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Learning from Multiple Sources via Multiple Domain Relationship

Zhen LIU†a), Junan YANG†, Hui LIU†, Nonmembers, and Jian LIU††, Student Member

SUMMARY Transfer learning extracts useful information from the re-
lated source domain and leverages it to promote the target learning. The
effectiveness of the transfer was affected by the relationship among do-
mains. In this paper, a novel multi-source transfer learning based on multi-
similarity was proposed. The method could increase the chance of finding
the sources closely related to the target to reduce the “negative transfer” and
also import more knowledge from multiple sources for the target learning.
The method explored the relationship between the sources and the target by
multi-similarity metric. Then, the knowledge of the sources was transferred
to the target based on the smoothness assumption, which enforced that the
target classifier shares similar decision values with the relevant source clas-
sifiers on the unlabeled target samples. Experimental results demonstrate
that the proposed method can more effectively enhance the learning perfor-
mance.
key words: transfer learning, multiple source transfer, domain similarity,
manifold assumption

1. Introduction

Transfer learning [1], [2] can effectively exploit and trans-
fer the knowledge from different but similar source domains
for target domain learning, which has been applied in many
real-world applications. For the single-source domain set-
ting, much work has been developed [1]. In general, the
effectiveness of the knowledge from a source to the target
depends on how they are related. The stronger the relation-
ship, the more usable will be the source knowledge. On
the other hand, brute force transferring in case of weak rela-
tionships may lead to performance deterioration of the target
learning, i.e., “negative transfer”. Often in practice, one may
be offered more than one source domain for learning. It is
wasteful if we only use one source for learning.

We propose a novel multi-similarity based multi-source
transfer learning method ((MS)2TL). The method explores
the relationships between the sources and the target by
multi-similarity metric. Then, the knowledge of the sources
is transferred to the target based on the smoothness assump-
tion, which enforces the requirement that the target classi-
fier shares similar decision values with the relevant source
classifiers on the unlabeled target samples. We also em-
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ploy a sparsity-regularizer based on the ε-insensitive loss
to enforce the sparsity of the target classifier with the sup-
port vectors only from the target domain such that the la-
bel prediction on any test sample is very fast. Furthermore,
(MS)2TL only needs the pre-learned source classifiers when
training the target classifier, which is suitable for the large
dataset. (MS)2TL can not only improve the ability to avoid
“negative transfer” but also explore more knowledge from
the sources for the target learning. Experimental results
demonstrate that the proposed method can more effectively
enhance the learning performance.

2. Proposed Algorithm

Let us represent Ds = {(xs
i , y

s
i )}Ns

i=1 as the sth source domain,
where xs

i and ys
i are the feature vector and label, Ns is the

number of samples in Ds. s = 1, . . . ,M and M is the number
of the sources. The target domain DT includes a labeled set
DT

l = {(xT
i , y

T
i )}Nl

i=1 and an unlabeled set DT
u = {xT

i }NT

i=Nl+1,
where Nl is the number of labeled samples and NT is the
total number. f s is the pre-learned source classifier in Ds

and f T is the target classifier. Any types of classifier can be
readily used as f s’s. For the target sample xT

i , we denote the
decision values as f T

i = f T (xT
i ) and f s

i = f s(xT
i ).

2.1 Multi-Source Transfer Manifold Regularizer Based on
Multi-Similarity

Here we define the similarities among domains at two levels,
i.e., “domain-domain” and “sample-domain”, as shown in
Fig. 1.

To measure the similarities of “domain-domain”, we
define the similarity weight γs of the sth source Ds as

γs = exp(−MMD2(Ds,DT )/β1) (1)

where MMD(Ds,DT ) is the maximum mean discrepancy
(MMD) [3] for measuring the data distributions between the

Fig. 1 Multi-similarity
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sth source and the target. β1 > 0 is fixed as the mean of
MMD among domains.

To describe the relevance further in detail, we concern
the similarities at the level of “sample-domain”. First, two
kinds of distance are defined, i.e., DNs

i and DCs
i .

