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SUMMARY There are increasing demands for improved analysis of
multimodal data that consist of multiple representations, such as multilin-
gual documents and text-annotated images. One promising approach for
analyzing such multimodal data is latent topic models. In this paper, we
propose conditionally independent generalized relational topic models (CI-
gRTM) for predicting unknown relations across different multiple repre-
sentations of multimodal data. We developed CI-gRTM as a multimodal
extension of discriminative relational topic models called generalized rela-
tional topic models (gRTM). We demonstrated through experiments with
multilingual documents that CI-gRTM can more effectively predict both
multilingual representations and relations between two different language
representations compared with several state-of-the-art baseline models that
enable to predict either multilingual representations or unimodal relations.
key words: latent topic models, relational topic models, multimodal data,
margin maximization

1. Introduction

The use of multimodal data such as multilingual paral-
lel/comparable documents and text-annotated images has
increased explosively with the growth of social media ser-
vices. Therefore, research on search and analysis of such
multimodal data is becoming more important than ever. One
promising approach for analyzing multimodal data is latent
topic models [1], [2]. Latent Dirichlet allocation (LDA) [2]
is one such model that is widely used. For handling multi-
modal data, conditionally independent LDA (CI-LDA) [3]–
[5] has often been used as an extension of LDA. CI-LDA can
model shared latent topics across different modes or modal-
ities (e.g., languages) for multimodal data. However, CI-
LDA cannot directly predict the relation between two differ-
ent modes in multimodal data.

For predicting the relation or link between two docu-
ments, relational topic models (RTM) [6] and their general-
ized versions [7] have been developed in previous studies.
For instance, these models consider a citation in a research
paper as a link between the two papers and predict unknown
links using latent topics. The links are assumed to be gen-
erated in accordance with a function with latent topics that
outputs binary representations with ‘1’ and ‘0’ indicating
the presence and absence of a link between two documents,
respectively. These relational topic models aim to predict
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links between unimodal data, so they cannot be directly ap-
plied to multimodal data.

In this paper, we aim to predict relations across dif-
ferent modes (e.g., languages) in multimodal data and also
predict the multimodal data themselves (e.g., words in each
language mode). As illustrated in Fig. 1, we can view mode
representations that are linked to each other in each mul-
timodal data, for instance, an English automobile article
and a Spanish automóvil article are connected via an inter-
language link, as seen in Wikipedia. For these objectives,
we propose conditionally independent gRTM (CI-gRTM)
that can predict both multimodal data themselves and the re-
lations between two different modes differently from previ-
ous models such as CI-LDA and RTM. We evaluated our CI-
gRTM and several state-of-the-art baseline models through
experiments with multilingual parallel and comparable doc-
uments and demonstrated that our model effectively predicts
both multimodal data themselves and inter-mode relations.

2. Related Work

In this section, we briefly review some previous topic mod-
els: LDA, CI-LDA, RTM, and gRTM. CI-LDA can repre-
sent shared latent topics among multiple modes. RTM and
gRTM can predict relations between unimodal documents.
There are different types of multilingual topics models, such
as in [8]–[10]. However, those models are based on the
premise of using some additional knowleage or resources,
such as multilingual dictionaries, while our assumption in

Fig. 1 Illustration of cross-modal links.
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Fig. 2 Graphical model of LDA.

this paper is that only multilingual comparable documents
are available, as in the work on CI-LDA.

2.1 LDA

Latent Dirichlet allocation (LDA) assumes that each docu-
ment is represented as a mixture of topics, where each topic
is represented as a multinomial distribution over words. Fig-
ure 2 shows a graphical model representation of LDA, where
D, Nd, and K indicate the number of documents, the num-
ber of words in document d, and the number of latent topics,
respectively. In this figure, the shaded circle represents an
observed variable. θd and φk indicate multinomial parame-
ters over topics with respect to document d and multinomial
parameters over words with respect to topic k, respectively.
α and β are hyperparameters of Dirichlet priors for each of
the multinomial distributions. The generating process can
be described as:

1. Draw per-document multinomial θd ∼ Dir(α) (where
d ∈ {1, . . . ,D}).

2. Draw per-topic multinomial φk ∼ Dir(β) (where k ∈
{1, . . . ,K}).

3. For each word in document d:

a. Draw topic assignment zdi ∼ Mult(θd).
b. Draw word wdi ∼ Mult(φk).

