
718
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

PAPER Special Section on Data Engineering and Information Management
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Streams
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SUMMARY As the development of sensor and machine learning tech-
nologies has progressed, it has become increasingly important to detect
patterns from probabilistic data streams. In this paper, we focus on com-
plex event processing based on pattern matching. When we apply pattern
matching to probabilistic data streams, numerous matches may be detected
at the same time interval because of the uncertainty of data. Although ex-
isting methods distinguish between such matches, they may derive inap-
propriate results when some of the matches correspond to the real-world
event that has occurred during the time interval. Thus, we propose two
grouping methods for matches. Our methods output groups that indicate
the occurrence of complex events during the given time intervals. In this
paper, first we describe the definition of groups based on temporal overlap,
and propose two grouping algorithms, introducing the notions of complete
overlap and single overlap. Then, we propose an efficient approach for cal-
culating the occurrence probabilities of groups by using deterministic finite
automata that are generated from the query patterns. Finally, we empir-
ically evaluate the effectiveness of our methods by applying them to real
and synthetic datasets.
key words: probabilistic data streams, complex event processing, pattern
matching, grouping

1. Introduction

It has become increasingly important to detect patterns from
uncertain data, owing to the development of the sensor and
machine learning technologies. As a lot of sensing data are
obtained from smart phones and wearable devices with var-
ious sensors, such as GPS sensors, many researchers are
studying their effective utilization. Machine learning tech-
niques are of particular interest in recent years, and they
are applied to many fields, such as human activity recogni-
tion [1], [2]. When we deal with such analysis results from
sensing data, we should consider uncertainty. In machine
learning, it is common to select the class with the highest
confidence score as the result of classification. However,
if the boundary of classes is ambiguous, it may not be ap-
propriate to simply select one classification result. By con-
trast, we can keep all candidates and their confidence scores
as probabilities: they show the analysis results without any
loss of information. As an example, consider the probabilis-
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tic data stream shown in Fig. 1. We assume that the location
of a person is monitored continually, using sensing devices.
Each value indicates the probability that the person is in the
rooms or hall at the time. In this paper, we consider complex
event processing over such a probabilistic data stream.

We focus on complex event processing based on pat-
tern matching over probabilistic data streams. For exam-
ple, if we want to detect a movement from “RoomA” to
“RoomB” through “Hall” in Fig. 1, the corresponding pat-
tern is p = 〈RoomA+ Hall+ RoomB+〉. Note that we use the
Kleene plus because we do not know how long the person
stays at each location. Let us represent open and closed time
intervals as (ts : te) and [ts : te], respectively. Given pattern
p, we can detect 35 matches from Fig. 1 in the time interval
[1 : 6]. Figure 2 shows some of them with the correspond-
ing probabilities, where we represent “RoomA”, “Hall”, and
“RoomB” as “a”, “h”, and “b”, respectively. Each match in-
dicates a movement path. For example, m2 indicates that the
person was in “RoomA” at time 1. Then the person passed
through “Hall” between time 2 and 5, and finally reached
“RoomB” at time 6. The occurrence probability P(m2) indi-
cates that the probability of the movement is about 0.31.

Numerous matches may cause a problem when we ap-
ply pattern matching to probabilistic data streams. A match
is uniquely determined when we apply pattern matching to
a non-probabilistic data stream. In the case of probabilis-
tic data streams, however, multiple matches are detected in
the same time interval owing to the uncertainty of data. Be-
cause it is costly to detect all matches, existing methods se-

Fig. 1 A probabilistic data stream.

Fig. 2 Matches of 〈a+ h+ b+〉.
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lect matches with high probabilities [3] or sum the probabil-
ities of matches detected at the same time [3], [4]. However,
it may not be appropriate to distinguish among matches be-
cause they may correspond to the same real-world event in
a given time interval. Let us continue the above example.
Using our grouping method described later, we obtain about
0.92 as the probability that a complex event of pattern p has
occurred in the time interval [1 : 6]. By contrast, the max-
imum probability of the matches is at most P(m2) � 0.31.
We can get a greater value by summing the probabilities of
the matches, but it does not provide the exact occurrence
probability of the real-world event. For instance, consider
{m2,m3,m4,m5}, each of which is concurrently detected at
time 6. The sum of the probabilities is about 0.75, which is
still less than 0.92.

In this paper, we propose grouping methods to sum-
marize numerous matches into groups that indicate the oc-
currence of complex events in given time intervals. There
are some differences between matches detected in the same
time interval, but they essentially correspond to the same
real-world event. Thus, we aggregate the matches that oc-
cur in overlapping time periods. An obtained group is de-
noted by g[ts:te], where ts and te are start and end time, re-
spectively. The probability P(g[ts:te]) denotes the occurrence
probability of the group in the time interval [ts : te]. We also
propose an efficient calculation method for P(g[ts:te]), using
a deterministic finite automaton (DFA) that is obtained by
converting the specified pattern. In the example above, the
proposed method can generate a summary output such as
P(g[1:6]) � 0.92 instead of all 35 matches.

The remainder of the paper is organized as follows.
Section 2 introduces related work, and Sect. 3 defines prob-
ability spaces, query patterns, and groups as preliminaries.
We explain grouping policies in Sect. 4, algorithms for gen-
erating groups in Sect. 5, and calculation of the probabilities
of groups in Sect. 6. Section 7 evaluates the proposed meth-
ods by experiment, and Sect. 8 concludes the paper.