DNs
i is the average distance of the target sample xT

i to
its neighbors in the sth source domain Ds.

DNs
i = (1/Nk)

∑Nk

k=1
d(xT

i , x
s
k) (2)

where xs
k is the kth neighbor of xT

i in Ds,Nk is the number
of neighbors, d(·) is a general distance metric.

DCs
i is the minimum distance of the target sample xT

i
to the class centers in the sth source domain Ds.

DCs
i = min

j
d(xT

i , c
s
j) (3)

where cs
j is the mean of the jth class samples in Ds.

If DNs
i is small, xT

i is more likely to occur in Ds,
which can be regarded as the similarity between xT

i and Ds

from the perspective of the marginal distribution. If DCs
i

is small and xT
i is most close to cs

j, xT
i probably belongs

to the jth class in Ds, which can be treated as the similar-
ity from the perspective of the conditional distribution. To
take into account them comprehensively, we compute the
ds

i = 0.5(DNs
i +DCs

i ) as the final distance metric from xT
i to

Ds. Then, we have the similarity weight Ais of xT
i in the sth

source domain at the level of “sample-domain”.

Ais = exp(−(ds
i )2/β2) (4)

where β2 is fixed as the mean of ds
i in the whole target set.

Motivated from the manifold assumption [4], we simi-
larly assume that the target classifier f T should have similar
decision values on the unlabeled target samples with the pre-
learned classifiers f s’s from the relevant source domains.
Thus, the multi-source transfer manifold regularizerΩD( f T )
is given as follows.

ΩD( f T ) =
1
2

∑M

s=1
γs

∑NT

i=Nl+1
Ais( f T

i − f s
i )2 (5)

where γs and Ais are defined in (1) and (4) respectively.
Unlike the traditional manifold regularizer which concen-
trates on the low-dimensional manifold embedded in the
high-dimensional space [4], ΩD( f T ) is used to connect the
sources and the target through γs and Ais. As in Fig. 2, if
γs and Ais are large, the decision values of f T and f s on xT

i
will be similar. Thus, we can transfer the knowledge from
the sources to the target under the assumption of “domain

Fig. 2 Transfer learning based on the multi-similarities.

relevance- decision constraint”.

2.2 Multi-Similarity Based Multi-Source Transfer Learn-
ing and Its Solution

Assume f T admits a form of f T (x) = w′φ(x) + b. To mini-
mize the loss of the labeled target data as well as the multi-
source transfer manifold regularizer defined on the unla-
beled target data simultaneously, the proposed framework
(MS)2TL is then formulated as follows

min
f T

1
2
‖w‖2 + λL

2

∑Nl

i=1
( f T

i − yT
i )2 + λDΩD( f T ) (6)

where the first term controls the complexity of f T , the sec-
ond is a loss function of f T on the labeled target samples,
the third is the multi-source transfer manifold regularizer on
the unlabeled target samples, and λL, λD > 0 are the regu-
larization parameters.

To solve (6) efficiently, the ε-insensitive loss function
in SVR [5] is introduced into (6). Then, we have

min
f T
i ,w,b

1
2
‖w‖2 + λL

2

∑Nl

i=1
( f T

i − yT
i )2

+λDΩD( f T ) +C
∑NT

i=1
�ε(w′φ(xi) + b − f T

i )
(7)

where the ε-insensitive loss function �ε(t) = |t| − ε if |t| > ε,
otherwise 0. C is the regularization parameter. Since �ε(·)
is non-smooth, (7) is usually transformed as a constrained
optimization problem

min
f T
i ,w,,b,ξi,ξ

∗
i

1
2
‖w‖2 + λL

2

∑Nl

i=1
( f T

i − yT
i )2

+λDΩD( f T ) +C
∑NT

i=1
(ξi + ξ

∗
i )

