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Analyzing Temporal Dynamics of Consumer’s Behavior Based on
Hierarchical Time-Rescaling

Hideaki KIM†a), Noriko TAKAYA†b), Nonmembers, and Hiroshi SAWADA††c), Member

SUMMARY Improvements in information technology have made it
easier for industry to communicate with their customers, raising hopes for
a scheme that can estimate when customers will want to make purchases.
Although a number of models have been developed to estimate the time-
varying purchase probability, they are based on very restrictive assump-
tions such as preceding purchase-event dependence and discrete-time effect
of covariates. Our preliminary analysis of real-world data finds that these
assumptions are invalid: self-exciting behavior, as well as marketing stim-
ulus and preceding purchase dependence, should be examined as possible
factors influencing purchase probability. In this paper, by employing the
novel idea of hierarchical time rescaling, we propose a tractable but highly
flexible model that can meld various types of intrinsic history dependency
and marketing stimuli in a continuous-time setting. By employing the pro-
posed model, which incorporates the three factors, we analyze actual data,
and show that our model has the ability to precisely track the temporal dy-
namics of purchase probability at the level of individuals. It enables us to
take effective marketing actions such as advertising and recommendations
on timely and individual bases, leading to the construction of a profitable
relationship with each customer.
key words: self-exciting process, time-rescaling theorem, e-commerce,
purchase behavior

1. Introduction

With the explosive growth of e-commerce systems, indus-
trial practitioners now have the potential to communicate
with their customers wherever and whenever they want.
This situation puts strong pressure on the practitioners to
find the right time to communicate with each of their cus-
tomers, that is, the time when she is most likely to make a
purchase [1]–[3]. The purpose of this paper is to propose a
feasible method for tracking the fluctuation of the underly-
ing purchase probability of a customer, based on her trans-
action data.

The negative binomial distribution (NBD) model [4],
which has been applied extensively in marketing studies,
is a standard model for estimating the purchase probabil-
ity of a customer. The model, however, assumes that the
purchase probability is stationary over time, and is indepen-
dent of all non-stationary marketing variables and the cus-
tomer’s purchase history. Thus the NBD model says nothing
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about when to communicate with a customer. Some exten-
sions of the NBD model have been proposed, although to
maintain model tractability, they are based on unrealistic as-
sumptions such that the purchase behavior only depends on
the last purchase decision, and that the effect of marketing
variables is piecewise constant over time [5]–[12]. Our anal-
ysis finds that these assumptions are violated in actual data.
To achieve a more realistic model, we have to overcome the
trade-off between model flexibility and tractability, which is
not possible with the conventional approach.

In this paper, by employing the novel idea of hierarchi-
cal time rescaling, we achieve a tractable but highly flexible
model for estimating customers’ purchase probability over
time∗. Due to its flexibility, the model is able to incorporate
the effects of time-varying marketing variables and various
types of history dependency in a continuous-time setting.
Because of its tractability, the model offers the real-time
tracking of each customer’s purchase probability, as well as
the efficient optimization of the model parameters. We call
the proposed model, the Hierarchical Time-Rescaling model
(HTRm).

We assess the potential of HTRm for capturing cus-
tomers’ purchase behaviors by applying it to real-world data
consisting of four categories of transaction data. HTRm is
introduced in general form, and we propose a specific form
that is suitable for analyzing transaction data. It incorporates
three possible rate fluctuation factors: seasonal sales, self-
excitation, and the preceding purchase-events. We compare
the predictive performance of the proposed model against
the results achieved by the NBD model and other models
with fewer factors, and show that HTRm’s inclusion of var-
ious factors is essential for precisely estimating customer
purchase dynamics.

The rest of the paper is organized as follows. In Sect. 2,
we describe the problem of estimating a customer’s pur-
chase behavior via a point process, and outlines related
work. In Sect. 3, we construct HTRm in a form specifically
designed to analyze purchase data. In Sect. 4, we develop
a feasible algorithm, based on the Monte Carlo EM algo-
rithm, for estimating the model parameters. Section 5 ap-
plies HTRm to real-world data, and shows that the model
has the ability to precisely estimate the underlying dynam-
ics of customer purchase dynamics. Finally, Sect. 6 provides

∗Earlier versions of this work were presented at the 23rd ACM
International Conference on Information and Knowledge Manage-
ment (CIKM ’14) [13] as a conference paper.
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our conclusions.

2. Preliminary

2.1 Estimating Purchase Behavior via Point Process

We first introduce a basic method for analyzing purchase
events occurring in time. The theory of point process [14],
which has been introduced in not only marketing science [4]
but also such diverse disciplines as neuroscience [15] and
seismology [16], provides a powerful tool for modeling and
analyzing the stochastic structure of point events occurring
in continuous time. In the point process framework, the pur-
chase behavior of a customer is characterized by the pur-
chase rate, that is, the instantaneous probability for a cus-
tomer to make a purchase decision at each point in time [4],
[7], [17]. Suppose that customer u (1 ≤ u ≤ U) makes a
sequence of purchase decisions, {tu

j }nj=0 ≡ (tu
0, t

u
1, · · · , tu

n), in
the half-open observation period (tu

0,T ]. We can estimate u’s
purchase rate, λu(t), by evaluating the probability density of
the observation occurring, given by

p({tu
j }nj=0|λu(t))

=
[ n∏

j=1

λu(tu
j )
]

exp

(
−

n−1∑
j=0

∫ tu
j+1

tu
j

λu(t)dt −
∫ T

tu
n

λu(t)dt

)

=
[ n∏

j=1

λu(tu
j )
]

exp
(
−

∫ T

tu
0

λu(t)dt
)
, (1)

where the exponential on the right-hand side of Eq. (1),
called the survivor function [14], represents the probabil-
ity of no purchase events occurring in the open intervals
(tu

j , t
u
j+1) for 0 ≤ j ≤ n − 1 and the half-open interval (tu

n,T ].

