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LETTER

Fast Algorithm for Computing Analysis Windows in Real-Valued
Discrete Gabor Transform

Rui LI†a), Student Member and Liang TAO†, Nonmember

SUMMARY Based on the completeness of the real-valued discrete Ga-
bor transform, a new biorthogonal relationship between analysis window
and synthesis window is derived and a fast algorithm for computing the
analysis window is presented for any given synthesis window. The new
biorthogonal relationship can be expressed as a linear equation set, which
can be separated into a certain number of independent sub-equation sets,
where each of them can be fast and independently solved by using con-
volution operations and FFT to obtain the analysis window for any given
synthesis window. Computational complexity analysis and comparison in-
dicate that the proposed algorithm can save a considerable amount of com-
putation and is more efficient than the existing algorithms.
key words: convolution, analysis window and synthesis window, real-
valued discrete Gabor transform, sub-equation set

1. Introduction

The Gabor transform is an important and commonly utilized
time-frequency analysis tool [1] which plays a crucial role in
nonstationary signal processing. Although Gabor transform
has been proven useful in diverse areas such as speech and
image processing and interpretation, real-time applications
are challenging due to the high computational complexity
of the discrete Gabor transform coefficients and reconstruc-
tion of the original signal from the transform coefficients.
A number of approaches have been proposed to solve the
problem, such as complex-valued discrete Gabor transform
(CDGT) [2]–[7]. Generally these methods for computing
the Gabor transforms all involve complex operations and are
complicated to implement in software or hardware. For real-
valued signals, such as sampled speech and images, real-
valued discrete Gabor transform (RDGT) permits a compu-
tationally faster implementation [8]–[11].

Because the basis functions of the discrete Gabor tran-
form are not orthogonal, for the completeness of the trans-
form, a dual window, called the analysis window corre-
sponding to the synthesis window in the basis functions of
the transform, must be introduced. The analysis window
for any given synthesis window can be computed by solv-
ing a linear equation set related to the biorthogonal rela-
tionship between analysis window and synthesis window.
A wealth of research investigating the subject of the dual
windows can be found [12]–[19]. Currently, there are sev-
eral main methods for computing the canonical dual win-
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dows. One such method, proposed by Strohmer [15] and
Søendergard [16], is based on the Moore-Penrose pseudoin-
verse of duality and support conditions as well as fundamen-
tal factorization. Qian and Chen [17], [18] presented another
method for finding analysis windows based on minimum of
�2 norms, but involving the inverse matrix calculation with
high computation complexity if the matrix dimension is too
large. Werther, Subbanna and Eldar [19] also proposed an
efficient algorithm to compute the analysis window based
on discrete Fourier transforms and a non-minimum norm of
dual windows for integer oversampling.

In this paper, a fast algorithm for computing the analy-
sis window in the RDGT is presented for any given synthe-
sis window based on the new biorthogonal relationship be-
tween analysis window and synthesis window, which can be
derived in terms of the completeness of the RDGT. We shall
simplify a linear equation set related to the new biorthogo-
nal relationship and separate it into a certain number of in-
dependent linear sub-equation sets, so that each of them can
be fast and independently solved by using convolution oper-
ations [20] and FFT in order to obtain the analysis window
for any given synthesis window. In this way, the proposed
algorithm can save a large amount of computation and is
more efficient than the existing algorithms. The proposed
algorithm can be easily generalized and applied to the tra-
ditional CDGT and the multiwindow discrete Gabor trans-
form.

2. Review of Real-Valued Discrete Gabor Transform

Let x(k) denote a real finite periodic sequence with period
L. The real-valued discrete Gabor expansion is defined by
[10], [11]:

x(k) =
M−1∑
m=0

N−1∑
n=0

a(m, n)g(k − mN̄) · cas

(
2πkn

N

)
(1)

an the coefficients a(m, n) can be obtained by

a(m, n) =
L−1∑
k=0

x(k)γ(k − mN̄) · cas

(
2πkn

N

)
(2)