(8)

s.t. w′φ(xT
i ) + b − f T

i ≤ ε + ξi, ξi ≥ 0 (9)

f T
i − w′φ(xT

i ) − b ≤ ε + ξ∗i , ξ∗i ≥ 0 (10)

i = 1, . . . ,NT

By introducing the Lagrange multipliers αi’s and ηi’s (resp.,
α∗i ’s and η∗i ’s) for the constraints in (9) (resp., (10)), we ar-
rive at the following dual formulation

min
α,α∗

1
2

(α−α∗)′K̃(α−α∗)+ỹ′(α−α∗)+ε1′NT (α+α∗)

s.t. 1′NTα = 1′NTα
∗, 0NT ≤ α,α∗ ≤ C1NT

(11)

where 0NT , 1NT is the column vectors of all zeros and
all ones, α = [α1, . . . , αNT ]′, α∗ = [α∗1, . . . , α

∗
NT

]′, K̃ =

K + diag(q), K = Φ′Φ, Φ = [φ(xT
1 ), . . . , φ(xT

NT
)], q =

[q1, . . . , qNT ]′. If i = 1, . . . ,Nl, ỹi = yT
i and qi =

1/λL, otherwise ỹi = 1/(
∑M

s=1 γsAis)
∑M

s=1 γsAis f s
i and qi =

1/(λD
∑M

s=1 γsAis). Since the dual form of (11) is similar
to that of ε-SVR [6], the objective function in (7) can be
solved efficiently by using state-of-the-art SVM solvers such
as LIBSVM [7]. For any test sample x, the decision value of
the target classifier f T is

f T (x)=w′φ(x) + b=
∑

i:ai−a∗i �0

(a∗i − ai)k(xT
i , x) + b (12)
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which is only a linear combination of k(xT
i , x)’s without in-

volving any source classifiers. According to the Karush
Kuhn Tucker conditions, if a target sample xT

i has the value
|w′φ(xT

i )+b− f T
i | < ε, then its coefficient (α∗i −αi) in (12) be-

comes zero. Therefore, with the ε-insensitive loss function,
the computation for the prediction using the sparse repre-
sentation in (12) can be greatly reduced.

3. Experimental Results

The experiments use three datasets as the sources [8]:
Amazon (images from online merchants), Webcam (low-
resolution images by a web camera), and DSLR (high-
resolution images by a digital SLR camera). Caltech-256 [8]
is used as the target domain. There are totally 10 classes of
target images which are common to all four datasets with 8
to 151 samples per category per domain, and 2533 images
in total. Figure 3 highlights the differences among these do-
mains with example images from the category of Computer-
monitor.

We extract the 4096 dimensional DeCAF6 features [9]
from the raw images. Then, these features from different
domains are used to learn a classification model for the tar-
get. In the default setting, we set λL = λD = 1, C = 1,
and Nk = 8. Gaussian kernel (i.e., k(xi, x j) = exp(−d2(xi,
x j)/(2σ2)) is used as the default kernel where the kernel pa-
rameter σ is set as the mean distance between samples in the
target domain. In the target domain, n samples per class are
randomly selected as the labeled target set which is set as
0, 2, 4, 6, 10, 15, and 20. The experiments are repeated for
20 times with different samples. The average classification
accuracy is used as the evaluation measure.

3.1 Performance of Our Proposed Method

If we only concern the similarity at the level of “domain-
domain”, namely, set all Ais’s equal to 1, (MS)2TL would
be similar to the DAM algorithm [6]. Thus, we compare our
method (MS)2TL with DAM in the experiments. LS-SVM
classifier is pre-learned in every source domains and used as
the source classifiers f s’s. The classification accuracies of
(MS)2TL compared with the Base and DAM are recorded
in Table 1. The Base means that the source classifiers are
used to predict the unlabeled target samples directly and the
average accuracy is the final result. The highest accuracy
among different methods is highlighted in bold.

To show that (MS)2TL could use any type types of
classifier as f s’s, we also conduct the experiments by using
Naı̈ve Bayes as the source classifiers, as in Table 2.

