
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016
2395

LETTER

A Collaborative Intrusion Detection System against DDoS for SDN

Xiaofan CHEN†a), Student Member and Shunzheng YU†, Nonmember

SUMMARY DDoS remains a major threat to Software Defined Net-
works. To keep SDN secure, effective detection techniques for DDoS are
indispensable. Most of the newly proposed schemes for detecting such at-
tacks on SDN make the SDN controller act as the IDS or the central server
of a collaborative IDS. The controller consequently becomes a target of the
attacks and a heavy loaded point of collecting traffic. A collaborative in-
trusion detection system is proposed in this paper without the need for the
controller to play a central role. It is deployed as a modified artificial neural
network distributed over the entire substrate of SDN. It disperses its com-
putation power over the network that requires every participating switch to
perform like a neuron. The system is robust without individual targets and
has a global view on a large-scale distributed attack without aggregating
traffic over the network. Emulation results demonstrate its effectiveness.
key words: collaborative intrusion detection system (CIDS), distributed
denial-of-service (DDoS), software defined networks (SDN), artificial neu-
ral network (ANN)

1. Introduction

The existing IDSs and CIDSs with centralized structure
suffer from the single-point-failure problem [1]. The cen-
ters may become a target of attacks. They may be over-
loaded in collecting and processing attack samples. One
earlier work [2] uses three OpenFlow switches to collect
flow-based features and send them to the controller. A SOM
(Self-Organizing Maps) based IDS is built on the controller
to do the detection job. The controller does not merge the
information from different OpenFlow switches. It makes all
the switches act as independent single point IDSs. As a re-
sult, the controller is less likely to discover the distributed
attacks. So it is not a CIDS. Distributed attacks are difficult
to detect since the evidence of them is spread across the net-
work. Combining the evidence from different sources, CIDS
is more likely to discover the stealthy and dispersed traffic
of such attacks [1]. DefenseFlow [3], deployed on the con-
troller, is an IDS which is mostly used as a counter measure
against DoS/DDoS. It can redirect the suspicious flow to the
DefensePro mitigation devices. In other words, it requires
dedicated hardware beyond SDN controller and switches.
AVANT-GUARD [4] is mainly designed for detecting and
mitigating the TCP based attacks in SDN. In this solution,
each switch keeps the information of every TCP session. It
tries to block the TCP handshaking attack, like SYN flood,
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Fig. 1 The architecture of our CIDS for SDN. f is the preprocess func-
tion. Φ is the activation function.

∑
is the weighted sum up function.

at the switch side. Giotis et al. [5] combine sFlow and
OpenFlow in their CIDS. sFlow is a sampling technique. It
may undersample [6] some attack packets when the attack
flows are stealthy and dispersing. The CIDS proposed by
Mousavi [7] extracts information from OpenFlow packet-in
message and uses entropy of source IP addresses to detect
DDoS. When the entropy is larger than a threshold for sev-
eral successive times, the system knows that DDoS occurs.
In DrawBridge [8], the controllers of ISPs provide traffic en-
gineering services. The controllers of users and other ISPs
can subscribe to the services to filter DDoS traffic.

We think that the effective way to deal with single-
point-failure problem is to disperse limited computation
power to switches without increasing their complexity and
costs. As shown in Fig. 1, our CIDS is implemented as an
ANN (artificial neural network) overlaid on the network.
The switches play the role of neurons. The ANN is de-
signed for monitoring network features and forming a global
view on the network status. Based on the global view, the
ANN can detect on-line attacks with high accuracy. In other
words, the whole network can act as an integrated ANN-
based CIDS. The SDN controller is responsible for estab-
lishing and maintaining the ANN-based CIDS. It does not
participate in the online detection. Due to the property of
ANN, the CIDS is capable of dealing with incomplete and
distorted data. Therefore, even if some inputs of neuron(s)
are delayed, missed or disturbed by noise, the CIDS can still
function as usual.