If the purchase rate is estimated as λ̂u(t) based on Eq. (1),
we can predict future purchase times, {tu

j } j>n, again based on

Eq. (1), as p({tu
j } j>n|λ̂u(t)). For illustration, see Fig. 1. The

notation is summarized in Table 1. Note that we take the

Fig. 1 A schema for the estimation and prediction procedure via point
process. Solid bars represent observed purchase decisions, and dashed bars
represent a most likely purchase sequence in the future.

Table 1 Symbols and definitions for data.

Symbol Definition
U # of customers
u uth user, 1 ≤ u ≤ U
tuj jth purchase point of user u, j ≥ 0
T end point of observation
twi start point of ith winter sale
ts
i start point of ith summer sale

initial purchase point tu
0 as the start of the observation, be-

cause industrial practitioners usually start monitoring cus-
tomer’s transactions from the first occurrence. In that case,
the initial purchase tu

0 is not regarded as being generated
from λu(t), and thus the probability density (1) does not have
factor λu(tu

0).
The difficulty in performing the estimation and the pre-

diction procedures comes from the costly integral,
∫
λu(t)dt,

in the survivor function. Therefore, to make the point pro-
cess model tractable, a simple purchase rate λu(t) should be
designed so that the survivor function is obtained analyti-
cally. To pursue the dynamical purchase behaviors of cus-
tomers, which may modulate intricately depending on the
history of purchase decisions and/or time-varying marketing
variables, we need to make λu(t) as flexible as possible. To
address the trade-off between model tractability and its flex-
ibility, several purchase rate models have been proposed, as
briefly outlined in the following. For simplicity, we omit the
user index of u when discussing a model on an individual
basis.

2.2 Previous Work

The most standard model for analyzing customers’ purchase
behavior is the NBD model [4]. In it, purchase rate λ(t) is
assumed to be stationary over time, λ(t) = λ, leading to the
analytical survivor function, exp

(−λ(T − t0)
)
. This model

is based on a time-homogeneous Poisson process [14], and
thus its inter-event intervals, t j − t j−1, should obey an expo-
nential distribution, and there should be no correlation be-
tween successive inter-event intervals.

Inclusion of History Dependency: To relax the limi-
tations, the NBD model was extended by the renewal point
process, which allows the purchase rate to be dependent on
the last purchase decision [5]–[8], [11]. Thus the purchase
rate λ(t) can be expressed by using a cumulative distribution
of the inter-event intervals, F(t j− t j−1), as λ(t) = − d

dt log
[
1−

F(t − t j)
]
, for t j < t < t j+1, leading to the analytical survivor

function,
(
1−F(T−tn)

)∏n
j=1

(
1−F(t j−t j−1)

)
. The inter-event

intervals, t j − t j−1, may obey a non-exponential distribution,
dF(t j − t j−1)/dt, but there should be no correlation between
successive inter-event intervals.

Inclusion of Covariate: It was also proposed to in-
corporate time-varying covariates such as seasonality and
price promotion into the renewal model, in which the sur-
vivor function can be obtained analytically, as long as the
piecewise constancy of covariates is assumed [7]–[9], [12].

These NBD-based models marginally improve the ex-
planatory power of the original NBD model, although they
are inadequate for reproducing real purchase behavior. The
assumption of piecewise constancy in covariates is violated
when their modulation frequency is higher than the purchase
rate, and the history dependency of purchase behavior is not
necessarily very simple, both of which are found to be the
case in the transaction data we analyzed (see Sect. 5).
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2.3 Time-Rescaling Theorem

In preparation for our model construction, we here provide a
description of the time-rescaling theorem. The theorem has
been applied in such fields as neuroscience [15] and seismol-
ogy [16], mainly for evaluating the goodness-of-fit of point
process models to data. In this paper, we utilize the idea
of time-rescaling for constructing our flexible and tractable
model (Sect. 3). The time-rescaling theorem states that any
point process may be transformed into a Poisson process
with a unit rate, which can be easily demonstrated as fol-
lows. With rescaled time Λ(t), defined by

Λ(t) ≡
∫ t

0
λ(t′)dt′, Λ j ≡ Λ(t j), (2)

the probability density (1) at real time t is transformed into
that at rescaled time Λ(t) as,

p({Λ j}nj=0) = p({t j}nj=1|λ(t))
n∏

j=0

[ d
dt
Λ(t j)

]−1

=
[ n∏

j=1

1
]

exp
(
−1 · Λ(T )

)
, (3)

which is identical to the probability density that the cus-
tomer makes a sequence of purchase decisions, {Λ j}nj=0, in
the period [0,Λ(T )], at the unit purchase rate. With this the-
orem, we can assess goodness-of-fit of the model by eval-
uating how well the statistics of the rescaled time sequence
{Λ j}nj=0 agree with those of a Poisson process with a unit
rate.

