
SNR was obtained by first determining speech-with-noise
and non-speech sections according to the results of phone
alignment performed using annotated text and then calcu-
lating the ratio of the mean power of speech between these
sections. As observed in the figure, the SNR exhibited a
wide range from 0 dB to 50 dB with a median of 25 dB at
the center. This revealed that it was required to deal with
speech of a relatively low SNR.

To review the usage statistics, utterances collected from
478 terminal devices that were most frequently used within
Japan during the experiment were classified into several
types of user purposes predicted by monitoring the utter-
ances. Each of the devices was among the top 100 devices
for any of the following assessments: total frequency of
use, frequency of use per day, number of months, number
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of days, and number of consecutive days they were used
for. The left-hand part of Fig. 6 shows the classification. In
the chart, “Translation test” indicates utterances that were
judged as given when the user was checking translation re-
sults beforehand by him/herself or when the user was sim-
ply checking a word in the dictionary. “Entertainment” in-
dicates utterances that were spoken just for fun, such as ut-
terances from famous cartoon animations and song lyrics.
“Speech for training” indicates utterances in English that
were by Japanese individuals for the purpose of checking
speech recognition results. “Communication” indicates ut-
terances involved in real conversations with a foreigner. “In-
valid” implies that no utterance could be found in the input.

As shown in the figure, the most common utilization
purpose corresponded to “Translation test” and accounted
for 54.4%. This was followed by “Entertainment” in the
second place (25.1%). This in turn was followed by “Speech
for training” (16.6%) and “Communication” (2.3%). With
respect to the use within Japan, practical use as a speech
translator corresponded to a total of 56.7% including the
sum of proportions of “Translation test” as well as “Com-
munication.” This was followed by classifying utterances
collected from 146 terminal devices used outside Japan in
accordance with the different types of purposes. Each of the
devices was among the top 50 devices for any of the same
assessments above. The right-hand part of Fig. 6 shows the
classification. As shown in the chart, utterances collected in
actual communication with foreigners accounted for 9.6%
and indicated a higher percentage when compared with the
usage within Japan. The percentage of cases wherein the
application was practically used as a speech translator cor-
responded to 71.0%. Among the 14 terminal devices that
were interpreted as used for verbal communication, a de-
vice was used by a native speaker of Chinese and the rest by
native speakers of Japanese. According to the contents of
the utterances, the Japanese speakers appeared to have used
VoiceTra to converse with local people during their sightsee-
ing/business trips. There was a greater need to communicate
with people who did not speak Japanese overseas, and this
was probably the reason for the increase in the proportion of
use for communication purposes.
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Table 7 Model combinations of three speech-to-speech translation sys-
tems
2010/08 | 2010/11 | 2011/06
STS STS; STS, STS;3
MT MT; MT; MT,
ASR ASR; ASR; ASR3
AM AM; AM; AM;,
LM LM, LM, LM,
Table8 The VoiceTra testset
Test set | Total | Travel related Others
2010/08 | 700 587 113 (27)
2010/11 700 598 102 (29)
2011/06 | 700 599 101 (25)

4.2 Evaluation of Speech Translation Quality

This subsection explains the evaluation of speech translation
quality using VoiceTra users’ speech data. VoiceTra was
released in end of July 2010. Following the first release, the
system was updated using VoiceTra users’ speech data as
follows:

e Acoustic model adaptation on November 2010 (2010/
11)

e Language model adaptation and lexicon expansion
(adding 14,000 entries) for ASR and MT on June 2011
(2011/06)

Unsupervised adaptation for ASR including acoustic
model adaptation and language model adaptation was per-
formed to reduce transcription cost [29]-[31].

Table 7 shows the three system configurations of the
Speech Translation System (STS). With respect to Machine
Translation (MT), MT; indicates the baseline of the MT
system explained in Sect.3.2. Additionally, MT, indicates
the lexicon expanded version. With respect to Automatic
Speech Recognition (ASR), AM; and AM, indicate the
baseline acoustic model explained in Sect. 3.1 and the un-
supervised adaptation version acoustic model, respectively.
Furthermore, LM; and LM, indicate the baseline language
model and the unsupervised adaptation language model with
14,000 additional new words, respectively.