Here, Mult(·) and Dir(·) indicate a multinomial distribution
and a Dirichlet distribution, respectively.

2.2 CI-LDA

CI-LDA [3]–[5] is an extension of LDA that can handle
multimodal data, such as multilingual parallel documents.
When the target is multilingual parallel documents, each
mode corresponds to a language. We show a graphical
model representation of CI-LDA in Fig. 3, assuming that the
number of modes is L, where each superscript variable indi-
cates a mode.

Fig. 3 Graphical model of CI-LDA.

Fig. 4 Graphical model of RTM.

The generative process of CI-LDA can be described as:

1. Draw per-document multinomial θd ∼ Dir(α) (where
d ∈ {1, . . . ,D}).

2. Draw per-topic, per-language multinomial φ(�)
k ∼

Dir(β) (where k ∈ {1, . . . ,K} and � ∈ {1, . . . , L}).
3. For each word of document d and language �:

a. Draw topic assignment z(�)
di ∼ Mult(θd).

b. Draw word w(�)
di ∼ Mult(φ(�)

k ).

2.3 RTM and gRTM

Relational topic models (RTM) [6] are an extension of LDA
that considers both text content and network structure. Fig-
ure 4 shows a graphical model representation of RTM,
where the document plate is omitted for convenience. In
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this figure, η = (ηk) is the weight vector for link generation,
indicating that the larger the weight is, the more the corre-
sponding topic contributes to link generation. The generat-
ing process can be described as:

1. Draw per-document multinomial θd ∼ Dir(α) (where
d ∈ {1, . . . ,D}).

2. Draw per-topic multinomial φk ∼ Dir(β) (where k ∈
{1, . . . ,K}).

3. For each word of document d:

a. Draw topic assignment zdi ∼ Mult(θd).
b. Draw word wdi ∼ Mult(φk).

4. Draw link ydd′ ∼ ψ.

Here, ψ indicates the link probability function that defines
the probability of generating a link between two documents,
depending on the latent topics in these documents, as below:

ψ(ydd′ = 1|zd, zd′ , η) = σ(ηT(z̄d ◦ z̄d′ )) (1)

where zd = {zdi} while z̄d = (z̄d,k) and z̄d,k =
1

Nd
Ck

d. Here, Ck
d

is the number of times topic k is assigned to any words in
document d. Operator ‘◦’ denotes the elementwise product,
andσ denotes the sigmoid function. In the work by Chang et
al. [6], some other choices of σ were also used, for example,
using the exponential function and the cumulative distribu-
tion function of a normal distribution. In this paper, we use
the commonly used logistic likelihood model [11] with the
sigmoid function.

RTM’s link probability function is based on the ele-
mentwise product so that it only considers interactions be-
tween the same topics. Therefore, some of the weight ηk

values are positive while others may be negative. The neg-
ative interactions are undesirable when trying to understand
the process of generating links in document networks. To
address this issue, generalized RTM (gRTM) [7] extends the
link probability function of RTM, as below:

ψ(ydd′ = 1|zd, zd′ ,U) = {σ(z̄T
d U z̄d′ )}c (2)

where U is the full K × K weight matrix, and K denotes the
number of topics. Regularization parameter c controls the
likelihood of generating links. The graphical model repre-
sentation of gRTM is essentially the same as that of RTM
and is derived by replacing η with U as shown in Fig. 4.

