
2172
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.8 AUGUST 2016

LETTER

Hierarchical System Schedulability Analysis Framework Using
UPPAAL

So Jin AHN†a), Student Member, Dae Yon HWANG†, Nonmember, Miyoung KANG†, Member,
and Jin-Young CHOI†b), Nonmember

SUMMARY Analyzing the schedulability of hierarchical real-time sys-
tems is difficult because of the systems’ complex behavior. It gets more
complicated when shared resources or dependencies among tasks are in-
cluded. This paper introduces a framework based on UPPAAL that can
analyze the schedulability of hierarchical real-time systems.
key words: hierarchical system, schedulability analysis, real-time systems,
formal methods, UPPAAL

1. Introduction

Virtualization technology has been attracting increasing at-
tention for its advantages like isolation and easy mainte-
nance. However, it is difficult to analyze the schedulabil-
ity of a system using virtualization technology because the
schedulers in the system are hierarchical. One of the more
important requirements of real-time systems is that all the
real-time tasks in the system complete their execution within
the allotted period. When a task related to safety misses a
deadline, it could lead to a system failure causing consid-
erable casualties and property damage. Therefore, it is es-
sential to verify that all the real-time tasks in a system are
always schedulable.

[1], [2], and [3] formally specify and verify two-
level hierarchical systems under the rate-monotonic (RM) or
earliest-deadline-first (EDF) scheduling policy. These stud-
ies analyze in detail the system behavior because all sched-
ulers of the system are analyzed together. However, thus far,
no method that can handle more than two hierarchical levels
has been developed.

[4]–[6], and [7] formally analyze the schedulability of
hierarchical real-time systems with the compositional anal-
ysis approach. The compositional analysis approach is used
for partitioning a huge hierarchical system into subsystems,
and each partition is separately verified as whether it is al-
ways schedulable. They prove that if all subsystems are al-
ways schedulable, then the entire system is always schedula-
ble. [6] and [7] specify shared resources such as semaphore
or message passing and verify a system that includes
them. The compositional analysis approach can prevent
state explosion and analyze more than two-level hierarchical

Manuscript received January 7, 2016.
Manuscript revised March 28, 2016.
Manuscript publicized May 6, 2016.
†The authors are with Korea University, Seoul, Korea.

a) E-mail: sjspirit@formal.korea.ac.kr
b) E-mail: choi@formal.korea.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2016EDL8003

systems efficiently. Although this approach has its advan-
tages, it is difficult to check the behaviors such as pre-
emptions and priority inversion problem in detail, and to
specify the shared resources or dependencies among tasks
intuitively.

In this paper, a formal specification and verification
framework based on UPPAAL [8] to analyze the schedula-
bility of a hierarchical real-time system is proposed. The
advantages of this framework are as follows:

1) A hierarchical real-time system can be formally
specified with time requirements.

2) Shared resources and dependencies among tasks
can be specified intuitively.

3) The framework helps to update worst case execution
time (WCET) with the overhead time related to
preemption by counting the preemptions of each
task.

4) A user-defined scheduling policy can be included in
the framework and verified.

This work advances hierarchical real-time system anal-
ysis because it can present detailed system behaviors, which
reduces the number of false-positive results and yields accu-
rate WCET.

2. Hierarchical Schedulability Analysis Framework

2.1 Hierarchical Real-Time System

A real-time system and a hierarchical real-time system are
defined as follows [9]:

Definition 1. Real-time system (RS)
A real-time system RS can be defined as follows:

RS = (W,R,S), where W represents a set of tasks, such as
real-time preemptive tasks; R, a resource model; and S, a
scheduling policy.

Definition 2. Hierarchical real-time system (HS)
A hierarchical real-time system HS can be recursively

defined as follows:
1) a real time system RS, or
2) HS = (WH,R,S), where WH denotes a set of real-time
preemptive tasks and hierarchical systems; R, a resource
model; and S, a scheduling policy.

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



LETTER
2173

Fig. 1 Example of hierarchical real-time system.

Fig. 2 Overview of proposed framework.