The time-rescaling theorem implies that the difficulty
of calculating a survivor function is equivalent to that of per-
forming a time-rescaling procedure (2), which is a key point
of our model construction.

3. Model

In this section, we construct a striking model that over-
comes the limitations of the conventional NBD-based mod-
els, namely, the renewal property and the piecewise con-
stancy, at the same time. We achieve complicated time
rescaling by performing simple time-rescaling operations
hierarchically. In each operation, time is rescaled by each
of the factors that induce the purchase rate to fluctuate, such
as marketing stimulus and intrinsic history dependency one
by one, and finally the incorporation of various rate fluctua-
tion factors is achieved. To the best of our knowledge, this
is the first proposal of the concept and the first formaliza-
tion of hierarchical time rescaling for capturing customers’
purchase behavior.

3.1 Hierarchical Time-Rescaling Model

To allow the time-rescaling (2) to be performed analytically,
we construct the purchase rate λ(t) in the following two
steps: (i) First, instead of converting t into Λ(t) at one time,

we consider converting t in a hierarchical manner as,

Λ0(t) ≡ t, Λm+1(t) ≡
∫ Λm(t)

0
λm(
Λm)

dΛm, (4)

for 0 ≤ m ≤ M − 1, where λm(
Λm(t)

)
is a factor that rescales

the mth rescaled timeΛm(t), and M denotes the highest level
of the hierarchy. Here, we assume that each factor λm(

Λm)
can be integrated analytically. (ii) Next, we construct pur-
chase rate λ(t) as a unit in the Mth rescaled time, ΛM(t),
leading to the factorized rate,

λ(t) =
M−1∏
m=0

λm(
Λm(t)

)
. (5)

For calculation details, see Appendix A.
Figure 2 illustrates how the proposed model performs

time-rescaling hierarchically (5). In each time-rescaling
step, a new time Λm+1 is defined by rescaling the current
time Λm with the time-inhomogeneous factor λm(Λm), ac-
cording to which the strongly fluctuating rate (the blue curve
in the top) drops its fluctuation factors, λm, one by one in de-
scending order, before eventually being converted into a unit
(the blue curve at the bottom). The scales of the rescaled
times, represented by the lower black bars, show that the
time with a higher rate is elongated, and vice versa (dashed
line), thus compensating for the fluctuation of the rate. It is
worth noting that the sequence of purchase decisions gen-
erated from λ(t) (red bars) seems to be uncorrelated or be
aligned in a Poisson manner in rescaled time ΛM(t). We call
the proposed model the Hierarchical Time-Rescaling model
(HTRm).

The key advantage of HTRm is that under the weak as-
sumption that each factor λm(

Λm)
has an analytical integral,

we can compute the rescaled time ΛM(t), and thus obtain
the probability density (1) analytically. We place no further
restriction on the functional form of the individual factors
λm(Λm). Thus, by the incorporation of multiple rate fluc-
tuation factors, HTRm is able to reproduce a rich variety of
purchase behaviors, while maintaining excellent tractability.

3.2 Realization of HTRm for Analyzing Purchase Data

In Sect. 5, our analysis of real-world transaction data pro-
duced a finding that contradicted the time-homogeneous
Poisson assumption (see Table 3): one is the non-
exponential distribution of inter-event intervals (IEIs), the
other is the positive correlation between successive IEIs.
Both could be explained by self-excitation and/or renewal
behavior of a customer, although a time-varying marketing
stimulus might cause the purchase rate to fluctuate, leading
the customer to behave in a non-Poisson manner.

Thus, we provide HTRm with three possible rate fluc-
tuation factors, namely, sale, self-excitation, and preceding
purchase dependency: The sale factor is modeled by the se-
quence of alpha-functions, in which each of the sale events
triggers a rapid excitation of the purchase rate followed by
a slow decay; The self-excitation factor is expressed by the
Hawkes process with exponential decay [18]–[20], where a
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Fig. 2 Hierarchical time-rescaling model with M layers. For an explanation, see Sect. 3.1.

purchase event gives an additional rise in the purchase rate,
which provokes further purchase events; The factor of the
preceding purchase dependency can be modeled by using
the Weibull hazard function [8]. Denoting the factors as
λsale, λexcite, and λpre, respectively, we propose the follow-
ing purchase model for a customer:

λ(t) = λsale(t) · λexcite(Λ(t)
) · λpre(Ω(t)

)
, (6)

p({t j}nj=0|λ(t)) =
[ n∏

j=1

λ(t j)
]

exp
(−Ψ(T )

)
, (7)

where the corresponding rescaled times are denoted by

Λ(t) ≡
∫ t

t0

λsale(t′)dt′,

Ω(t) ≡
∫ Λ(t)

0
λexcite(Λ′)dΛ′,

Ψ(t) ≡
∫ Ω(t)

0
λpre(Ω′)dΩ′,

(8)

respectively.
Let N (t > t0) and Nw(s) (t > t0) be the right-continuous

counting process of the purchase events and the winter
(summer) sale events, respectively: the sample paths of the
counting processes jump 1 immediately following the asso-
ciated event points, and are constant otherwise [14]. Thus
first we model the sale factor λsale(t) by using alpha func-
tions as