3. Multimodal Relational Topic Models

3.1 CI-gRTM

As mentioned in Sect. 2.2, CI-LDA represents topics shared
across multiple modes in multimodal data. However, CI-
LDA cannot directly predict relations or links across the
modes. To address this problem, we propose conditionally
independent generalized RTM (CI-gRTM). Figure 5 shows a
graphical model representation of CI-gRTM, where each su-
perscript variable indicates a mode or a pair of modes. This
model uses the link probability function, which is similar to

Fig. 5 Graphical model of CI-gRTM.

that of gRTM in Sect. 2.3. Θ = {θd} are the per-document
multinomial parameters that are common in all modes in
each document. The generating process can be described
as:

1. Draw per-document multinomial θd ∼ Dir(α) (where
d ∈ {1, . . . ,D}).

2. Draw per-topic multinomial φ(�)
k ∼ Dir(β) (where k ∈

{1, . . . ,K} and � ∈ {1, . . . , L}).
3. For each word of document d:

a. Draw topic assignment z(�)
di ∼ Mult(θd).

b. Draw word w(�)
di ∼ Mult(φ(�)

k ).

4. Draw link y(�1,�2)
dd′ ∼ ψ (where �1, �2 ∈ {1, . . . , L}).

The link probability function of CI-gRTM is defined as fol-
lows:

ψ(y(�1,�2)
dd′ = 1|z(�1)

d , z(�2)
d′ ,U

(�1,�2))= {σ(z̄(�1)T
d U(�1,�2)z̄(�2)

d′ )}c
(3)

where z̄(�1)
d and z̄(�2)

d′ mean the expectations of topic assign-
ments in mode �1 of document d and mode �2 of document
d′, respectively. Here, document d′ can be the same as doc-
ument d, for instance, modes �1 and �2 of document d are
assumed to be linked to each other.

3.2 Inference with Collapsed Gibbs Sampling

MedLDA [12] is a model that can infer unknown parameters
and latent variables as optimizations. It requires assuming
hard constraints in the process of inference of the model. In
this section, we discuss an inference with collapsed Gibbs
sampling [13] that is simple and efficient. The algorithm of
the collapsed Gibbs sampling is based on data augmenta-
tion [14]. We discuss below the inference of CI-gRTM in
accordance with the previous study [7]. First, we show the
posterior distribution for all unknown parameters and latent



744
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

variables.

q(U,Θ,Z,Φ) =
p0(U,Θ,Z,Φ)p(W|Z,Φ)ψ(y|Z,U)

ϕ(y,W)
(4)

where W = {w(�)
di }, Z = {z(�)

di }, Θ = {θd}, Φ = {φ(�)
k }, U =

{U(�1,�2)}, and y = {y(�1,�2)
dd′ }. p0(U,Θ,Z,Φ) is the prior,

p(W|Z,Φ) is the likelihood of generating words, ψ(y|Z,U)
is the pseudo-likelihood of generating links, and ϕ(y,W)
is the normalizing constant. Using data augmentation [7],
[14], ψ is formulated as follows:

ψ(y(�1,�2)
dd′ |z(�1)

d , z(�2)
d′ ,U

(�1,�2)) =
exp(κ(�1,�2)

dd′ ω(�1,�2)
dd′ )

2c∫ ∞
0

exp

⎛⎜⎜⎜⎜⎜⎝−λ
(�1,�2)
dd′ ω(�1,�2)2

dd′

2

⎞⎟⎟⎟⎟⎟⎠ p(λ(�1,�2)
dd′ |c, 0)dλ(�1,�2)

dd′ (5)

where κ(�1,�2)
dd′ = c(y(�1,�2)

dd′ − 1/2), and ω(�1,�2)
dd′ =

z̄(�1)T
d U(�1,�2)z̄(�2)

d′ . λ = {λ(�1,�2)
dd′ } is a variable for data aug-

mentation. The greater the regularization parameter c is,
the more misclassification can be allowed. p(λ(�1,�2)

dd′ |c, 0) fol-
lows Polya-Gamma distribution [14], as below:

p(λ(�1,�2)
dd′ |a, b) =

1
2π2

∞∑
i=1

gi

(i − 1/2)2 + b2/(4π2)
(6)

where gi follows Gamma distributionG(a, 1). Therefore, the
posterior distribution with λ is:

q(U, λ,Θ,Z,Φ) =
p0(U,Θ,Z,Φ)p(W|Z,Φ)ψ(y, λ|Z,U)