where cas(·) = sin(·) + cos(·), MN̄ = NM̄ = L. Equa-
tion (2) defines the RDGT for periodic sequences and (1)
also defines its inverse RDGT. Note that the synthesis win-
dow g(k) and the analysis window γ(k) are all periodic with
L. In (1) and (2), M and N are the numbers of Gabor sam-
pling points in time and frequency domains, respectively.
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M̄ and N̄ are the Gabor frequency and time sampling in-
tervals, respectively. The condition MN > L must be sat-
isfied to ensure stable reconstruction and the oversampling
occurs when MN > L. The critical sampling occurs when
L = MN = M̄N̄. There may be a loss of information in
the undersampling condition (MN < L). The oversampling
rate β = MN/L = M/M̄ = N/N̄ > 1. Properly choose the
sampling parameters M and M̄, or N and N̄ to make the
oversampling rate β a positive integer. Comparing with the
traditional CDGT [3], one can easily prove the relationship
between RDGT coefficients a(m, n) and CDGT coefficients
c(m, n) as follows:

c(m, n) =
[
a(m, n) + a(m,N − n)

]
/2

+ j
[
a(m,N − n) − a(m, n)

]
/2

(3)

where j =
√−1. Therefore, the RDGT also offer an efficient

method to compute the CDGT coefficients.

3. Fast Algorithm for Computing Analysis Windows

3.1 New Biorthogonal Relationship between Analysis
Window and Synthesis Window

To derive a new biorthogonal relationship different from that
in [10], [11], substituting (2) into (1) yields the following
relation

x(k) =
L−1∑
k′=0

x(k′)
M−1∑
m=0

N−1∑
n=0

g(k − mN̄)γ(k′ − mN̄)

· cas

(
2πkn

N

)
cas

(
2πk′n

N

)

=

L−1∑
k′=0

x(k′)
M−1∑
m=0

g(k − mN̄)γ(k′ − mN̄)

·
N−1∑
n=0

cas

(
2πkn

N

)
cas

(
2πk′n

N

)

(4)

recalling

N−1∑
n=0

cas

(
2πkn

N

)
· cas

(
2πk′n

N

)
= N ·

M̄−1∑
p=0

δ[k − k′ − pN]

(5)

and substituting (5) into (4) leads to

x(k) =N
L−1∑
k′=0

x(k′)
M−1∑
m=0

g(k − mN̄)γ(k′ − mN̄)

·
M̄−1∑
p=0

δ[k − k′ − pN]

=N
L−1∑
k′=0

x(k′)
M−1∑
u=0

g(k + uN̄)γ(k′ + uN̄)

·
M̄−1∑
p=0

δ[k − k′ − pN]

(6)

For the completeness of the transform, the following
biorthogonal relationship should be satisfied:

N
M−1∑
u=0

g(k + uN̄)γ(k′ + uN̄)
M̄−1∑
p=0

δ[k − k′ − pN]

= δ(k − k′)

(7)

Due to the periodicity of g(k) and γ(k), (7) can be rewritten
as:

δ(p) = N
M−1∑
u=0

g(k′ + pN + uN̄)γ(k′ + uN̄)

= N
M−1∑
u=0

g(i + lN̄ + pN + uN̄)γ(i + lN̄ + uN̄)

= N
M−1∑
u=0

g
(
i + pN + (l + u)N̄

)
γ
(
i + (l + u)N̄

)

= N
M+l−1∑

q=l

g(i + pN + qN̄)γ(i + qN̄)

= N
M−1∑
q=0

g(i + pN + qN̄)γ(i + qN̄)

(8)

where 0 ≤ p ≤ M̄−1, k′= i+lN̄, 0 ≤ i ≤ N̄−1, 0 ≤ l ≤ M−1,
and L=MN̄. Equation (8) is obviously a linear equation set
that is used to solve the analysis window γ(k). The matrix
form of (8) can be expressed as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G(0) 0 · · · 0
0 G(1) · · · 0
...

...
. . .

...

0 0 · · · G(N̄−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ(0)

γ(1)

...

γ(N̄−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e
e
...
e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9)

where γ(i) is a vector with length M, i = 0, 1, · · · , N̄ − 1 and
G(i) is a real value matrix by M̄ × M. e is a unit vector with
length M̄, i.e., e = [1, 0, · · · , 0]T.

γ(i) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ(i)
γ(i + N̄)
...

γ
(
i + (M − 1)N̄

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)

G(i) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gi
0,0 gi

0,1 · · · gi
0,M−1

gi
1,0 gi

1,1 · · · gi
1,M−1

...
...