λsale(t) = r0

(
1 + as

Ns(t)∑
i=1

(t − ts
i ) exp

[−bs(t − ts
i )
]

+ aw

Nw(t)∑
i=1

(t − tw
i ) exp

[−bw(t − tw
i )

])
,

(9)

where r0 represents the base rate, and tw(s)
i , aw(s) and b−1

w(s)
represent the start point, the impact, and the timescale of the

ith winter (summer) sale, respectively. Second, by employ-
ing the Hawkes process with exponential decay [18]–[20],
we model the self-exciting factor λexcite(t) as

λexcite(Λ(t)) = 1 +
N(t)∑
j=1

ah exp
[−bh(Λ(t) − Λ(t j))

]
, (10)

where ah and b−1
h are the impact and the timescale of a pur-

chase event, respectively. Finally, we model the factor of
the preceding purchase dependency, λpre(t), by using the
Weibull hazard function,

λpre(Ω(t)) =
fκ
(
Ω(t) −Ω(tN(t))

)
1 − Fκ

(
Ω(t) −Ω(tN(t))

) , (11)

where fκ(x) ≡ κxκ−1 exp
(−xκ

)
and Fκ(x) ≡ 1 − exp

(−xκ
)

are
the Weibull distribution and its cumulative distribution with
shape parameter κ, respectively. Substituting Eqs. (9)–(11)
into Eq. (8), we obtain the corresponding rescaled times in
the following analytical forms:

Λ(t) = r0(t − t0)

+
r0as

bs

Ns(t)∑
i=1

{
e−bs(0∨(t0−ts

i ))[0 ∨ (t0 − ts
i ) + b−1

s
]

− e−bs(t−ts
i )[(t − ts

i ) + b−1
s

]}

+
r0aw

bw

Nw(t)∑
i=1

{
e−bw(0∨(t0−tw

i ))[0 ∨ (t0 − tw
i ) + b−1

w
]

− e−bw(t−tw
i )[(t − tw

i ) + b−1
w

]}
,

Ω(t) = Λ(t) +
N(t)∑
j=1

ah

bh

(
1 − exp

[−bh
(
Λ(t) − Λ(t j)

)])
,

Ψ(t) =
N(t)−1∑

j=1

(
Ω(t j+1) −Ω(t j)

)κ
+

(
Ω(t) −Ω(tN(t))

)κ
,

(12)
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Fig. 3 Representative purchase patterns reproduced by the HTR model. The blue curve represents
purchase rate, and the red bars represent sample purchase points generated from the rate. (A)–(E) The
sets of parameters (ah, bh, κ) used for reproducing the history-dependent purchase patterns are (0, *, 1)
for A, (0, *, 3) for B, (0, *, 0.7) for C, (1.5, 2, 1) for D, and (1.8, 4, 1.5) for E. Pattern E is displayed on
a larger scale for better visualization. In each case, the effect of sales is ignored (as = aw = 0). (F) A
purchase pattern with sales effect, (as, aw, bs, bw) = (10, 3, 0.4, 0.2). Each inverted triangle represents
the start point of a sale. In (A)–(F), the base rate r0 is adjusted so that the mean purchase rate is around
0.2 [1/week].

where x ∨ y = max{x, y}.
Let a set of individual parameters be denoted as θ ≡

(as, aw, bs, bw, r0, ah, bh, κ). Then, for the proposed model
(6)–(12), we can evaluate the logarithm of the probability
density of the data (7) efficiently by using λsale(t j), Λ(t j) and
Λ(T ) as follows:

log p({t j}nj=0|θ)

=

n∑
j=1

log λsale(t j) +
n∑

j=1

log λexcite(Λ(t j)
)

+

n−1∑
j=1

log fκ
(
Ω(t j+1) −Ω(t j)

)
+ log

[
1 − Fκ(Ω(t1))

]

+ log
[
1 − Fκ(Ω(T ) −Ω(tn))

]
, (13)

where the first term is calculated from Eq. (9), the second
term is calculated as

n∑
j=1

log λexcite(Λ(t j)
)
=

n∑
j=1

log
(
1 + ahAj

)
,

A1 = 0, Aj+1 = (1 + Aj)e
−bh[Λ(t j+1)−Λ(t j)],

(14)

the third term is calculated as

n−1∑
j=1

log fκ
(
Ω(t j+1) −Ω(t j)

)

= (n − 1) log κ + (κ − 1)
n−1∑
j=1

log(ΔΩ j) −
n−1∑
j=1

(ΔΩ j)
κ,

ΔΩ j = Λ(t j+1) − Λ(t j) +
ah

bh

(
1 + Aj − Aj+1

)
,

(15)

and the remaining terms (the logarithms of the left- and
right-censored survivor functions) are given by

−(Ω(t1)
)κ − (

Ω(T ) −Ω(tn)
)κ
, (16)

where

Ω(t1) = Λ(t1),

Ω(T ) −Ω(tn) = Λ(T ) − Λ(tn)

+
ah

bh

(
1 + An

)(
1 − e−bh[Λ(T )−Λ(tn)]

)
.

(17)

The proposed model (6)–(12) has the ability to mimic a
variety of history-dependent purchase behaviors depending
on the set of three parameters, (ah, bh, κ), which is summa-
rized in Figs. 3 A–E. In practice, the effect of sales, which
is shown in Fig. 3 F, is multiplied into each of the behaviors.
In Appendix B, we provide an efficient procedure for gener-
ating sample purchase points from the proposed model.