ϕ(y,W)
(7)

where the pseudo-joint distribution of y and λ is:

ψ(y, λ|Z,U) =
∏
dd′

exp

⎛⎜⎜⎜⎜⎜⎝κ(�1,�2)
dd′ ω(�1,�2)

dd′ −
λ(�1,�2)

dd′ ω(�1,�2)2
dd′

2

⎞⎟⎟⎟⎟⎟⎠
p(λ(�1,�2)

dd′ |c, 0) (8)

We then marginalize out Θ and Φ, and the resulting col-
lapsed posterior is:

q(U, λ,Z) ∝ p0(U)
K∏

k=1

δ(C(�)
k + β

(�))

δ(β(�))

D∏
d=1

δ(Cd + α)
δ(α)

∏
dd′

exp

⎛⎜⎜⎜⎜⎜⎝κ(�1,�2)
dd′ ω(�1,�2)

dd′ −
λ(�1,�2)

dd′ ω(�1,�2)2
dd′

2

⎞⎟⎟⎟⎟⎟⎠ p(λ(�1,�2)
dd′ |c, 0)

(9)

where δ(x) =
∏dim(x)

i=1 Γ(xi)

Γ(
∏dim(x)

i=1 xi)
. C(�)

k = {Cv(�)

k }V
(�)

v=1 when Cv(�)

k is the

number of counts when topic k is assigned to word type v in
language �. Here, V (�) indicates the number of word types in
language �. Similarly, Cd = {Ck

d}Kk=1 when Ck
d is the number

of counts when topic k is assigned to any words in document
d.

Below we show the full conditional probability of each
parameter, assuming the use of collapsed Gibbs sampling.

3.2.1 Inference of U

We assume z̄(�1,�2)
dd′ = vec(z̄(�1)

d z̄(�2)T
d′ ) and η(�1,�2) =

vec(U(�1,�2)). Here, vec(A) defines the vector concate-
nating the row vectors of A. We then have ω(�1,�2)

dd′ =

η(�1,�2)Tz̄(�1,�2)
dd′ . When a Gaussian prior of U(�1,�2) is assumed

to be p0(U(�1,�2)) =
∏

kk′ N(U(�1,�2)
kk′ ; 0, ν2), we obtain:

q(η(�1,�2)|Z, λ) ∝ p0(η(�1,�2))
∏
dd′

exp
(
κ(�1,�2)

dd′ η
(�1,�2)Tz̄(�1,�2)

dd′

−λ
(�1,�2)
dd′ (η(�1,�2)Tz̄(�1,�2)

dd′ )2

2

)

= N(η(�1,�2);μ,Σ) (10)

where the posterior mean is μ = Σ
(∑

dd′ κ
(�1,�2)
dd′ z̄(�1,�2)

dd′
)

and

the covariance is Σ =
( 1
ν2 I +

∑
dd′ λ

(�1,�2)
dd′ z̄(�1,�2)

dd′ z̄(�1,�2)T
dd′

)−1. We
can easily draw a sample from this K2-dimensional Gaus-
sian distribution. This enables the inference of U by the
procedure above for all pairs of languages.