Three test sets were maintained by randomly selecting
users’ utterances from the VoiceTra log to evaluate the ef-
fect of unsupervised model adaptation and lexicon expan-
sion. Each test set consisted of 700 utterances. The differ-
ences between the three test sets corresponded to the fol-
lowing data corrected periods: after the first release, after
the first update, and after the second update. These test sets
did not contain utterances with barnyard contents or utter-
ances recorded by erroneous operations because these utter-
ances were manually filtered in advance. To analyze test
utterances, they were manually classified into two classes:
travel-related utterances and not-travel related utterances.
Table 8 shows the results. The numbers in brackets indicate
the number of unclear utterances.
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Fig.7  ASR performance on the VoiceTra test set

Unsupervised acoustic model adaptation was per-
formed using speech recognition results for speech wave-
forms collected by VoiceTra. MAP adaptation [31] was ap-
plied to mean vectors in individual Gaussian components
using speech periods with higher word confidences [28]
when compared with the threshold. Additionally, unsuper-
vised language model adaptation was performed using only
recognition results with sentence confidences that exceeded
the threshold [31]. Specifically, 1,000,000 utterances col-
lected on August 2010 (2010/08) were used for the unsu-
pervised adaptation. Moreover, 14,000 words were added
to the lexicon. With respect to the statistical machine trans-
lation system, a method proposed in a previous study was
used to expand the bilingual dictionary size [22].

4.2.1 Evaluation of Speech Recognition Performance

The left half of Fig.7 indicates the word accuracy rates
of all utterances of the test set. As shown in the figure,
the ASR system (ASR;) with acoustic model adaptation
achieved higher speech recognition performance than that
of the baseline system (ASR;). We have also confirmed that
the system with both acoustic and language model adapta-
tions (ASR3) achieved even greater performance. The right
half of Fig.7 indicates the word accuracy rates of travel-
domain utterances which were sorted by hand. As shown
in the figure, the word accuracy rates of travel-domain ut-
terances are higher than that of all utterances of the test
set. Unsupervised acoustic model adaptation contributes to
performance improvements, enabling adaptation to acoustic
environments such as noise and adaptation to speaker vari-
ation and style. We recalculated the word accuracy rates of
767 utterances from the test set with SNR higher than 30dB,
in order to see the ASR performance with relatively clean
speech in speculation that they would have less effects on
degradation due to noise. Word accuracy rates of the base-
line ASR system (ASR;) and the ASR system with acous-
tic model adaptation (ASR;) were 77.19% and 78.69%, re-
spectively. The ASR system with acoustic model adaptation
(ASR3) achieved higher word accuracy rates than that of the
baseline system, even with the test set consisting of clean
speech only. From these results, we have confirmed that
improvements in ASR performance were achieved not only
with adaptation to acoustic environments such as noise, but
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Table 9  Perplexity of the VoiceTra test set with respect to the language
models used for speech recognition
LM, LM,

Test set All | Travel | All | Travel

2010/08 | 74.6 452 50.9 30.9

2010/11 | 97.3 63.4 73.7 48.7

2011/06 | 98.0 68.4 74.1 52.0

Table 10  Number of out of vocabulary words in the VoiceTra test set
with respect to the language models used for speech recognition
LM, LM,
Testset | #of OOVs | OOV rate | #0of OOVs | OOV rate
2010/08 55 1.7% 50 1.6%
2010/11 66 2.2% 61 2.0%
2011/06 69 2.3% 61 2.0%

with adaptation to speaker variation and style. Table 9 shows
the perplexities for all utterances (All) and travel-domain ut-
terances (Travel) of the VoiceTra test set in each of the cal-
culated month. As shown in this table, the adapted language
model (LM;) achieved lower perplexities than that of the
baseline language model (LM;). The transcription text used
for language model adaptation includes about 25% of greet-
ing words such as “hello” and “good evening.” It is conceiv-
able that the improvements in perplexities using the adapted
language model (LM;) were obtained by the adaptation to
word occurrence frequency.

Speech recognition performance degraded with each
passing day. Table 9 shows the perplexity in the Voice-
Tra test-set, and Table 10 shows the number of Out of Vo-
cabularies (OOVs) in conjunction with the OOV rates. As
shown in the tables, these parameters (i.e., number of OOVs,
OOV rates, and perplexity) increased with each passing day.
When the VoiceTra service started, the proportion of sim-
ple sentences that consisted of few words, such as saluta-
tions, was high in terms of user utterances. However, speech
recognition performance degraded given the increase in the
complexity of user utterances with each passing day.

4.2.2  Evaluation of Translation Quality

This section describes the evaluation of translation quality.
The same test sets as those in ASR evaluation were used.
However, test utterances with unclear intended meanings
were excluded from the translation quality evaluation. With
respect to the subjective evaluation, the following five trans-
lation quality ranks were defined: S (Perfect), A (Correct),
B (Fair), C (Acceptable), and D (Nonsense). Specifically,
three versions of STS systems (STS;, STS,, and STSj in
Table 7) and two versions of MT systems (MT; and MT, in
Table 7) were evaluated. With respect to the STS evaluation,
the input format corresponded to a speech signal. In con-
trast, the input format corresponded to manually transcribed
text for the MT evaluation.