Figure 1 shows an example of a hierarchical real-time
system. Tn (0 ≤ n ≤ 6) in Fig. 1 represent real-time pre-
emptive tasks. Each HS has a scheduler and a workload,
that is, a set of HSs and tasks that the scheduler schedules.
For example, in the case of HS1 = (W1,R1,S1) in Fig. 1, the
workload is W1 = {HS3,T0,T1}. HS1 does not recognize
that HS3 is a system; the scheduler of HS1 schedules HS3 as
it schedules T0 and T1.

A resource model is an abstraction of resources such
as physical CPUs or virtual CPUs. In this study, a resource
model of the root HS, for example, R0 of HS0 in Fig. 1, is
considered an abstraction of a physical resource. The other
resource models, for example, R1 of HS1 and R2 of HS2 rep-
resent an abstraction of a virtual resource that is a virtualized
R0. R3 of HS3 is a model of virtualized R1.

A scheduling policy is an algorithm that describes the
order in which HS assigns an abstracted resource to the el-
ements of the workload. RM and EDF are the most popu-
lar scheduling policies for real-time systems; therefore, the
framework includes the RM and EDF policies by default.

The proposed framework will be explained with the
following notations: T represents a real-time preemptive
task, the root HS is denoted as P, and HSs that are not root
HS are indicated as V.

2.2 Framework for Schedulability Analysis of Hierarchi-
cal Real-Time System

The proposed framework specifies and verifies HSs that
have shared resources and dependencies among tasks with-
out partitions. Figure 2 shows an overview of the frame-
work. The system information is about the schedulers and
tasks and includes workloads, scheduling policies, and time
requirements. The framework inputs are as follows:

• P = (W,RP, S), where RP = (∞,∞)
• V = (W,RV , S), where RV = (Pe, B)

• T = (Pe, E,D,O, SR,Dep)

Workloads (W) of P and V are the same as the work-
loads explained in 2.1, and so are the scheduling policies
(S). RM, EDF, and preemptive FP are built into the frame-
work, and user-defined scheduling policies can be added to
the framework.

To specify resource models of P and V, information of
period and time budget is needed. A HS is given a specific
amount of time budget that can be used every period by the
parent system. Pe represents the length of one period, and
B denotes the budget time given to HS for using a physical
resource in this period. P manages physical resource directly
which means P has infinite Pe and B by default. Therefore,
RP, the resource model of P is (∞,∞) by default, and RV,
the resource model of V need inputs of Pe and B.

A task has to use the physical resource for the execu-
tion time (E) every period. The first period of a task starts
at the offset time O after the system is started. D denotes
the deadline of the task, by which it has to complete its job.
If there is any shared resource (SR) among tasks, the id of
the shared resource needs to be included in the task infor-
mation. Dep denotes the dependency variable. It is optional
information that specifies a set of tasks that must completed
before the given task can be executed. The proposed frame-
work can specify tasks that are not in the same scheduler as
SR and Dep.

2.3 Resource Request and Allocation Procedure for the
Proposed Framework

Physical resource scheduler is a scheduler of HS0. It sorts
the elements of its workload that are requesting resources
with its scheduling policy every time an element sends a
new request or an element completes its execution. After
sorting the elements, the scheduler selects the first element
of the workload and allocates the resource.

Virtual resource scheduler is a scheduler of V. It sched-
ules its workload in the same manner as the physical re-
source scheduler except for some limitations. A virtual re-
source is not always available; it is available only when it
occupies a physical resource. Therefore, the virtual resource
scheduler can only schedule and allocate its resource when
it is given a physical resource. V has a predefined time pe-
riod and time budget; therefore, it cannot request more than
the assigned budget per period, but this does not mean that
V has to spend its complete budget every time; if no ele-
ments of V’s workload request a resource, then the virtual
resource will be idle. Because V has no elements to allo-
cate its resource, a physical resource will be wasted if there
are any other Vs or Ts that are waiting for the physical re-
source. Therefore, in the proposed framework, we assume
that the resources in the system will not be idle if there is
any V or T requesting for the resource; the V that is idle will
yield its use of the physical resource. This implies that any
V that cannot consume its entire budget is not related to the
scheduling problem.