3.2.2 Inference of Z

The full conditional probability of Z is:

q(z(�)
di = k|Z−di,U, λ,W) ∝ (Ck

d,−i + α)(Cv(�)

k,−i + β
(�))∑

v(�) Cv(�)

k,−i + V (�)β(�)∏
�′∈L−�

∏
d′∈Nd

ψ(y(�,�′)
dd′ |λ,Z−di, z

(�)
di = k)

∏
�′∈L−�

∏
d′∈Nd

ψ(y(�′,�)
d′d |λ,Z−di, z

(�)
di = k) (11)

where ψ(y(�,�′)
dd′ |λ,Z) = exp(κ(�,�′)

dd′ ω
(�,�′)
dd′ −

λ(�,�′ )
dd′ ω

�,�′ )2
dd′

2 ). Nd =

{d′ : (d, d′) ∈ I} denotes a set of document d′ that are ob-
served to be linked or unlinked to document d in the training
set. Note that document d′ can be the same as document d,
as mentioned at the end of Sect. 3.1. Subscript ‘−i’ means
that word i is removed. L−� indicates that language � is re-
moved from a set of language modes L. We can see that
the first term in the right-hand side corresponds to the word
counts in LDA, and the second and third terms are derived
from a set of links y.

3.2.3 Inference of λ

Finally, the full conditional probability of the data-
augmentation variable λ is:

q(λ(�1,�2)
dd′ |Z,U) ∝ exp

⎛⎜⎜⎜⎜⎜⎝−λ
(�1,�2)
dd′ ω(�1,�2)2

dd′

2

⎞⎟⎟⎟⎟⎟⎠ p(λ(�1,�2)
dd′ |c, 0)

= PG(λ(�1,�2)
dd′ ; c, ω(�1,�2)

dd′ )
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Table 1 Dataset-A after pre-processing.

Dataset-A Dataset-B
Japanese English Japanese English Spanish

No. of documents 14111 5818
No. of word tokens 2983135 4338115 1827463 5062266 2507643
No. of word types 23979 34398 21618 47650 33721

Table 2 Examples of estimated multimodal topics in English and Spanish.

Topic: football
English Español (English translation)

cup 0.0147 copa (cup) 0.0124
league 0.0126 club (club) 0.0121

football 0.0110 fútbol (football) 0.0117
team 0.0110 equipo (equipment) 0.0098

season 0.0096 temporada (season) 0.0079
club 0.0092 liga (league) 0.0078
game 0.0062 final (final) 0.0075
match 0.0059 mundial (world) 0.0064
player 0.0058 selección (selection) 0.0062
players 0.0057 partido (match) 0.0059

Topic: plane
English Español (English translation)

air 0.0358 aeropuerto (airport) 0.0098
aircraft 0.0202 air (air) 0.0092
airlines 0.0187 avión (plane) 0.0086
airport 0.0101 vuelo (flight) 0.0085

international 0.0096 guerra (war) 0.0083
flight 0.0095 aviones (planes) 0.0074

service 0.0067 servicio (service) 0.0069
war 0.0066 internacional (international) 0.0059

force 0.0059 aérea (area) 0.0056
airways 0.0058 fueron (they) 0.0055

As can be seen above, λ follows Polya-Gamma distribu-
tion. Note that λ takes a different value for each language
pair. For instance, when J and E indicate Japanese and En-
glish, respectively, λ(J,E)

dd′ and λ(E,J)
dd′ are different. This en-

ables the inference of λ by the procedure above for all lan-
guages pairs.

With the conditional distributions above, we can esti-
mate the model by iteratively drawing samples of U, Z and
λ.

4. Experiments

In this section, we optimize regularization parameter c in
CI-gRTM, since it is sensitive to predict links. Through the
experiments with two datasets, we then evaluated our CI-
gRTM compared with CI-RTM and gRTM in a link predic-
tion task and compared it with CI-LDA, CI-RTM, gRTM,
and LDA in a word prediction task. For the details of LDA,
CI-LDA, gRTM, and CI-gRTM, see Sects. 2.1, 2.2, 2.3, and
3.1, respectively. CI-RTM is a model that only uses diago-
nals of CI-gRTM’s weight matrix U.