2. System Analysis

When DDoS occurs, some network features may be quite
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different from usual. By globally monitoring those features,
our CIDS can capture the abnormal behavior over the net-
work. A set of properly selected features can help the CIDS
to capture more kinds of DDoS with less consumption of re-
sources. Table 1 in our previous work [9] shows what types
of attacks can be detected by using some corresponding fea-
tures. In our previous work [9], we have proposed CIPA,
a new Collaborative Intrusion Prevention Architecture. It
consists of the ensemble of BP (Back Propagation) neural
networks. We used a small real world network with sim-
ple topology to validate its effectiveness in SDN. Base on
CIPA, we make some improvement and focus on DDoS de-
tection for SDN in this paper. We utilize a modified 3-layer
RBF (Radial Basis Function) neural network [10], shown in
Fig. 1, as the ANN. The reasons are as follows: (a) Com-
pared with the ensemble of ANNs, the detection ability of
the modified single ANN is similar, while the complexity
and overhead are much lower. (b) RBF net performs better
than BP net at pattern recognition, which is more suitable
for detecting abnormality [11]. This is the first time that the
RBF net is deployed and distributed over an entire SDN.
Every physical switch of SDN can be virtualized into one
or several neurons. The connections among neurons can be
logical connections defined by flow-tables of the physical
switches. Therefore, the ANN-based CIDS is actually a vir-
tual network. It can be overlaid over the entire SDN as re-
quired. An RBF net consists of an input layer, a hidden layer
and an output layer. Neurons at the same layer function in
the same way. We assume that the dimension of input layer
of a traditional RBF net is n. If there are k features used in
the CIDS, the dimension of input layer of the modified RBF
net is k ∗ n. Therefore, we can use one RBF net, instead of
the ensemble of ANNs [9], to process a set of features.

Input neurons, i.e. neurons of the input layer, are in
charge of monitoring the flows passing through them, ex-
tracting features from the flows, and sending the prepro-
cessed results to the connected neurons of hidden layer.
Each input neuron monitors a set of features. It updates their
statistics during every sample cycle. At the end of a sample
cycle, each neuron gets a vector of feature values in paral-
lel. To reduce the communication overhead and operation
complexity of ANN, all feature values are packed into one
message and transferred to the hidden layer.

Hidden neurons receive the values from input neurons,
operate them with activation functions, and then send the
processed results to the output layer. The activation function
of a hidden neuron is the radial basis function. In this study
the Gaussian function [10] is employed for emulation. The
emulation results show that it has good performance.

y j = Φ(‖x − c j‖) = exp(−‖x − c j‖2
2δ2j

) (1)

The Gaussian function has been widely used as a radial ba-
sis function, where y j is the output of the jth hidden neuron,
‖ • ‖ the Euclidean distance, x = [x1, . . . , xm] the output vec-
tor of input layer, c j = [c1 j, . . . , cm j] the center of Gaussian

function of the jth hidden neuron, and δ j the width parame-
ter.

Output neurons accept the values from hidden neurons,
do the linear mapping operation, and then send out the final
results as the detection results of the CIDS. The detection
results can tell us whether DDoS occurs now.

z j =
∑

i

ωi j · yi (2)

where z j is the output of the jth output neuron, yi the output
of the ith hidden neuron, and wi j the weight between the ith

hidden neuron and the jth output neuron.
The messages transmitted between neurons require the

communication between switches in data plane. We build
a neural forwarding table [9] for routing such messages in
each switch. Every entry in the table is a key-value pair.
The key is the DPID of a destination switch. The corre-
sponding value is one output port of current switch. A neu-
ral message [9] can be encapsulated into an Ethernet frame.
The type field of the frame is set to a special value to mark
that the payload is a neural message. An application can
be developed to take charge of the deployment and main-
tenance of the ANN. The application can be a module of
the SDN controller. It can also be deployed on another
PC and communicate with the SDN controller through the
northbound interface. The application collects the informa-
tion of available resources, like CPU and memory, of every
switch. It will generate a value for the switch according to
its resources. It ranks the switches according to their values.
Then it chooses some top ranking switches to act as neu-
rons of the ANN. We assume that all or most of the switches
should act as input neurons. Then no matter which switches
are chosen to be the hidden neurons and output neurons, our
system still has a global sight of the whole network. There-
fore, different choice of switches will have little or no effect
on the detection ability of our system.

3. Emulation Results

Open vSwitch [12] is one of the most widely used Open-
Flow switches in research field. POX [13] is also a widely
used SDN controller. Mininet [14] is the most famous SDN
emulation tool. Mininet allows us to use the real POX con-
troller and the real code from Open vSwitch in emulation.
Hence, we utilize Open vSwitch v1.9.3, POX and mininet
to build the emulation environment.