3.3 Heterogeneity Across Customers

We developed a purchase model (6)–(12) on an individual
basis, in which the eight parameters, as, aw, bs, bw, r0, ah, bh,
and κ, differ among customers. Letting the set of individual
parameters for customer u (1 ≤ u ≤ U) be denoted by

θu ≡ (au
s , a

u
w, b

u
s , b

u
w, r

u
0, a

u
h, b

u
h, κ

u), (18)

we assume that each of the parameters is generated from a
gamma prior distribution:

p(θu
l |μθl , νθl ) =

1
Γ(νθl )

νθl

μθl

(νθlθ
u
l

μθl

)νθl−1

exp
(
−νθlθ

u
l

μθl

)
,

for 1 ≤ l ≤ 8,

(19)

where μθl and νθl are the scale and shape parameter of the
gamma distribution, respectively. The scale parameter μθl

represents the mean of θl across all customers, and the shape
parameter νθl , which determines the coefficient of variation
of the distribution as ν−1/2

θl
, is an index of the homogeneity

in θl across all customers. Then, the prior distribution of θu

is expressed as p(θu|μ, ν) =∏8
l=1 p(θu

l |μθl , νθl ), where

μ ≡ (μas , μaw , μbs , μbw , μr0 , μah , μbh , μκ),

ν ≡ (νas , νaw , νbs , νbw , νr0 , νah , νbh , νκ).
(20)

The notation is summarized in Table 2. The NBD model [4]
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Table 2 Symbols and definitions for model.

Symbol Definition
ru

0 base rate of customer u
au

h impact of a purchase decision on
customer u’s purchase rate

bu
h inverse of timescale of a purchase decision

effect on customer u’s purchase rate
κu shape parameter of Weibull hazard

function of customer u
au

w(s) impact of a winter (summer) sale on
customer u’s purchase rate

bu
w(s) inverse of timescale of a winter (summer)

sale effect on customer u’s purchase rate
μθl mean of individual parameter θl across

all customers, θl ∈ aw(s), bw(s), r0, ah, bh, κ
νθl index of homogeneity in individual

parameter θl across customers

is a special case of the proposed model (6)–(12), (18)–(19)
for μah = μas(w) = 0, μκ = 1, and νah = νas(w) = νκ = ∞.

4. Estimation Procedure

4.1 Determining Aggregate Parameters

Based on the empirical Bayes method, the sets of aggregate
parameters, μ and ν, can be determined by maximizing the
marginal likelihood,

p(D|μ, ν) =
∫ U∏

u=1

p({tu
j }|θu)p(θu|μ, ν)dθu, (21)

where {tu
j } and D denote customer u’s purchase data and all

of the customers’ data, respectively. Given a set of data D,
the maximization is performed based on the Monte Carlo
expectation maximization algorithm [21]: aggregate param-
eters are determined by iteratively maximizing the expected
value of the complete-data log-likelihood, the Q function,

Q(μ, ν|μ(p), ν(p))

= E
[ U∑

u=1

log
(
p({tu

j }|θu)p(θu|μ, ν))∣∣∣∣D, μ(p), ν(p)
]
, (22)

where μ(p) and ν(p) are the aggregate parameters of the pth
iteration, and E[ · |{tu

j }, μ(p), ν(p)] represents the expectation
with respect to the posterior distribution of θu under the pth
estimate of the aggregate parameters,

E[ · |{tu
j }, μ(p), ν(p)] ≡

∫
· p(θu|{tu

j }, μ(p), ν(p))dθu. (23)

To perform the expectation, we employ the following Monte
Carlo sum,

E[g(θu)|{tu
j }, μ(p), ν(p)] ≈ 1

NMC

NMC∑
i=1

g(θu
i ), (24)

where g(θu) is a function of θu, NMC is the Monte Carlo sam-
ple size, and θu

i is the ith sample of θu generated from its

posterior distribution. The sampling is performed by a vari-
ant of the Markov Chain Monte Carlo (MCMC) method, or
the Metropolis–Hastings algorithm [22], in which we chose
a lognormal proposal distribution for θu. The (p + 1)th
estimate of (μ, ν) is then determined by the conditions for
dQ/dμ = dQ/dν = 0, leading to the following update rule:

μ(p+1) =
1
U

U∑
u=1

E
[
θu

∣∣∣{tu
j }, μ(p), ν(p)], (25)

log
(
ν(p+1)) − ψ(ν(p+1))

= log
(
μ(p+1)) − 1

U

U∑
u=1

E
[
log

(
θu)∣∣∣{tu

j }, μ(p), ν(p)],
(26)

where ψ(ν) is the digamma function. Because log(ν) − ψ(ν)
is a monotonically decreasing function, we can obtain the
root of Eq. (26) with the bisection method [23].

4.2 Estimating Individual Parameters

Given the aggregate parameters to be determined as (μ̂, ν̂),
we can obtain the posterior mean estimate of the individual
parameters θu as

θ̂u = E
[
θu

∣∣∣{tu
j }, μ̂, ν̂

]
, 1 ≤ u ≤ U. (27)

The expectation is performed by the Monte Carlo sum (24).
The scalability for the estimation algorithm is discussed in
Appendix C.