4.1 Datasets

The first dataset we used for experiments is Japanese-
English bilingual documents on Kyoto, a historical town
in Japan†. This dataset, which we refer to as Dataset-A,
consists of 14,111 Japanese articles on Kyoto’s people and
buildings that were extracted from Wikipedia and their En-
glish translations. We removed low frequency words that
appear in less than five articles [13]. For Japanese articles,
we also removed symbols and function words, such as con-
junctions and particles, using part-of-speech tags annotated
by MeCab††. For English articles, we removed 418 types
of standard stopwords [15]. The statistics of Dataset-A after

†http://alaginrc.nict.go.jp/WikiCorpus/
††http://mecab.googlecode.com/svn/trunk/mecab/doc/

preprocessing are shown in Table 1.
Dataset-A can be said to be a bilingual parallel corpus,

since it consists of a pair of translations. The second dataset
(which we refer to as Dataset-B) is a trilingual comparable
corpus in English, Spanish, and Japanese, all of which were
extracted from Wikipedia, where each set of Wikipedia arti-
cles are connected via inter-language links. Here, each arti-
cle is not a translation of the other article that is connected
via an inter-language link; however, the main subjects of
the two articles are the same. We extracted text content
from the original Wikipedia articles, removing link informa-
tion and revision history information. We used WP2TXT†††
for this purpose. For simplicity, we only used the articles
whose titles begin with ‘A’ from the collection of English ar-
ticles. We applied the same pre-processing that was used for
Dataset-A. As for Spanish articles, we removed 351 types
of standard stopwords††††. The statistics of Dataset-B after
preprocessing are shown in Table 1. In Datasets A and B,
presence of relations is assumed for the Wikipedia article
pairs that are explicitly associated each other by document-
level alignment for Dataset A or inter-language links for
Dataset B (referred to as positive pairs), while absence of
relations is assumed for all the other article pairs (referred
to as negative pairs). For the model estimation, we ran-
domly selected the double number of negative pairs com-
pared with that of positive pairs to balance the data. Follow-
ing the terminology of topic modeling, we refer to each unit
of Datasets-A and -B as a document that consists of multiple
language parts. Table 2 shows two examples of estimated
multimodal topics in English and Spanish using CI-gRTM
with Dataset-B, omitting the Japanese part for simplicity.
Under the same setting, Fig. 6 gives an example of the esti-
mated weight matrix and the corresponding topics. In this
figure, the weight matrix’s diagonal elements are positive
(as colored in red) but non-diagonal elements are negative

†††http://wp2txt.rubyforge.org/
††††http://members.unine.ch/jacques.savoy/clef/spanishSmart.txt
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Fig. 6 Example of estimated weight matrix and corresponding topics. The elements with positive
weights are colored in red, while the elements with negative weights are colored in blue.

(as colored in blue). It indicates that any pair of the same
topics contributes to the link generatation, while any pair of
different topics does not.

4.2 Evaluation of Regularization Parameter c

In this section, we determine the optimal regularization pa-
rameter c for CI-gRTM, CI-RTM, and gRTM using Dataset-
A. We randomly sampled 20% of the documents from the
dataset as the test set, and the remaining documents were
used for the cross-validation. We applied 4-fold cross-
validation where, for each experiment, a fourth part was
used for validation and the other parts were used for training.
For training, we estimated the unknown parameters and la-
tent variables by collapsed Gibbs sampling. Both Datasets-
A and -B contain mostly negative links rather than positive
links. Following the previous study [7], we randomly se-
lected negative links for training so that the number of neg-
ative links was double that of positive links. For validation,
we carried out the experiments in the task of link prediction
and obtained the F-measure. We also obtained the perplexity
of validation documents to evaluate prediction performance
of unseen words. The perplexity is defined as the reciprocal
of the per-word geometric mean of the likelihood as shown
below:

p(Dtest)

=

L∏
�=1

Dtest∏
d=1

N(�)
d∏

i=1

K∑
k=1

Ck
d + α∑

k′ C
k′
d + Kα

Cwi
(�)

k + β(�)

∑
wi
′(�) Cwi

′(�)
k + V (�)β(�)

(12)

The smaller the perplexity is, the more effectively the model
works.