2. Related Work

2.1 Probabilistic Data Streams

Many existing research efforts related to probabilistic data
streams focus on processing queries such as selection, pro-
jection, aggregation, and top-k queries [5]–[7]. Addition-
ally, some researchers study frequent item mining [8] and
clustering [9] for probabilistic data streams.

There are several studies that deal with pattern match-
ing over probabilistic data streams [3], [4], [10]. Refer-
ence [10] considers temporal uncertainty of event occur-
rence. That approach, however, differs from our proba-
bilistic data streams because it does not consider the uncer-
tainty of event occurrence. Reference [4] deals with prob-
abilistic data streams that have the Markov property. In
that, probabilities of detected matches are computed at ev-
ery time step. In contrast to our work, it does not consider
when each match is started. Thus, we cannot use those

methods for queries where the time intervals of matches
are of interest. Reference [3] detects matches efficiently
with top-k occurrence probabilities. However, the occur-
rence of events specified in a query are assumed to be in-
termittent. In other words, they allow a user to skip any
events until the specified events occur. For example, sup-
pose that p = 〈RoomA+ Hall+ RoomB+〉, the stream in Fig. 1,
and k = 1 are given. They detect 〈RoomA1, Hall5, RoomB6〉
with the top-1 probability 0.9. That is, the events in the time
interval [2 : 4] are skipped. Note that they ignore Kleene
closures (∗ and +) in their pattern matching because multiple
events decrease probabilities, such as P(〈Hall4, Hall5〉) <
P(〈Hall5〉). Thus, m2, m3, and m4 in Fig. 2 are never de-
tected in their method. This approach may not be appropri-
ate when the underlying real-world events are continuous,
as found in human activity recognition. By contrast, our
methods can deal with such continuous events because we
perform pattern matching without skips.

In our previous work [11], we proposed the basic idea
of the grouping methods. This paper has four extensions
from the previous work as follows:

1. As the previous work cannot control the granularity of
groups, it may output unexpected large groups. In this
paper, we control the granularity of groups by introduc-
ing overlap ratios in Sect. 4.

2. We propose efficient grouping algorithms in Sect. 5.
Although the previous paper proposed grouping al-
gorithms that merge all candidates of matches into
groups, they were inefficient because some candidates
are not detected and removed from groups. Thus, we
merge only detected matches in the improved algo-
rithms.

3. The previous work dealt with limited regular expres-
sions because we could not calculate the probabilities
of groups with general regular expressions. As we pro-
pose the improved calculation method in Sect. 6, we
can use general regular expressions in this paper.

4. We evaluate the grouping methods in more detail by us-
ing real and synthetic datasets. This paper provides an
overall evaluation, such as effectiveness of our methods
and effects of various parameters, in Sect. 7.

2.2 Non-Probabilistic Data Streams

In the literature of non-probabilistic data streams, many
methods for pattern matching are proposed. The SASE
project lets a user specify detailed conditions for pattern
matching [12], [13]. In [14]–[16], data streams with spe-
cial features, such as being disordered or distributed, are
treated. Reference [17] considers occurrence frequencies of
events and [18] uses field-programmable gate arrays to in-
crease throughput. Reference [19] considers the decidability
of pattern matching when ambiguous patterns and infinite
data streams are given.

Pattern matching on strings has been well studied.
The Thompson construction method [20] is particularly use-
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ful. It generates a non-deterministic finite automaton (NFA)
from a regular expression pattern. We can easily con-
struct an NFA that implements the Knuth–Morris–Pratt al-
gorithm [21] or the Aho–Corasick algorithm [22] by using
the Thompson construction method [23]. In the paper, we
use the Thompson construction method to detect matches
and calculate the occurrence probabilities of groups.

3. Preliminaries

In this section, we define probability spaces, query patterns,
matches, and groups. Table 1 shows the list of symbols used
in the paper.

3.1 Probability Space

We define a probability space for pattern matching over a
probabilistic data stream. Definition 1 defines a probabilis-
tic event as an entry of a probabilistic data stream.

Definition 1: Let a symbol α be a type of an event e, with
Σ the universal set of event symbols. A probabilistic event et

is an event with its occurrence probability P(et = α) for each
α ∈ Σ at time t. P(et = α) satisfies the following properties:

∀α ∈ Σ, 0 ≤ P(et = α) ≤ 1 (1)∑

α∈Σ
P(et = α) = 1 (2)

�

Our approach can be extended for probabilistic events with
the Markov property as in [4]; we omit the details for the
sake of brevity. Definition 2 defines a probabilistic data
stream in terms of probabilistic events.

Definition 2: A probabilistic data stream PDS = 〈ei,
ei+1, . . . , e j, . . .〉 is a sequence of probabilistic events. �

For example, Fig. 1 shows a probabilistic data stream
PDS = 〈e1, e2, e3, e4, e5, e6, e7〉 with the symbols Σ =
{a , h , b}. In the following, we represent αt as et = α.

Definition 3 introduces the notion of the set of possible

Table 1 Notation used in the paper.