Figure 8 shows the evaluation results of the translation
quality for all the test sets. Conversely, Fig.9 shows the
evaluation results for the travel-related test utterances. In

IEICE TRANS. INE. & SYST., VOL.E100-D, NO.4 APRIL 2017

[JsTSH 2010/08
[ SsTS 2

0.8 STS3

EIMT 1
A T 2

N

06 N

_ | \
2| | L
i | 1

Ratio

2227
V22222772

s SA SAB SABC
Translation Quality

CIsTSH 2010/11
EsTS2

0.8 STS3

Ratio

SAB SABC
Translation Quality

%)
7y
>

olsts:  LIuT 2011/06
[ STS 2 BT 2
0.8 EISTS3
g - 7 %
0.4 ‘ % % /
0.2 g é % g
0.0 é é L g g

Translation Quality

Fig.8 Evaluation results of Japanese-to-English translation quality on
the VoiceTra test set

these figures, the vertical axes indicate the ratio of test utter-
ances to the test set. The labels on horizontal axes indicate
the calculation method for the evaluation results. For ex-
ample, SA indicates the ratio of test utterances in S and A
translation quality rank to the test set.

Observations revealed that STS, and STS;3 exhibited
better results when compared with those of STS;. That is,
ASR system updates improved STS system performance. A
comparison of Figs. 8 and 9 indicated that the evaluation re-
sults using travel related utterances (62.3% given the con-
dition of STS3; and SABC in Fig. 9) produced better results
when compared with the evaluation results using whole test
utterances (59.2% given the condition of STS3 and SABC in
Fig. 8). This implied that 62.3% of STS output was at worst
acceptable translation in travel related input.

This section discusses the effects of the MT update. As
previously mentioned, only bilingual dictionary expansion
was applied as the MT update. This type of update works
well only if the added dictionary entries appear in the input
sentence. The other case includes a possibility of produc-
ing a side effect that causes the degradation of translation
quality. Table 11 shows the number of out of vocabulary
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Fig.9 Evaluation results of Japanese-to-English translation quality on
travel-domain utterances in the VoiceTra test set

Table 11  Number of out of vocabulary words in the VoiceTra test set
with respect to the dictionary in the translation sytem

Testset MT, MT,
2010/08 133 120
2010/11 146 142
2011/06 138 134

(OOV) words for each MT version, namely MT; and MT5,.
As shown in the table, 21 words corresponded to non-OOV
words by the MT update, and 21 test utterances containing
these words were analyzed. The results indicated that 19 out
of 21 utterances corresponded to D-rank translation quality
or no output for MT,. Meanwhile, MT;, could yield over C-
rank translation quality for 14 utterances from 21 utterances.
Figure 9 indicates the degradation of MT, on the test set
2010/11. However, the degradation was very small. Thus,
these evaluation results indicated that the MT update was
effective and that the side effect was very small. Future re-
search will include investigating methods to effectively add
useful dictionary entries.
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5. Conclusion

This study describes the “VoiceTra” system that was devel-
oped by NICT and released as the world’s first network-
based multilingual speech-to-speech translation system that
was operated on a smart phone. The system configuration,
communication protocol between clients and servers, and
details of multilingual automatic speech recognition, multi-
lingual machine translation, and multilingual speech synthe-
sis subsystems are described. Analysis of system usage and
speech translation performance evaluations are examined.

VoiceTra was downloaded 700,000 times and accessed
approximately 10 million times as of December 2012. The
usage analysis results confirmed that the practical use of
VoiceTra as a speech translator corresponded to 56.7%
within Japan and 72.6% outside Japan. Specifically, the per-
centage of actual communication with foreigners accounted
for 9.6% outside Japan and exceeded the percentage of use
within Japan (2.3%). Understandable translation results
were obtained for 62.3% of utterances. This was a result of
unsupervised adaptation for acoustic, language, and transla-
tion models using approximately 1,000,000 utterances col-
lected from the experiment and bilingual dictionary expan-
sion. Given that the complexity of user utterances increased
with each passing day, the perplexity and number of OOV
increased and speech recognition performance degraded.

Future research will include examining even more pre-
cise unsupervised learning methods for speech recognition
and translation models using large amounts of collected
speech data.
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