We modify the source code of Open vSwitch to real-
ize neural computing and communication. We define neural
functions in individual *.c and *.h files. We set a hook in
the packet receiving procedure. When receiving a packet,
the Open vSwitch checks whether it is a normal packet or
a neural message. Then it will process the packet in differ-
ent ways. For a neural message, after checking the DPID in
the message, Open vSwitch sends it to the neural function
for further process or forwards it to other switch according
to the neural forwarding table. For a normal packet, Open
vSwitch makes a copy of it. It sends the copy to its input
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neuron for features extraction and statistics. The original
normal packet is processed as the usual forwarding proce-
dure. We use BRITE [15] to generate network topologies.
Two sizes of networks are used to test the performance of
CIDS under different network scales. The sizes of networks
are 50 and 100 switches. Each switch connects one host. For
each size of networks, we generate 10 different topologies.

Scapy [16] is used to generate the normal traffic and/or
attack traffic in each host. Without loss of generality, the
ratios of different protocols in normal traffic are: TCP 85%,
UDP 10% and ICMP 5% [2]. The ratios during some ran-
dom time interval are changed so as to make the normal traf-
fic more fluctuant. ICMP flood is used in the emulations.
Two attack rates, low and high, are used to test the perfor-
mance of our CIDS and other schemes under different attack
rates. The ratio between the low-rate attack traffic volume
aggregated at the victim and the normal traffic volume of
each host is about 1 : 5. The ratio for high-rate attack is
1 : 1. In each topology, 30% of the hosts are randomly se-
lected to be the attack sources in every round of emulation.
One victim is randomly selected from 10% of the hosts in
each round of emulation. The speed of normal traffic ob-
served at each switch is about 6 Mbps. At each 100-switch
network, the speed of low-rate DDoS traffic generated at
each source is about 6 Mbps/5/30 = 40 Kbps while that of
the high-rate one is 200 Kbps. At each 50-switch network,
the volume of the aggregated DDoS traffic is not changed,
so the speeds at each source are double, i.e. 80 Kbps and
400 Kbps.

The features we selected here are:

• ICMP ratio: the ratio of ICMP packets to all packets.
• UDP ratio: the ratio of UDP packets to all packets.
• (SYN num - ACK num) ratio: the ratio of the nu-

meric difference between packets with SYN flag set
and packets with ACK flag set to all packets.

All values are monitored or calculated during the cur-
rent sample cycle. These features are enough for detect-
ing most kinds of network/transport-level DDoS [9], [17].
The number of features is 3 and the network sizes are 50
and 100 switches, respectively. Each switch has 3 input
neurons for monitoring the 3 features. So there are 150
and 300 input neurons in the corresponding RBF nets. We
use samples from normal traffic and OLS (Orthogonal Least
Squares) [18] algorithm to train RBF nets offline. The struc-
tures of RBF nets are 150-16-2 and 300-22-2, where x-y-z
means there are x input neurons, y hidden neurons and z out-
put neurons. The hidden and output neurons are deployed on
some randomly selected switches.

After selecting the topology, victim and attack rate, we
can run a round of emulation. There are 10∗10∗2+10∗5∗2 =
300 rounds in all. Each round lasts for T = 1000s. There is
normal traffic all the time, while there are three waves of at-
tack traffic in every scenario. They last for t = 50s, 150s and
300s respectively. In the emulations of this section, the sam-
ple cycle of input neurons are set to be 2s. The small value
of sample cycle helps to capture the anomaly more quickly.

Fig. 2 Emulation results of 50-switch network. Launch ICMP flood with
spoofed source IP addresses.

Fig. 3 Emulation results of 100-switch network. Launch ICMP flood
with real source IP addresses.

Table 1 Detection results of different attacks.

ICMP flood SYN flood UDP flood DNS reflection
DR 96.3% 94.8% 95.8% 93.1%
FRP 3.4% 2.3% 2.8% 2.7%

Table 2 Communication overhead under high-rate DDoS.

Network Size Chen CIPA Giotis Mousavi
50 0.47% 0.88% 2.56% 0
100 0.68% 1.31% 2.64% 0

Then, we compare our ANN-based CIDS with CIPA [9], and
two typical CIDS schemes proposed by Giotis et al. [5] and
Mousavi [7], that can be found in the literature. The results
are presented in Fig. 2, Fig. 3 and Table 2, where DR repre-
sents the detection rate, and FPR the false positive rate. The
values in Table 2 represent the average ratio of communi-
cation traffic rate to normal traffic rate in each switch under
high-rate DDoS. All results are the averages.