Symbol Description

et a probabilistic event e occurred at time t

Σ finite event symbols

αt et = α (α ∈ Σ)

PDS the probabilistic data stream

(x : y), [x : y] open/closed intervals

w a possible world for PDS

W[i: j] all possible worlds in [i : j]

p the query pattern

m a match of p

r a candidate of m

g[i: j] the group of matches occurred in [i : j]

θ the threshold of occurrence probabilities

τ the threshold of overlap ratios

worlds for a probabilistic data stream. Let Et ⊆ Σ be the set
of symbols with non-zero probabilities at time t, and let “×”
be a product of symbols to generate event sequences.

Definition 3: Given a finite probabilistic data stream
PDS = 〈ei, ei+1, . . . , e j〉, the universal set of possible worlds
is W[i: j] = Ei × Ei+1 × . . .× E j. The probability of a possible
world w = 〈αi, αi+1, . . . , α j〉 ∈ W[i: j] is P(w) =

∏
αt∈w P(αt).

�

For example, the set of possible worlds W[2:3] in Fig. 1 is as
follows:

W[2:3] = {a2, h2} × {a3, h3, b3}
= {〈a2,a3〉, 〈a2,h3〉, 〈a2,b3〉, 〈h2,a3〉, 〈h2,h3〉, 〈h2,b3〉}

Definition 4 defines the probability space for a proba-
bilistic data stream using possible worlds.

Definition 4: Let 2W[i: j] be the power set of W[i: j]. Given a
finite probabilistic data stream PDS = 〈ei, ei+1, . . . , e j〉, the
probability space is defined as (2W[i: j] , P). Note that P gives
each x ∈ 2W[i: j] the probability P(x) =

∑
w∈x P(w). �

3.2 Query Patterns and Matches

Definition 5 defines the grammar for query patterns.

Definition 5: Let α be an event symbol in Σ, and let ε be
the empty symbol. An input pattern is generated by the fol-
lowing grammar:

p ::= α | ε | p p | p ∨ p | p∗ | p+ | (p) (3)

�

In other words, we assume that patterns are specified as reg-
ular expressions.

We introduce a match and its occurrence probability.

Definition 6: A match m is a sequence of symbols that fits
a specified pattern p. Given a probability space (2W[i: j] , P),
let Wm ⊆ W[i: j] be a set of possible worlds that include m as
a subsequence. An occurrence probability of m is P(m) =∑
w∈Wm

P(w). �

For example, we consider the case of W[1:4] in Fig. 1. The
probability of m1 = 〈a1, h2, b3〉 is calculated by the follow-
ing possible worlds:

w1 = 〈a1, h2, b3, a4〉, P(w1) = 0.028

w2 = 〈a1, h2, b3, h4〉, P(w2) = 0.098

w3 = 〈a1, h2, b3, b4〉, P(w3) = 0.014

Thus, P(m1) is P(w1) + P(w2) + P(w3) = 0.14.
In the paper, matches are detected by the DFA-based

approach, as in traditional string matching. Note that we
have to detect all possible matches because inputs to the
DFA are probabilistic events. First, we generate an NFA
by applying the Thompson construction method [20] to the
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Fig. 3 DFA for pattern p = 〈a+ h+ b+〉.

specified pattern. This NFA is converted to an equiva-
lent and minimum DFA using the Hopcroft minimization
method [24]. We generate candidate matches for the prob-
abilistic events using the DFA. For example, suppose that
the pattern p = 〈a+ h+ b+〉 and the stream in Fig. 1 are
given. Figure 3 shows the DFA for pattern p. At time 1,
we generate a candidate match r1 = 〈a1〉 : P(r1) = 1.0,
which corresponds to the transition from state 1 to state 2.
At time 2, r1 is extended to r11 = 〈a1, a2〉 : P(r11) = 0.3
and r12 = 〈a1, h2〉 : P(r12) = 0.7 because there are two
transitions from state 2. We also generate a new candidate
r2 = 〈a2〉 : P(r2) = 0.3 from the initial state. This pro-
cess continues until the stream terminates, and we detect
matches reaching the final state 4. Note that candidates are
rejected only when they cannot transition to any states. In
other words, we do not reject matches so long as they can
be extended to other matches. In the above example, r12 be-
comes a match m1 = 〈a1, h2, b3〉 at time 3, and we retain m1

because it can be extended to m2 = 〈a1, h2, b3, b4〉 at time 4.
We describe pruning of matches based on their oc-

currence probabilities. The number of matches increases
rapidly when disjunctions (∨) and Kleene closures (∗ and
+) are used. Because such numerous matches decrease the
throughput, we allow the user to specify the threshold of oc-
currence probabilities θ for pruning matches with low prob-
abilities. In the above example, r11 and r2 are pruned at
time 2 with the threshold θ = 0.5.

3.3 Groups

Definition 7 defines a group as a set of matches.

Definition 7: A group g is a set of matches, and its occur-
rence probability is calculated as follows:

P(g) =
∑

w∈⋃m∈gWm

P(w) (4)

We take g[ts:te] as the set of all the matches that have occurred
in the time interval [ts : te]. �

The occurrence probability of a group g is the probability
that any match m ∈ g has occurred. The probability of g[ts:te]

therefore indicates the occurrence probability of the grouped
event in [ts : te]. We describe the calculation method of the
probability for a group in Sect. 6.