2174
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.8 AUGUST 2016

Fig. 3 Task model.

Figure 3 shows a timed automaton modelling a task.
Tasks begin their first period after their start offset time O.
From the second period, T starts its new period right after a
period ends. T checks the availability of the shared resource
and the completion of the dependent tasks before requesting
a resource at the beginning of every period. If a shared re-
source is available (or there is no shared resource) and the
execution of every dependent task has been completed (or
there is no dependent task), then T requests a resource and
remains in the Ready state. Before T transits its state from
Ready to Running, which implies that a resource is allo-
cated to T, T checks the state of the shared resource and the
dependent tasks again. If any conditions to execute T are
not satisfied, then T yields the resource.

Every task must get the resource of P for its execution
time E per its period time Pe. The schedulability of the sys-
tem will fail if any of the tasks cannot complete its execution
within its period time Pe. In Fig. 3, the Error station implies
that the task failed to complete its job in time.

2.4 Preemption Counting

Overheads extend the execution time E of tasks beyond the
required time. The context switching (CXS) overhead and
the cache migration and preemption delay (CMPD) over-
head are introduced when a task starts or is preempted. To
calculate these overheads, we need to count how many times
the task is preempted. The proposed framework counts each
task’s preemption occurrence per its period, respectively.

In this study, we classify preemption into two types:
intra-scheduler preemption and inter-scheduler preemption.

A running task is intra-scheduler-preempted when an
element in the same workload preempts the task, and is
inter-scheduler-preempted when the HS scheduling the task
is preempted or runs out of budget before the period ends.
In other words, inter-scheduler preemption occurs if a task
is preempted by another element that belongs to another
workload.

After counting the preemptions of each T, we can cal-
culate the new execution times of each T. In this paper, we
assume that the execution time of a task is delayed for a cer-

tain amount of CXS overhead time and the CMPD overhead
time when a task is preempted. The new execution time of
the task is then calculated as follows:

Et = Et
′ + (ΔCXS + ΔCMPD) ∗ PRMt

where t denotes the id of a task; Et, the new execution time
of the task; Et

′, the current execution time; ΔCXS, the con-
text switching overhead time; ΔCMPD, the CMPD overhead
time; and PRMt, the sum of the maximum intra-scheduler
preemption number and the maximum inter-scheduler pre-
emption number per period of the task.

3. Case Study

In this section, we demonstrate the proposed framework by
specifying and verifying a target system. The information
of the target system is presented in Table 1.

After inserting the information into the proposed
framework, the following verification property written in
TCTL [8] is checked formally.

A[] not err

The TCTL sentence means the variable err never be
true in any execution path of the system. When a task misses
its deadline, the variable err is set to true. If there is no path
that leads to a state where err is true then the task can always
be completed before its deadline.

The UPPAAL tool automatically verifies the property
whether it is “Satisfied” or “Unsatisfied” when the target
system information and the property are given to the pro-
posed framework. “Satisfied” implies that the target system
is schedulable, and “Unsatisfied” means that there are one
or more cases in which the target system misses a deadline.

The verification result of our case study is “Satisfied.”
Figure 4 illustrates a case of the target system speci-

fied in Table 1 with a shared resource between T1 and T3.
The verification result is “Unsatisfied”; the counter exam-
ple shows that the shared resource SR0 can cause a priority
inversion problem leading to a deadline miss for T4.

Table 2 shows the preemption counts of the target
system specified in Table 1 without any shared resource. We



LETTER
2175

Table 1 Requirements of target system without SR.

Fig. 4 Topology of target system with SR.

Table 2 Preemption count.

Table 3 Updated information of target system

set the CXS time = 86.917 µs and CMPD time = 139.12 µs
as in [10] to derive a new E. The verification result is “Un-
satisfied”; the counter example shows that the given budget
of V0 is not sufficient to schedule T1 and T2.