5. Experiments

We examine the potential efficiency of the HTR model to
capture customers’ purchase behaviors by applying it to e-
commerce and panel data sets.

5.1 About Data Used

The e-commerce data set contains transactions about fash-
ion items conducted over 230 weeks (October 1, 2009 ∼
February 27, 2014) as performed at a commercial website,
where the first 200 weeks of data are used for model fitting,
and the remaining 30 weeks serve to evaluate the model’s
predictive performance. We denote the data set by Fash-
ion. We also consider its subset consisting of the loyal cus-
tomers, those who made at least 20 transactions during first
200 weeks. We denote the subset by FashionL. The times-
tamp of the winter and summer sales is given as: ts

1 = 37,
ts
2 = 88, ts

3 = 141, ts
3 = 193, tw

1 = 62, tw
2 = 114, tw

3 = 167,
tw
3 = 218 [week].

The panel data consists of three categories of transac-
tion data sets, namely, milk, coffee drink and water†. We
denote the data sets by Milk, Coffee and Water, respec-
tively. The both contain transactions gathered over 50 weeks

†Individual consumer panel research data (SCI) collected by
INTAGE Inc. (Tokyo, Japan).



KIM et al.: ANALYZING TEMPORAL DYNAMICS OF CONSUMER’S BEHAVIOR BASED ON HIERARCHICAL TIME-RESCALING
699

Fig. 4 Comparison of HTR with other models as regards predictive performance. (A–B) Log-
likelihoods of test data achieved by NBD, HTRsale (λ = λsale), HTRhistory (λ = λexcite · λpre), and HTR
(λ = λsale ·λexcite ·λpre). (C–E) Log-likelihoods of test data achieved by NBD and HTR (λ = λexcite ·λpre).

Table 3 Data statistics.

Data set Fashion FashionL Milk Coffee Water
# of customers 7,129 563 3,131 2,240 1,689
# of trans. 83,129 20,928 131,961 111,235 56,845
period [week] 230 230 50 50 50
mean IEI [week] 11.3 4.5 1.0 0.8 1.5
cv of IEI 1.37 1.39 1.50 2.26 1.71
correlation **0.25 **0.23 **0.40 **0.25 **0.28

IEI: inter-event interval, cv: coefficient of variation

(January 1, 2013 ∼ December 17, 2013), where the first 45
weeks of data are used for model fitting, and the remaining 5
weeks for model evaluation. We have no information about
sales. For all five date sets, we omit customers who made
less than 5 transactions during the fitting period. The pur-
chase time point is measured in hours. The data statistics
are summarized in Table 3.

As mentioned in Sect. 3.2, Table 3 shows that the
Poisson behavior, assumed in the NBD model, is violated in
all data sets: (i) the coefficient of variation for IEIs largely
deviates from unity, indicating a non-exponential distribu-
tion of IEIs [24]; (ii) there is a significant (p < 0.01) cor-
relation between successive IEIs. The non-exponential dis-
tribution and the positive correlation indicate that the cus-
tomers makes purchase decisions depending on the last or
more previous decisions, but the seasonal sale could also
cause the customers’ non-Poissonian behaviors. Using our
HTRm, we elucidate the details of the history dependency
and the degree of contribution of the seasonal sale on such
non-Poissonian behaviors.

5.2 Predictive Performance

Based on the e-commerce data, we compare HTRm’s pre-
dictive performance against the results achieved by the NBD
model (NBD: as = ah = 0, κ = 1), HTRm with only the sale
effect (HTRsale: ah = 0, κ = 1), and HTRm with only the
history dependency (HTRhistory: aw = as = 0). We denote
the HTRm with both the sale effect and the history depen-
dency by HTR. Based on the panel data, on the other hand,
we compare the predictive performance of HTRm against
that of the NBD model. Because we have no information
about sales for the panel data, we denote HTRm developed

from only the history dependency by HTR.
In accordance with the procedure described in Sect. 4,

we estimated the aggregate and individual parameters of
each model based on the training data. Using the estimated
individual parameters θ̂u, we evaluated the predictive perfor-
mance of each model based on the log-likelihood for the test
data,

LL ≡
U∑

u=1

log p({tu
j ∈ Dtest}|θ̂u), (28)

where Dtest represents the purchase timestamps in the test
data. Figure 4 shows that HTR performed better than the
other models for all four data sets. The comparison between
Fig. 4 A and Fig. 4 B found that the effect of the seasonal
sales is smaller in FashionL than in Fashion, which is con-
sistent with the fact that loyal customers are less responsive
to the price promotion. The results indicate that the inclu-
sion of various factors is essential for precisely estimating
customers’ purchase dynamics.