In the following sections, we describe the generation
method of a group g[ts:te]. First, we put matches together
into a group g, and then summarize g into g[ts:te] using the
start and end time of the matches in g. In other words, the
minimum start time of the matches becomes ts and the max-
imum end time becomes te. For example, g[1:6] is derived
from the group of the matches in Fig. 2.

4. Grouping Based on Overlap

This section defines the grouping methods in terms of tem-
poral overlaps of matches. First, we define an overlap ratio
as a grouping criterion, and then propose complete overlap
and single overlap as grouping policies.

4.1 A Grouping Criterion

We use a temporal overlap ratio of matches to decide
whether we should merge them as a group. It is impor-
tant for grouping whether matches overlap with each other.
For example, it may not be appropriate to group m1 and
m5 in Fig. 2 because they do not overlap at all. In con-
trast, it is probably appropriate to group m2 and m3 because
they completely overlap. We therefore define the tempo-
ral overlap ratio based on the Jaccard similarity (JS(A, B) =
|A∩B|/|A∪B|). Note that we consider the overlap ratio only
when matches overlap. Let m.ts and m.te be the start and end
time of a match m, respectively. The overlap ratio between
mi and mj is as follows:

overlap(mi,mj)

=
min(mi.te,mj.te)−max(mi.ts,mj.ts) + 1

max(mi.te,mj.te)−min(mi.ts,mj.ts) + 1
(5)

Equation (5) indicates how much mi and mj overlap. Note
that we add 1 to both the denominator and numerator be-
cause each probabilistic event has the time interval. That
is, we count the number of time steps. For example, con-
sider m1 and m2 in Fig. 2. Their overlap ratio is calculated
as follows:

overlap(m1,m2) =
3 − 1 + 1
6 − 1 + 1

= 0.5

The overlap score takes the maximal value when the start
and end times of mi are equal to those of mj, such as m2 and
m3 in Fig. 2.

Matches mi and mj are grouped when their overlap ra-
tio overlap(mi,mj) is greater than the threshold τ given by
the user. If we use the overlap ratios for the grouping of
matches, we can regard a grouping as a clustering of line
segments in one-dimensional space. Thus, we use the ideas
of the complete-link and single-link clustering methods [25]
to define our grouping policies.

4.2 Complete Overlap

We define the complete overlap policy, inspired by the
complete-link method [25]. The complete-link method gen-
erates clusters such that all items in a cluster are similar to
each other. Similarly, the complete overlap policy requires
that every match overlaps with all other matches in the same
group. Definition 8 is the definition of the complete overlap
property.
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Definition 8: A group g has the property of complete over-
lap when g satisfies the following condition:

∀mi,mj ∈ g, overlap(mi,mj) > τ (6)

�

For example, the group g = {m2,m3,m4,m5} in Fig. 2 has
the property of complete overlap with the threshold τ = 0.4.

We can modify the granularity of groups by adjusting
the threshold τ. Let us continue the above example with
g = {m2,m3,m4,m5}. If we want to cut m5 from g because
its overlap ratio is smaller than that of other matches, we can
do it by increasing τ. In this case, by specifying τ > 0.5, we
can divide g into g1 = {m2,m3,m4} and g2 = {m5}.

4.3 Single Overlap

We define the single overlap policy, inspired by the single-
link method [25]. The single-link method generates clusters
such that every item is similar to at least one other item in the
same cluster. Similarly, the single overlap policy requires
that every match overlaps with at least one other match in
the same group. Definition 9 is the definition of the single
overlap property.

Definition 9: A group g has the property of single overlap
when g satisfies the following condition:

∀mi,∃mj ∈ g,mi � mj ∧ overlap(mi,mj) > τ (7)

�

Single overlap can group matches like a chain. For in-
stance, consider a grouping of the matches in Fig. 2 with
τ = 0.4. Complete overlap cannot merge m1 and m5 into
a group because they do not overlap. On the other hand,
single overlap can group them because both overlap(m1,m2)
and overlap(m2,m5) are greater than τ. Thus, all the matches
are put together into a group g = {m1,m2,m3,m4,m5}.

Single overlap summarizes the results of pattern match-
ing more than complete overlap does. We may be able to
generate a group with a long chain. In addition, all gener-
ated groups do not overlap with each other when we gener-
ate maximal groups. Thus, we can easily check when group
events have occurred.

5. Grouping Algorithms

This section describes the two grouping algorithms. We first
explain the case of complete overlap, and then describes that
of single overlap.

5.1 Algorithm for Complete Overlap

Complete overlap requires that every match overlaps with all
other matches in the same group. The property of complete
overlap is preserved by adding a match that overlaps with
all the matches in an existing group. Figure 4 shows the

Fig. 4 Algorithm for group generation.

Fig. 5 Grouping based on complete overlap.

grouping algorithm. At line 5, we generate matches Mt and
their candidates R using the method described in Sect. 3.2.
At line 8, we call the procedure in Fig. 5 to generate groups
based on complete overlap. At lines 11–14, we output a
group g[ts:te] that is derived from g as described in Sect. 3.3.