We evaluated the F-measure and perplexity while vary-
ing the regularization parameter c. We set c to be one for
negative links while varying it to be c ∈ {1, 2, 4, 8, 16} for

positive links. We determined the optimal c for positive
links via the 4-fold cross-validation. The hyperparameters
were set to be α = 0.1 and β(J) = β(E) = 0.01. Here, β(J)

and β(E) are used for Japanese and English articles, respec-
tively. gRTM cannot handle multiple modes, so we mixed
Japanese and English words to make up a single-mode rep-
resentation, assuming β = 0.01. We set λ in Eq. (5) to be one
in accordance with the previous study [7]. We also assumed
the number of topics K ∈ {5, 10, 15}.

In Fig. 7, we show the results of F-measure with vary-
ing regularization parameter c for three models: CI-gRTM,
CI-RTM, and gRTM. In these figures, we can see that
our CI-gRTM performs better than CI-RTM in terms of F-
measure. Therefore, it is important to consider all pairwise
topic interactions for modeling the multimodal data. We can
also see that the F-measure of CI-gRTM and gRTM are com-
parable for any number of topics. CI-gRTM and gRTM have
the best F-measure when c = 2, while CI-RTM works best
when c = 16. This is probably because CI-gRTM and gRTM
compute the link likelihood using all pairwise topics, bring-
ing a larger number of parameters, so a larger c results in a
smaller F-measure because of overfitting.

In Fig. 8, we show the perplexity with varying c for
three models: CI-gRTM, CI-RTM, and gRTM. As can be
seen in this figure, gRTM performed the worst in every con-
dition. Unlike the other models, gRTM cannot distinguish
multiple languages, so it has to handle a larger number of
word types together.

From all the evaluation results above, we determined
regularization parameter c to be c = 2 for CI-gRTM, c = 16
for CI-RTM, and c = 2 for gRTM.

4.3 Testing

Using regularization parameter c that was determined pre-
viously, we evaluated the models with unseen documents in
terms of F-measure and perplexity. For the testing, we used



SAKATA and EGUCHI: RELATION PREDICTION IN MULTILINGUAL DATA BASED ON MULTIMODAL RELATIONAL TOPIC MODELS
747

Fig. 7 F-measure with varying regularization parameter c when number of topics K is 5, 10, and 15.
Error bars represent one sample standard deviation.

Fig. 8 Perplexity with varying regularization parameter c when number of topics K is 5, 10, and 15.
Error bars represent one sample standard deviation.

Table 3 F-measure and perplexity with Dataset-A.

F-measure Perplexity
K = 10 K = 15 K = 20 K = 25 K = 10 K = 15 K = 20 K = 25

CI-LDA 3695.20 3412.06 3056.85 2877.88
CI-RTM 0.00198 0.00227 0.00327 0.00446 3671.30 3568.07 3212.77 2931.03
gRTM 0.00627 0.00999 0.01202 0.01431 7815.39 6532.47 6092.29 5683.37
LDA 7250.17 6516.22 5981.70 5647.45

CI-gRTM 0.00708 0.00978 0.01215 0.01528 3661.51 3449.69 3094.65 2895.75

some baselines that are appropriate for target tasks: CI-RTM
and gRTM for the task of link prediction and CI-LDA, CI-
RTM, and gRTM for the task of word prediction. To avoid
loss of generality, we used both Datasets-A and -B. We first
estimated unknown parameters and latent variables for each
model using 80% of the documents of each dataset, as in
Sect. 4.2. We then evaluated the models using the remain-
ing documents as test sets. The number of topics was set to
{10, 15, 20, 25} for Dataset-A and {5, 10, 15, 20} for Dataset-
B. The other settings were the same as in Sect. 4.2. We ob-
tained the F-measure for the link prediction task and test-set
perplexity for the word prediction task.