Using the time-rescaling theorem as a basis, we also
evaluated the predictive performance by checking whether
or not the purchase points rescaled by the estimated individ-
ual parameters, Ψ(t j), follow a Poisson process. Here, we
checked the following two points: (i) whether the rescaled
IEIs, ΔΨ j ≡ Ψ(t j+1) − Ψ(t j), follow an exponential distri-
bution with mean of 1; (ii) whether the successive rescaled
IEIs, ΔΨ j and ΔΨ j+1, have no correlation between them.
Figure 5 shows the semi-log plot of the empirical distribu-
tion of rescaled intervals ΔΨ j (upper figures) and the scat-
ter diagram in the (log(ΔΨ j), log(ΔΨ j+1)) plane (lower fig-
ures). The significant correlation between successive inter-
vals, found in the NBD model, was removed in HTRm per-
fectly for the Fashion and FashionL data sets (Figs. 5 A and
B), and partially for the Milk, Coffee and Water data sets
(Figs. 5 C–E). The distribution of the rescaled intervals de-
viates greatly from the exponential with mean of 1 (dashed
line) in the NBD model (Figs. 5 A–D), which is substan-
tially improved in HTRm for all of the data sets except the
Fashion data set. In the Fashion data set (Fig. 5 A), over
half of the customers (63%) have less than 10 transactions,
thus it is harder to estimate individual parameters accurately
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Fig. 5 (Upper figures) Empirical distributions of rescaled inter-event intervals ΔΨ j. The empirical
distributions were obtained by histogram density estimation with a bin size of 0.1. The diagonal dashed
line represents an exponential distribution with unit mean. (Lower figures) Scatter diagrams of the log
interval log(ΔΨ j) against the successive one log(ΔΨ j+1). For better visualization, the abscissa and or-
dinate are the deviations of log(ΔΨ j) and log(ΔΨ j+1) from their means. The coefficient of correlation
(Spearman) between the successive intervals is depicted at the top of each figure, where ** and * rep-
resent the correlation significances, p < 0.01 and p < 0.05, respectively. Black lines represent the
regression lines.

Fig. 6 (A) Distributions of estimated individual parameters for all the data sets. Ellipses represent
75% quantiles of two-dimensional Gaussian distribution fitted to the individual data sets. (B) Repre-
sentative purchase rates estimated from the data sets. Shaded rectangles in each figure represent the
intervals during which purchase rate is estimated online to be relatively high. Filled triangles in (d) and
(e) represent seasonal sale points.

compared to in the other data sets. It should be emphasized
that HTRm achieved higher predictive performance than the
simpler NBD model (Fig. 4 A) even for this very sparse data
set.

5.3 Estimated Dynamics of Purchase Decisions

The estimated individual parameters are summarized in
Fig. 6. Figure 6 A shows that the history dependency of
purchase decisions is widely distributed among item cate-
gories. The purchase rate in Fashion rises briefly after a pur-
chase decision is made ((e) in Fig. 6 B), while due to its self-
exciting dynamics, the rate in FashionL sometimes keeps its
value high for several months ((d) in Fig. 6 B). The differ-
ence in the purchase dynamics might imply that because the
prices of fashion items are relatively high, the psychological

impact of a spending decision would be substantial for usual
customers, and thus cancel out the intrinsic self-exciting ef-
fect seen in loyal customers. On the other hand, the purchase
rate in Milk drops to zero immediately after a purchase de-
cision occurred and the value remains low for a while, re-
sulting in the periodic purchase pattern ((c) in Fig. 6 B). The
purchase rate in Coffee also has a brief ‘refractory period’
after each purchase decision, which prevents quick succes-
sive purchases. Sometimes, however, it shows transient ac-
tivation due to its strong self-exciting effect ((a) in Fig. 6 B).

Figure 6 A also shows that the temporal dynamics of
purchase decisions differ largely across customers even in
the same item category. Especially in the Milk category, the
periodicity of purchase behavior is estimated to have strong
heterogeneity. This might be caused by the fact that some
customers occasionally purchase milk only when needed,
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while others, who drink milk every day, purchase new fresh
milk before the expiration date, which regularizes the inter-
purchase intervals. Regardless, the broad distributions in
Fig. 6 A suggest that the temporal dynamics of customers’
purchase behavior should be examined individually.

5.4 Real-Time Tracking of Purchase Rate

Given the individual parameter θ̂u, the current state of the
purchase rate, λu(tnow), can be computed so quickly (of
the order of milliseconds) based on the individual observa-
tion {tu

j }, because HTRm guarantees that λu(tnow|{tu
j }) is ex-

pressed by analytical functions (see Sect. 3). Figure 6 B dis-
plays examples of real-time estimates of the purchase rate.
In it, purchase decisions are observed frequently in the in-
tervals during which the estimated purchase rate was high,
indicated by the shaded rectangles. When the prediction of
future state λu (t > tnow|{tu

j }) is needed, we can generate sam-
ple paths of λu (t > tnow|{tu

j }) efficiently by using the time
rescaling theorem (see Appendix B). Based on the current
and future state of the purchase rate, we can make the go/no-
go decisions on marketing actions such as advertising and
recommendation.

6. Conclusion and Future Work

In this paper, we constructed an innovative model that can
track the temporal dynamics of a customer’s purchasing de-
cisions. Our model offers us a fast way of estimating the
current and future state of the purchase rate, which is intri-
cately influenced by various intrinsic and external factors.
We incorporated the factors that are thought to dominate the
modulation of the purchase rate, namely, seasonal sale, self-
excitation, and preceding purchase-events, into the model,
and confirmed that our proposed model achieved high pre-
dictive performance when challenged with real-world data
in the categories of fashion, milk, and coffee beverages. This
result indicates that our proposed model has the ability to
discover the hidden dynamics of purchase behavior at the
level of individuals, suggesting that the model will enable
us to take effective marketing actions such as advertising
and recommendations on timely and individual basis.