For example, suppose that the pattern p = 〈a+ h+ b+〉,
the probabilistic data stream PDS in Fig. 1, the threshold
of occurrence probabilities θ = 0.1, and the threshold of
overlap ratios τ = 0.5 are given. Note that the threshold
θ = 0.1 results in the five matches in Fig. 2. First, we update
R only until time 3 because further matches are not detected
(Fig. 4: 5). At time 3, M3 = {m1} is detected (Fig. 4: 5). We
generate a new group g1 = {m1} and add it to G because G
is still an empty set (Fig. 5: 6). g1 is not output at time 3
because there are candidates that overlap with m1 ∈ g1, such
as 〈a1, h2, h3〉 ∈ R (Fig. 4: 9–14). At time 4 and 5, we only
update R (Fig. 4: 5). At time 6, M6 = {m2,m3,m4,m5} is
detected (Fig. 4: 5). Note that matches are processed in as-
cending order of their start time (Fig. 4: 7). m2 is not added
to g1 because its overlap ratio with m1 ∈ g1 is not greater
than τ (Fig. 5: 4). We therefore generate g2 = {m2} and
add it to G (Fig. 5: 6). We omit the description of g1 in the
following because m1 ∈ g1 does not overlap with all other
matches in M6. m3 is added to g2 because its overlap ratio
with m2 ∈ g2 is greater than τ (Fig. 5: 4–5). Then, g2 be-
comes {m2,m3,m4} because m4 overlaps with both m2 and
m3. Besides, we generate a new group g3 = {m5} because
the overlap ratio between m5 and m2 ∈ g2 is not greater than
τ (Fig. 5: 6). R becomes {〈a7〉} at time 7. In other words,
no candidate overlaps with all matches in any of the groups
(Fig. 4: 10). Thus, we output g[1:3], g[1:6], and g[4:6], derived
from g1, g2, and g3, respectively (Fig. 4: 11–14).
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Fig. 6 Grouping based on single overlap.

5.2 Algorithm for Single Overlap

Single overlap requires that every match overlaps with at
least one other match in the same group. The property of
single overlap is ensured by adding a match that overlaps
with any match in an existing group. In this, we can group
matches that do not overlap with each other by using other
overlapping matches. In other words, we can merge groups
G into one group via a match m when every group g ∈ G
contains m. For example, suppose that there are g1 = {m1}
and g2 = {m5} in Fig. 2, where the threshold τ is 0.4. We
can add m2 to both g1 and g2 because m1 and m5 overlap
with m2. Thus, the property of single overlap is kept even if
we merge g1 = {m1,m2} and g2 = {m2,m5} into one group
g = {m1,m2,m5} because of m2.

Figure 6 shows the grouping procedure based on single
overlap. We call this procedure at line 8 in Fig. 4. For ex-
ample, suppose that p = 〈a+ h+ b+〉, PDS in Fig. 1, θ = 0.1,
and τ = 0.4 are given. Until time 6, grouping is the same
in the case of complete overlap. At time 6, G is {g1 = {m1}}
and M6 is {m2,m3,m4,m5}. m2 and m3 are added to g1 be-
cause their overlap ratios with m1 ∈ g1 are greater than τ
(Fig. 6: 4–5). The overlap ratio between m4 and m1 is not
greater than τ, but we can add m4 to g1 because m4 over-
laps with m2 ∈ g1. m5 is also added to g1, and g1 becomes
{m1,m2,m3,m4,m5}. At time 7, no candidate r ∈ R overlaps
with all matches in g1 (Fig. 4: 10). Thus, we output g[1:6],
derived from g1 (Fig. 4: 11–14).

6. Efficient Calculation of Group Occurrence Proba-
bility

This section explains how to calculate the occurrence prob-
ability of a group. First, we describe the generation of a
DFA, which plays an important role for our approach, and
then explain the calculation method in detail.

6.1 Generation of DFA

The occurrence probability of a group g[ts:te] is the sum of
the probabilities of possible worlds that include a match as a
subsequence, as shown in Eq. (4). The naı̈ve approach enu-
merates all possible worlds W[ts:te], and sums the probabil-
ities of the possible worlds that include a match. Figure 7

Fig. 7 The naı̈ve method to calculate the probability of g[ts:te].

Fig. 8 DFA for 〈.∗ a+ h+ b+ .∗〉.

shows the naı̈ve method using the backtrack algorithm. We
represent |w| and |[ts : te]| as the lengths of a possible world
w and a time interval [ts : te], respectively. That is, |w| is
the number of events in the sequence w, and |[ts : te]| is
the number of time steps (te − ts + 1). The naı̈ve method
uses the recursive function to enumerate all possible worlds
(Fig. 7: 4–11). If we can add events to w, we call the function
recursively (Fig. 7: 9, 10) and add events (Fig. 7: 5, 6). We
then add the probability of w to P(g[ts:te]) when w includes
a match (Fig. 7: 7, 8). When we have checked whether w
includes a match, we backtrack by removing the last event
of w (Fig. 7: 11). The naı̈ve approach, however, is not effi-
cient because the number of possible worlds exponentially
increases with the length of the time interval.

To calculate the probability of a group efficiently, we
use a DFA that accepts all the possible worlds including a
match. It is important to note that we can represent the set
of possible worlds for pattern p as 〈.∗ p .∗〉, where “.” is an
arbitrary event symbol in Σ. In other words, the possible
worlds are sequences that contain arbitrary symbols in any
number of times before and after the matches. Thus, we can
generate the corresponding DFA by applying the Thomp-
son construction method [20] and the Hopcroft minimiza-
tion method [24] to 〈.∗ p .∗〉. For example, Fig. 8 shows the
DFA to accept possible worlds that include matches of the
pattern p = 〈a+ h+ b+〉. We represent α as the negation of
an symbol α ∈ Σ.