Table 3 shows the results of the F-measure and test-set
perplexity for each model with Dataset-A. First, let us take
a look at CI-gRTM and gRTM in these tables. As you can
see in the left side of Table 3, CI-gRTM’s and gRTM’s link
prediction performances are higher than those of the others,
while CI-RTM’s performance is significantly lower. This
is probably because CI-gRTM and gRTM can consider all
pairwise topic interactions, while CI-RTM cannot. As for

perplexity, CI-gRTM works significantly better than gRTM
and LDA, as shown in the right side of Table 3. Here,
note that the smaller the perplexity is, the more effectively
the model works. This is probably because CI-gRTM can
handle multiple modes, Japanese and English, while gRTM
(and LDA) cannot. Second, let us compare CI-gRTM with
CI-LDA. CI-gRTM’s perplexity is comparable with that of
CI-LDA, as can be seen in the right side of Table 3. This is
probably because usually links are partially observed. How-
ever, CI-LDA cannot predict links; therefore, there is no F-
measure result for this model, while CI-gRTM achieved a
high performance in link prediction, as you can see in the
left side of Table 3.

We also performed evaluation with Dataset-B, as
shown in Table 4. As seen in Table 3, the results of CI-
RTM and LDA are clearly worse than those of the others,
so we omitted them for this evaluation. We used the same
regularization parameter c as was used with Dataset-A for
simplicity. In Table 4, you can see tendencies that are simi-
lar to those in Table 3. In particular, CI-gRTM significantly
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Table 4 F-measure and perplexity with Dataset-B.

F-measure Perplexity
K = 5 K = 10 K = 15 K = 20 K = 5 K = 10 K = 15 K = 20

CI-LDA 7059.01 6124.24 5453.43 5112.33
gRTM 0.00694 0.01050 0.02046 0.02054 22077.2 14586.8 11970.9 10546.7

CI-gRTM 0.01061 0.01836 0.02440 0.02959 7452.76 6005.85 5532.09 5113.61

outperforms the link prediction performance compared with
gRTM, as shown in the left side of Table 4. This is proba-
bly because CI-gRTM with the three languages makes use of
richer data to estimate the model parameters than the models
with two languages.

We further performed Wilcoxon’s signed rank testing
for the F-measures for the best number of topics for each
model: K = 25 in Table 3 (left) and K = 20 in Table 4 (left),
resulting in that our CI-gRM is significantly more effective
than all the other baselines at the 0.05 significance level.

From the overall results above, CI-gRTM achieves high
performance in both link prediction and word prediction,
while the other baseline models only achieve high perfor-
mance in either link prediction or word prediction.

5. Conclusions

We proposed conditionally independent generalized rela-
tional topic models (CI-gRTM) that can predict the relation
or link between multiple modes in multimodal data. For in-
stance, the model predicts links across different languages
in multilingual parallel/comparable data and also predicts
unseen words in each language mode. Our CI-gRTM has
advantages of both multimodal topic models [3]–[5] and re-
lational topic models [6], [7]. Our experimental results with
two multilingual datasets show that our CI-gRTM has both
link prediction ability and word prediction ability with mul-
timodal data, which has not been achieved by a single model
in previous studies. For real applicatoins, for instance, our
model can discover unknown relationships across multiple
languages, such as in a situation, given a known article in a
source language, to find unknown but related articles in dif-
ferent languages. This paper covers a start-up study on CI-
gRTM, and therefore, comparing with non-generative meth-
ods or evaluation under more practical situations are posi-
tioned as beyond the scope of this paper and left for our fu-
ture work. We are also planning to apply our model to other
kinds of multimodal data, such as text-annotated image data
and video data.
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