Both in Table 1 and Table 2, (MS)2TL can effectively

Fig. 3 Images of Computer-monitor in different domains.

improve the accuracy compared with other methods. The
results demonstrate that (MS)2TL could better explore the
relevant relationship between the sources and the target, and
transfer more knowledge from the sources to promote the
target learning. As the Base method uses the source clas-
sifiers directly without considering the difference between
domains, its results are always not good. The accuracies of
(MS)2TL and DAM generally increase along with the in-
creasing of n (the number of the labeled target samples per
class). The performance of (MS)2TL is better when Naı̈ve
Bayes is used as f s’s rather than LS-SVM. However, the
difference in performance between the two cases becomes
smaller as n increases. It can be concluded that (MS)2TL
depends more on the labeled target samples if f s’s are LS-
SVM.

3.2 Parameter Analysis

In this section, we evaluate the performance variations with
respect to the regularization parameters C, λL, λD, and the
number of neighbors Nk. When evaluating the performance
variations with respect to one parameter, we fix the other
parameters as their default values. We choose LS-SVM as
the source classifiers since it also has the parameter C.

First, we consider the performance variations w.r.t. C,
as in Fig. 4. In the experiments, C is set as 10−3, 10−2, 10−1,
1, 10, 102, and 103. We observe that (MS)2TL is better than
other methods by using different C’s in most cases. If there
is no labeled samples in the target domain (i.e., n = 0), DAM
has no improvements compared with Base while (MS)2TL

Table 1 Classification accuracies when f s’s are LS-SVM.

Table 2 Classification accuracies when f s’s are Naı̈ve Bayes.

Fig. 4 Classification accuracies of all methods with different C.



1944
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

Fig. 5 Classification accuracy with different λL and λD.

Fig. 6 Classification accuracy with different Nk.

still achieves the highest accuracy in most cases. In the case
of labeled target samples exist (i.e., n = 10), the perfor-
mances of DAM and (MS)2TL tend to saturate when C be-
comes large while the classification results of Base are al-
ways not good.

The performance variations w.r.t. different λL and λD

are shown in Fig. 5. Specifically, we set λL and λD as 0.1,
1, 10, 102, 103, 3*103, 5*103, and 104 respectively. We ob-
serve that the performance of (MS)2TL changes more dra-
matically along with the variation of λD compared with λL.
It demonstrates that the regularizer ΩD( f T ) has a big in-
fluence on the performance of (MS)2TL. Compared with
the two settings (i.e., n = 0 or 10), we also observe that
(MS)2TL achieves the highest accuracy at a larger value of
λD when there is no labeled target samples. It can be ex-
plained that (MS)2TL depends more on ΩD( f T ) when no
labeled target samples exist.

We show the performances of (MS)2TL by using dif-
ferent Nk in Fig. 6, where Nk is set as 2, 4, 6, 8, 10, 12,
and 14. In both two settings (i.e., n = 0 and 10), the perfor-
mance of (MS)2TL depends on the setting of Nk. Especially,
this dependence is evident when no labeled target samples
exist. This may because that (MS)2TL will depend more
on the sources if there is no labeled target sample, then Nk

will have a bigger influence since Nk is a key parameter for
the knowledge transfer. In most cases, the learning perfor-
mance will be badly hurt if Nk is too large or too small. The
reason can be concluded as: if Nk is set too small, the lo-
cal scope can not cover all the affinitive examples; on the

contrary, if Nk is fixed beyond normal scope, the similarity
measure may suffer interfere from the false distribution of
the irrelevant data. Thus, fixing the value of Nk at [6, 10] is
recommended.

4. Conclusions

In this paper, a novel multi-source transfer learning method
called (MS)2TL is proposed. (MS)2TL can import more
knowledge from multiple sources for the target learning and
also increase the chance of finding the sources closely re-
lated to the target to reduce the “negative transfer”. The
method explores the relevance between domains by a multi-
similarity metric. Then, the knowledge of the sources is
transferred to the target based on the smoothness assump-
tion. We also employ the ε-insensitive loss regularizer such
that the label prediction on any test sample is very fast.
What’s more, (MS)2TL only needs the pre-learned source
classifiers when training the target classifier, which is suit-
able for a large dataset. Comprehensive experiments clearly
demonstrate the effectiveness of our method.
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