6.2 DFA-Based Calculation

We explain how to calculate the probability of a group using
a DFA (Q,Σ, δ, q0, F). Let Q be the states of the DFA, δ :
Q × Σ → Q be the transition function, q0 ∈ Q be the initial
state, and F ⊆ Q be the final states.
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Fig. 9 Updating Vq
[1:te] (rounded to three decimal places).

First of all, we consider possible worlds that arrive at a
state in the DFA. We represent Wq

[ts:te] as possible worlds that
arrive at the state q ∈ Q in the time interval [ts : te]. Let “×”
denote the product of possible worlds, as in Definition 3.
Wq

[ts:te] is calculated by the following recurrence formula:

Wq
[ts:te] =

⋃

q′∈Q,α∈Σ : δ(q′,α)=q

Wq′
[ts:te−1] × {αte } (8)

For example, we consider the possible worlds that arrive at
state 4 in Fig. 8. States 3 and 4 have a transition to state 4.
That is, the possible worlds have to arrive at state 3 or 4 to
reach state 4 at the next time step. Thus, the set of possible
worlds W4

[1:5] is represented as follows:

W4
[1:5] =

(
W3

[1:4] × {b5}
)
∪
(
W4

[1:4] × {.5}
)

We calculate the sum of the probabilities of possible
worlds that arrive at each state. Let Vq

[ts:te] be the sum of the
probabilities of possible worlds Wq

[ts:te]. We can derive the
following equation from Eq. (8):

Vq
[ts:te] =

∑

q′∈Q,α∈Σ : δ(q′,α)=q

Vq′
[ts:te−1] · P(αte ) (9)

Thus, we can calculate every Vq
[ts:te] by applying Eq. (9) re-

cursively, where the probability of the initial state Vq0

[ts:ts−1]
is initialized to 1.0. For example, suppose that the DFA in
Fig. 8 and the stream in Fig. 1 are given. Figure 9 shows the
change of Vq

[ts:te] over the time interval [1 : 6]. The probabil-
ity of each state is calculated using Eq. (9) at each time step
as follows:

V4
[1:5] = V3

[1:4] · P(b5) + V4
[1:4] · P(.5)

� 0.56 · 0.1 + 0.21 · 1.0
� 0.27

The probability of a group g[ts:te] is the sum of the prob-
abilities of possible worlds that arrive at the final states:

P(g[ts:te]) =
∑

q∈F
Vq

[ts:te] (10)

For example, suppose that the group g[1:6] is generated from
the pattern p = 〈a+ h+ b+〉 for the stream in Fig. 1. Figure 9
also shows the process of calculation of P(g[1:6]). As the
only final state is state 4, P(g[1:6]) is about 0.92.

7. Experiments

We analyze the performance of our approach by perform-
ing experiments. We constructed a Java-based system that

Table 2 Experiment environment.

OS Ubuntu 14.04.1 LTS

CPU Intel Xeon CPU E5620 @ 2.40GHz

Version of JVM 1.8

Memory allocation 8.0GB

Fig. 10 Graph structure in the real dataset.

Fig. 11 Markov model for the synthetic dataset.

implements the described methods and performed all mea-
surements with the settings given in Table 2.

We use real and synthetic datasets in the experiments.
We evaluate the effectiveness of our grouping approach, us-
ing the real dataset provided by the Lahar project [4]. The
dataset represents an indoor space as a graph, as in Fig. 10,
and records the estimated locations of a person walking
around the space. For every second, the probability that a
person is located at the node is estimated on the basis of
sensor data. The dataset also provides the ground truth, a
non-probabilistic data stream of user locations. There are
nine room entry/exit events in the dataset. In addition, we
use a synthetic dataset. We generate a probabilistic data
stream that comprises a million events, using the Markov
model in Fig. 11 with Σ = {a, b, . . . , z}. The model shows
the cyclic event occurrence from “a” to “z”. The generation
starts from the initial state and shifts to the next state accord-
ing to the probability of each edge. Each state corresponds
to each event symbol, such as state 1 and “a”, and outputs
a probabilistic event that contains five symbols with their
probabilities. The probability of each symbol is maximized
at the corresponding state, and decreases as the current state
moves away from it.

In the following, we first evaluate the effectiveness of
grouping. Then, we study the effect of the parameters and
policies: the threshold of occurrence probabilities θ, the
threshold of overlap ratios τ, and the use of complete or
single overlaps. We also evaluate the efficiency of the DFA-
based group probability calculation.
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Table 3 Outputs corresponding to the sequence c.

Match Complete overlap Single overlap

P(〈d92, r93, d94〉) � 0.06 P(g[90:149]) � 0.96 P(g[90:149]) � 0.96

P(〈d95, r96, d97〉) � 0.03 P(g[90:148]) � 0.96

P(〈d111, r112, d113〉) � 0.02 P(g[90:147]) � 0.96

P(〈d95, r96, r97, d98〉) � 0.02 P(g[101:149]) � 0.93

. . .

(about 210,000 matches are obtained)

Fig. 12 The number of output matches and groups.