Some other DDoS attacks last for a very long time. But
the detectable features of DDoS may not have significant
difference no matter the attack duration is long or short.
We also do some emulations which last for a long time.
Each round last for T = 3h. Each waves of attack lasts
for t = 0.5h. Other setting are the same. Since it cost too
much time to run a round of such emulation, we just do sev-
eral ones with high-rate DDoS attack. The network size is
100 switches. The attacks are ICMP flood, SYN flood, UDP
flood and DNS reflection. The results are showed in Table 1.
For SYN flood and UDP flood attack scenarios, 30% ran-
domly selected hosts are attack sources. For DNS reflection
attack scenario, 5 randomly selected hosts are DNS servers.
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15% randomly selected hosts are attack sources. The results
show that our CIDS is effective against different attacks.

Figure 2 shows that the performance of our CIDS is
better than CIPA [9] and Giotis’s CIDS [5], and compara-
ble with Mousavi’s CIDS [7]. However, Mousavi’s CIDS
is effective only if the source IP addresses of attackers are
spoofed. If the attackers launch DDoS with real IPs, it will
miss discovering much attack traffic. Recently, many bot-
nets, which launch DDoS, do not rely on IP spoofing to con-
found source tracking technologies [19]. Figure 3 shows the
results of such kind of emulations. The DR of Mousavi’s
CIDS drops to nearly zero while the DRs of other CIDS
schemes are still high. Since a SDN controller can sam-
ple only a limited number of packets, the DR of Giotis’s
CIDS is not as high as the others. When the attack flow
becomes more stealthy and dispersing, the DR of Giotis’s
CIDS drops more. To prove that our CIDS is better than
Mousavi’s CIDS in terms of detection performance, we con-
ducts emulations with 100-switch network and source IP
spoofing ICMP flood. The DR of Mousavi’s CIDS is lower
than that of our CIDS by about 3%. The aggregation vol-
ume of attack traffic does not change. As network becomes
larger, the attack traffic is diluted. The ratio of DDoS related
packet-in message decreases. So the DR of Mousavi’s CIDS
drops. Since more input neurons are affected by attack traf-
fic, the hidden and output neurons are more likely to find
out the abnormity [9]. So the DR of our ANN-based CIDS
increases.

Table 2 shows that the communication overhead of our
CIDS is better than CIPA and Giotis’s CIDS. The data of
Mousavi’s CIDS is collected from packet-in messages, it
does not have any extra communication overhead between
controller and switches. Besides, we find that the traffic load
on the controller of our CIDS and Mousavi’s CIDS are al-
most the same, while that of Giotis’s CIDS is much higher.
When launching DDoS with spoofed source IP addresses,
the traffic load on the controller of our CIDS and Mousavi’s
CIDS are high since there are more packet-in messages. The
traffic load on the controller of Giotis’s CIDS is about twice
as much as that of our CIDS. When launching DDoS with
real source IP addresses, the traffic load on the controller of
our CIDS and Mousavi’s CIDS are a little higher than usual.
But traffic load on the controller of Giotis’s CIDS is over ten
times as much as that of our CIDS since sFlow brings about
too much traffic.

All in all, our approach can relieve the heavy traffic on
SDN controller while keeping high detection rate, low false
positive rate and low communication overhead.

4. Conclusion

This paper proposes an ANN-based CIDS for SDN. The ar-
chitecture and implementation of the ANN-based CIDS are
described in detail in this paper. It disperses limited com-
putational capability to the switches. Each of them acts as a
neuron. It requires few resources for computation and com-
munication. With a global view, the ANN-based CIDS is

good at detecting large scale DDoS even if the attack vol-
ume observed at each node/link is weak compared with the
normal traffic. Taking advantage of the virtualization ca-
pability and programmability of SDN switches, our ANN-
based CIDS is easy to be deployed and adjusted to fit to
different detection strategies. It is suitable to be deployed
in any type of SDN-based networks, including SDN-based
data center, enterprise and campus networks. Compared
with other schemes [5], [7], [9], the emulation results with
Mininet show that our ANN-based CIDS has good perfor-
mance and low communication overhead.
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