A natural extension of this study is to extend our model
to incorporate the interaction among customers [12], [25] or
among items [2], which is expected to improve its predictive
performance. HTRm is not limited to purchase event data,
but is widely applicable to any sequences of event points.
Thus this model may help unveil the underlying dynamics
of social interaction [26], financial markets [27], and so on.
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Appendix A: Calculation Details in HTRm

From Eqs. (4) and (5), the differential of ΛM(t) with respect
to real time t is given by

d
dt
ΛM(t) = λM−1(ΛM−1(t)

) d
dt
ΛM−1(t)

= λM−1(ΛM−1(t)
)
λM−2(ΛM−2(t)

) d
dt
ΛM−2(t)

=

M−1∏
m=0

λm(
Λm(t)

) · d
dt
Λ0(t) = λ(t). (A· 1)

Thus, substituting Eq. (A· 1) into Eq. (1) yields the probabil-
ity density under the Mth rescaled time as,

p({ΛM
j }nj=0) = p({t j}nj=0|λ(t))

n∏
j=0

[ d
dt
ΛM(t j)

]−1

= p({t j}nj=0|λ(t))
n∏

j=0

λ−1(t j)

=
[ n∏

j=0

1
]

exp
(
−

∫ T

0

d
dt′
Λ(t′)dt

)

=
[ n∏

j=0

1
]

exp
(
−1 · ΛM(T )

)
, (A· 2)

where ΛM
j ≡ ΛM(t j). Equation (A· 2) indicates that the pur-

chase rate at time ΛM(t) has a unit value.

Appendix B: Sample Generation Using Time-Rescaling
Theorem

In HTRm, a sequence of purchase decisions (t1, t2, · · · ), gen-
erated from the purchase rate λ(t), is transformed into that
in the rescaled time hierarchically as

t j → Λ j ≡ Λ(t j)→ Ω j ≡ Ω(Λ j)→ Ψ j ≡ Ψ(Ω j),

where (Ψ1,Ψ2, · · · ) is regarded as being realized from a
Poisson process with a unit rate (see Sect. 3). This prop-
erty suggests that we can generate a sequence of purchase
points (t1, t2, · · · ) by inversely transforming a sequence of
time points (Ψ1,Ψ2, · · · ), generated from a Poisson process
with a unit rate, into that in real time as

Ψ j →Ω j ≡ Ψ−1(Ψ j)→ Λ j ≡ Ω−1(Ω j)→ t j ≡ Λ−1(Λ j).

The simulation algorithm proceeds as follows:

0. Assume that the last purchase occurred at t0, and that
Ψ0 ≡ Ψ(t0), Ω0 ≡ Ω(t0) and Λ0 ≡ Λ(t0). Set j = 1.

1. Draw a random variable ΔΨ j ≡ Ψ j − Ψ j−1 from the
exponential distribution with mean of 1.

2. Find Ω j as the root of ΔΨ j = Ψ(Ω j)−Ψ(Ω j−1), leading
to the solution, ΔΩ j ≡ Ω j −Ω j−1 = (ΔΨ j)1/κ.

3. Find Λ j as the root of ΔΩ j = Ω(Λ j)−Ω(Λ j−1), leading
to the solution,

Fig. A· 1 The procedure for generating a sample sequence of purchase
decisions from the HTR model. A sequence of purchase time points,
(t1, t2, · · · ), can be simulated by inversely transforming a Poisson sequence
with a unit rate, (Ψ1,Ψ2, · · · ), based on the rescaling functionsΨ(Ω),Ω(Λ),
and Λ(t).

Fig. A· 2 The CPU time for estimating individual parameters against the
number of customers in the Fashion data set. The Monte Carlo sample size
and the burn-in size is 10,000 and 5,000, respectively. A 30-core CPU (2.6
GHz) computer was used to perform the estimation.

ΔΛ j ≡ Λ j − Λ j−1

= ΔΩ j − Bj +
1
bh

W
(
bhBje

−bh(ΔΩ j−Bj)
)
,

where Bj is defined as

B1 =
ah

bh
, Bj =

ah

bh

(
1 + Bj−1e−bhΔΛ j−1

)
,

and W(z) is the Lambert W function defined as the in-
verse function of W(z) exp(W(z)) = z.

4. Find t j as the root of ΔΛ j = Λ(t j) −Λ(t j−1). Because it
cannot be solved analytically, we obtain its solution by
employing the bisection method [23].

5. j→ j + 1, and go back to 1.

Figure A· 1 shows the simulation procedure described
above. Note that the simulation procedure is a hierarchi-
cal extension of the original algorithm based on the time-
rescaling theorem [15].

Appendix C: Scalability

Given the aggregate parameter (μ, ν), we can estimate θ̂u

efficiently using parallel computation because each cus-
tomer’s parameter θ̂u is estimated based on his/her own data
{tu

j }. Figure A· 2 shows that the CPU time is proportional to

http://dx.doi.org/10.1016/j.jeconom.2006.11.007
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the number of customers. When the EM iteration number
and the CPU time for estimating θ̂u are denoted by NEM and
Δt respectively, the CPU time for determining the aggregate
parameter (μ, ν) is represented by NEMΔt. The aggregate pa-
rameter can be determined efficiently based on a randomly
selected subset of the whole customer data, which makes the
CPU time NEMΔt less than several hours. It should be em-
phasized here that we do not need to update the values of θ̂u

and (μ, ν) frequently, but should do so after a certain amount
of data is observed.
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