7.1 Effect of Grouping

We evaluate the effectiveness of grouping using the real
dataset. We use p = 〈d+ r+ d+〉, θ = 10−20, and τ = 0.05 as
the default settings. In the following, we use the term cor-
rect sequences to denote agreement with the ground truth.

To show the general trend, Table 3 shows the instances
of output matches and groups in descending order of their
probabilities. Note that we enumerate only the matches and
groups that overlap with the following correct sequence c,
because there are a lot of matches and groups, as shown in
Fig. 12:

c = 〈d94, . . . , d108, r109, . . . , r123, d124, . . . , d131〉
Table 3 indicates that grouping can detect c with high prob-
ability. By contrast, we get too many matches with small
probabilities without grouping.

Figure 12 shows the number of output matches and
groups. The result indicates that the number of outputs
decreases by grouping. There are approximately 100,000
matches that correspond to each correct sequence. It is not
realistic to check so many matches. By contrast, we can get
small number of groups with a small threshold τ. This gives
a realistic number of possibilities to confirm by examining
the final results directly.

Figure 13 shows the averages of occurrence probabil-
ities of matches and groups. The result indicates that the
occurrence probabilities greatly increase by grouping. As
the average probabilities of the groups are rather large, the
detected groups imply the occurrence of the corresponding
real-world events. In contrast with grouping, simple match-
ing is not useful for detection because the probabilities are
extremely small.

Fig. 13 Averages of occurrence probabilities.

7.2 Effect of Parameters

We analyze the effect of parameters on grouping quality. We
also use p = 〈d+ r+ d+〉, θ = 10−20, and τ = 0.05 as the
default settings. First, we explain the evaluation metrics.
Then, we evaluate the effects of θ, τ, and the two overlap
policies, in this order.

7.2.1 Evaluation Metrics

We use precision and recall to analyze grouping quality. Let
G be the set of groups and C be the set of correct sequences.
Precision indicates the accuracy of detection, and is usually
calculated by |G ∩ C|/|G|. However, we cannot calculate
the precision for groups because the form of g ∈ G differs
from that of c ∈ C. We therefore introduce a precision for-
mula for this context based on the overlap ratios. Let us use
maxc∈C(overlap(g, c)) as the overlap ratio between g and C.
We regard the expected value of overlap ratios of G as the
precision score:

precision(G,C)

=
∑

g∈G
P(g|G) ·max

c∈C
(overlap(g, c)), (11)
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Fig. 14 Precision and recall of 〈d+〉 for different values of θ.

Fig. 15 Precision and recall of 〈d+ r+ d+〉 for different values of θ.

where P(g|G) is the normalized probability of g in G:

P(g|G) =
P(g)∑
g′∈G P(g′)

(12)

Recall indicates the completeness of detection, and is
usually calculated by |G ∩ C|/|C|. In this paper, we regard
the average of the overlap ratios of C as recall:

recall(G,C) =
∑

c∈C

1
|C| ·max

g∈G
(overlap(g, c)) (13)

7.2.2 Changing the Threshold of Probability θ

Figures 14 and 15 show the precision and recall scores of
two patterns 〈d+〉 (Fig. 14) and 〈d+ r+ d+〉 (Fig. 15). Note
that we reduce θ from 10−1 to 10−20. That is, we explain
the figures from right to left. The precision and recall ini-
tially increase by reducing θ because necessary matches are
not detected with high θ. The scores, however, become flat
or decrease after reducing θ to some extent. It indicates
that unnecessary matches are detected and grouped because
of too small θ. As unnecessary matches generate a group
g[ts:te] with larger time interval compared with the correct
sequence, such as g[90:149] in Table 3, the precision and re-
call decrease. Note that precision and recall are lower for
simple patterns such as 〈d+〉 because unnecessary matches
are more often detected. Additionally, precision and recall
rapidly increase and decrease with single overlap because it
groups more matches than complete overlap does.

Figure 16 shows the throughputs for different θ values.
We use the synthetic dataset and the settings p = 〈a+ b+ c+〉
and τ = 0.05. We also explain the figure from right to left.
The throughputs decrease as we reduce θ. The computa-
tion time for a grouping depends on the number of matches.
Thus, the throughputs decrease with small θ because more

Fig. 16 Throughputs for different values of θ.

matches are detected, as shown in Fig. 12.
From the results above, we can conclude that the

threshold θ should set to detect enough matches for group-
ing. We can estimate such a θ by using the uncertainty of
an input data stream and the lengths of assumed correct se-
quences. For example, consider the real dataset. The maxi-
mum probability is about 0.7 for every time, and the lengths
of the correct sequences are 30 to 50 for p = 〈d+ r+ d+〉.
Thus, we have to reduce θ to at least 0.750 � 10−8. This ap-
proximately corresponds to the precision and recall results
in Fig. 15.

7.2.3 Changing Threshold of Overlap Ratio τ

Figure 17 shows the precision and recall scores for different
τ values. The precision decreases as we increase τ. The rea-
son is that smaller groups are generated by increasing τ. For
example, consider the case of Table 3. When we use large
values of τ, short matches, such as 〈d90, r91, d92〉, fall apart
from g[90:149]. Such short matches generate smaller groups,
such as g[90:118] and g[90:92]. Because the lengths of groups
decrease as we increase τ, the overlap ratios (i.e., precision)
between the groups and the correct sequences also decrease.
However, the precision improves by raising τ close to 1.0
because, conversely, we generate more groups that almost
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Fig. 17 Precision and recall for different values of τ.