More than two-level hierarchical system can be speci-
fied and verified in a similar way. For example, the target
system can be updated to a three-level hierarchical system
as follow. A virtual scheduler V2, has two tasks as its work-
load, is added to the workload of V0. The workload of V0 is
updated from {T0,T1} to {V2,T0,T1}, and the information of
V2, T5, and T6 is added as is presented in Table 3. The sys-
tem topology is same as Fig. 1. After update, the framework
verifies the schedulability of the system using the TCTL sen-
tence introduced above. The verification result of extended
target system is “Satisfied.”

4. Conclusion

In this paper, we proposed a schedulability analysis frame-

work that can specify systems intuitively and verify whether
they are always schedulable. The advantage of the proposed
framework is that it can check the entire system; therefore,
it is possible to specify the shared resources intuitively and
count the number of preemption occurrences.

Further, in this paper, we presented a simple case study
to show how the framework specifies a system and analyzes
system schedulability. In the future, we intend to analyze
avionic systems introduced in [5] and [9] with the proposed
framework.

In a future study, we will upgrade the proposed frame-
work to specify a system for multi-core and implement pro-
tocols for the shared resources to prevent priority inversion
problems. Moreover, the proposed framework will be up-
graded to automatically add the overhead time to the execu-
tion time when preemption occurs in order to obtain a more
accurate result.

Acknowledgments

This research was supported by the MSIP (Ministry of Sci-
ence, ICT and Future Planning), Korea, under the ITRC
(Information Technology Research Center) support pro-
gram (IITP-2015-H8501-15-1012) supervised by the IITP
(Institute for Information & Communications Technology
Promotion) and Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technology
(2012R1A1A2009354).

References

[1] T.-W. Kuo and C.-H. Li, “A fixed-priority-driven open environment
for real-time applications,” Proc. 20th IEEE Real-Time Systems
Symposium 1999, pp.256–267, IEEE, 1999.

[2] G. Lipari and S.K. Baruah, “Efficient scheduling of real-time multi-
task applications in dynamic systems,” Proc. IEEE, pp.166–175,
2000.

[3] G. Lipari, J. Carpenter, and S. Baruah, “A framework for achiev-
ing inter-application isolation in multiprogrammed, hard real-time
environments,” Proc. 21st IEEE Real-Time Systems Symposium,
pp.217–226, IEEE, 2000.

[4] I. Shin and I. Lee, “Compositional real-time scheduling framework
with periodic model,” ACM Trans. Embedded Computing Systems
(TECS), vol.7, no.3, p.30, 2008.

[5] J. Boudjadar, et al., “Hierarchical scheduling framework based
on compositional analysis using UPPAAL,” The 10th International
Symposium on Formal Aspects of Component Software, LNCS
8348, pp.61–77, 2013.

[6] L. Carnevali, A. Pinzuti, and E. Vicario, “Compositional verifica-
tion for hierarchical scheduling of real-time systems,” IEEE Trans.
Softw. Eng., vol.39, no.5, pp.638–657, 2013.

[7] A. Easwaran, et al., “A compositional framework for avionics
(ARINC-653) systems,” Technical Report, Department of Computer
& Information Science, University of Pennsylvania, no.MS-CIS-09-
04, 2009.

[8] G. Behrmann, A. David, and K.G. Larsen, “A Tutorial on Uppaal,”
Formal Methods for the Design of Real-Time Systems, Lecture
Notes in Computer Science, vol.3185, pp.200–236, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[9] J. Park, et al., “A process algebraic approach to the schedulability
analysis and workload abstraction of hierarchical real-time systems,”

http://dx.doi.org/10.1109/real.1999.818851
http://dx.doi.org/10.1109/real.2000.896011
http://dx.doi.org/10.1109/tse.2012.54
http://dx.doi.org/10.1007/978-3-540-30080-9_7


2176
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.8 AUGUST 2016

Journal of Logical and Algebraic Methods in Programming (submit-
ted).

[10] L.T.X. Phan, M. Xu, J. Lee, I. Lee, and O. Sokolsky, “Overhead-
aware compositional analysis of real-time systems,” 2013 IEEE 19th
Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), pp.237–246, 2013.

http://dx.doi.org/10.1109/rtas.2013.6531096