Fig. 18 Throughputs for different values of τ.

overlap with the correct sequences, such as g[94:131]. Note
that single overlap is slow to respond to changes in τ, as
shown in Fig. 12. Thus, the precision increases/decreases
suddenly and significantly.

On the other hand, the recall increases as we increase
τ. When we use small values of τ, we generate groups with
a longer time interval compared with the correct sequences,
as shown in Table 3. Because we can generate more appro-
priate groups, such as g[94:131], by raising τ, recall improves.

Figure 18 shows the throughputs for different τ values.
We use the synthetic dataset and the settings p = 〈a+ b+ c+〉
and θ = 10−10. The throughputs decrease by increasing τ,
owing to the number of groups. As the number of groups
increases with high τ, as shown in Fig. 12, we need more
computation time to add the matches to the groups.

From the results above, we conclude that we should
choose a threshold τ according to the user’s requirement.
When we need to detect groups that are similar to correct
sequences, a large value is required for τ. Such a τ, how-
ever, decreases precision and increases the number of out-
put groups. Thus, we should use a smaller value for τ if we
want to look over the results of pattern matching.

7.2.4 Comparison of Complete Overlap and Single Over-
lap

We examine the difference between complete overlap and
single overlap. Because the condition of single overlap
is not strict in contrast to that of complete overlap, more
matches are put together into one group. When we use a
small value for τ, single overlap can generate groups that
correspond to correct sequences at a one-to-one level, as in
Table 3. However, we may group matches excessively by
using single overlap when real-world events occur within
short intervals. For example, consider the recall of p = 〈d+〉.

Two real-world events of p occur when the person enters and
exits the room. Because single overlap puts together all the
matches that correspond to the two real-world events, the re-
call of single overlap is extremely low, as shown in Fig. 14.
In contrast, complete overlap can distinguish the two events
because the condition of complete overlap is strict. Thus,
the recall of complete overlap is greater than that of single
overlap. The number of groups, however, increases with
complete overlap, as shown in Fig. 12.

We suggest using the two overlap policies according
to the desired treatment. Single overlap is better at looking
over the entire data stream, while complete overlap can an-
alyze the stream in detail. Because single overlap generates
groups that correspond to real-world events at a one-to-one
level, we can guess when the events have occurred. Then,
we can apply complete overlap to the time intervals of the
detected groups for the detailed analysis.

7.3 Efficiency of DFA-Based Calculation

We study the efficiency of the DFA-based calculation in
Sect. 6. We compare the proposed method with the naı̈ve
one based on the computation time for calculating the prob-
ability of a group. Given a group g[ts:te], our method uses
Eq. (9) over the time interval [ts : te] for the calculation.
Thus, the computation time of our method depends on the
length of the time interval |[ts : te]| = te − ts + 1. The com-
putation time of the naı̈ve method also depends on |[ts : te]|
because the number of possible worlds relies on |[ts : te]|. In
the experiments, we therefore measure the computation time
for calculating the probability of a group over the given time
interval. We first detect a group g[ts:te], and change the end
of the time interval of the group from ts to te. That is, we
generate groups g[ts:ts], g[ts:ts+1], . . . , g[ts:te]. We then measure
the computation time for calculating the probability of each
group with the proposed and naı̈ve methods.

Figure 19 shows the computation time where the syn-
thetic dataset and p = 〈a+ b+ c+〉 are used. We omit the
computation time of |[ts : te]| = 1 and 2 because there are no
matches in these time intervals. The result indicates that the
computation time of our method is markedly smaller than
that of the naı̈ve method. Because the number of possible
worlds increases exponentially, the computation time of the
naı̈ve method also increases rapidly. In contrast, the compu-
tation time of our method increases slowly, because |[ts : te]|
affects only the number of uses of Eq. (9).
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Fig. 19 Computation time for P(g[ts:te]).

8. Conclusion

We proposed methods of grouping matches from pattern
matching over probabilistic data streams. We defined the
overlap ratio as the grouping criterion, and proposed com-
plete overlap and single overlap as grouping policies. Then,
we explained the grouping algorithms based on the two
overlap policies, and proposed DFA-based calculation of the
occurrence probabilities of groups. We evaluated the effec-
tiveness and efficiency of our approach by performing exper-
iments. Future work includes the refinement of the group-
ing policies and support for detailed conditions for pattern
matching.

Our methods extend applications of complex event pro-
cessing based on regular expressions from non-probabilistic
data to uncertain data. Many researchers have proposed
pattern matching methods to detect complex events from
non-probabilistic data streams, such as stock data [12]–[19].
However, we have to deal with probabilistic data streams,
such as human activity data, in some applications. For
example, suppose lifelog services using smartphones. Al-
though we can predict user’s activity by using sensing data
and machine learning techniques, the predictions are uncer-
tain because of the noise of sensing data and the limitation of
machine learning techniques. In probabilistic data streams,
even if simple queries, such as 〈walk jog+ walk〉, are
given, existing methods may detect inappropriate matches
and calculate misleading occurrence probabilities. In con-
trast, our methods detect real-world events with their exact
occurrence probabilities using the grouping methods. As
probabilistic data streams appear in other applications, such
as speech recognition and activity recognition in video, our
methods have a potential for various utilization.
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