. . .
...

gi
M̄−1,0

gi
M̄−1,1

· · · gi
M̄−1,M−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

where gi
p,q = g(i + pN + qN̄), 0 ≤ p ≤ M̄ − 1, and 0 ≤ q ≤

M − 1. Equation (9) can be separated into N̄ independent
sub-equation sets:

G(i)γ(i) =
1
N

e (12)
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3.2 Fast Algorithm for Computing Analysis Window in
Integer Oversampling Case

By choosing the sampling parameters M and M̄ properly,
the oversampling rate β = MN/L = N/N̄ = M/M̄ > 1 could
be a positive integer. However, the rank of G(i) is less than
the number of columns in the oversampling case, so (12)
could have an infinite number of solutions. Equation (12)
can be rewritten in the following form:

(
Gi

0,G
i
1, · · · ,Gi

β−1

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γi
0
γi

1
...
γi
β−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
N

e (13)

where Gi
α is a M̄ × M̄ real left circulant matrix and γi

α is a
vector with length M̄, 0 ≤ α < β, and

γi
α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ(i + αN̄)
γ(i + N + αN̄)

...

γ
(
i + (M̄ − 1)N + αN̄

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(14)

Gi
α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gi,α
0,0 gi,α

0,1 · · · gi,α
0,M̄−1

gi,α
1,0 gi,α

1,1 · · · gi,α
1,M̄−1

...
...

. . .
...

gi,α
M̄−1,0

gi,α
M̄−1,1

· · · gi,α
M̄−1,M̄−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

where gi,α
p,q = g(i + pN + qN + αN̄), 0 ≤ p ≤ M̄ − 1, and

0 ≤ q ≤ M̄ − 1. Then rewrite (13) as:

Ĝ
i
αγ̂

i
α =

1
N
gi
α (16)

Ĝ
i
α = (Gi

α)
TGi
α (17)

γi
α = λαγ̂

i
α (18)

gi
α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(i + αN̄)
g(i + N + αN̄)

...

g
(
i + (M̄ − 1)N + αN̄

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(19)

where
∑β−1
α=0 λα = 1. Thus, (16) also can be written as a cir-

cular convolution (ĝi
α is the first column of Ĝ

i
α).

ĝi
α ∗ γ̂i

α =
1
N
gi
α (20)

By utilizing the results of the circular convolution theo-
rem [20], the discrete fast Fourier transform (FFT) can then
be used to compute γ̂i

α.

γ̂i
α =

1
N

F−1
M̄

(FM̄(gi
α)

FM̄(ĝi
α)

)
(21)

where FM̄ is the M̄-point FFT and F−1
M̄

is the M̄-point inverse
FFT. Because the Gabor analysis window must satisfy the
localization property [21], γ(i) should satisfy the minimum
of �2 norms:

arg min
{
‖γ(i)‖22

}
= arg min

⎧⎪⎪⎨⎪⎪⎩
β−1∑
α=0

‖γi
α‖22

⎫⎪⎪⎬⎪⎪⎭
= arg min

⎧⎪⎪⎨⎪⎪⎩
β−1∑
α=0

λ2
α‖γ̂i

α‖22
⎫⎪⎪⎬⎪⎪⎭

(22)

Equation (22) can be solved with the Lagrangian method by
transforming it to the following optimum problem:

J(λα) =
1
2

β−1∑
α=0

λ2
α‖γ̂i

α‖22 + μ
⎛⎜⎜⎜⎜⎜⎜⎝1 −

β−1∑
α=0

λα

⎞⎟⎟⎟⎟⎟⎟⎠ (23)

where μ ∈ R1. Taking a derivative of J(λα) with respect to
λα leads to.

∂J(λα)
∂λα

= λα‖γ̂i
α‖22 − μ = 0 (24)

Equation (24) can be rewritten as matrix form as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

‖γ̂i
0‖22 0 · · · 0

0 ‖γ̂i
1‖22 · · · 0

...
...

. . .
...

0 0 · · · ‖γ̂i
β−1‖22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
λ = μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
...
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(25)

where λ =
[
λ0, λ1, · · · , λβ−1

]T ∈ Rβ. Then we can obtain the
solution of λ from (25) and substituting this solution into the
constraint

∑β−1
α′=0 λα′ =1 to solve μ leads to.

λ =
1
W

[
1/‖γ̂i

0‖22, 1/‖γ̂i
1‖22, · · · , 1/‖γ̂i

β−1‖22
]T

(26)

where W =
∑β−1
α′=0 1/‖γ̂i

α′ ‖22 = 1/μ. Note that the proposed
algorithm also can be easily applied to the critical sampling
case (β=λ=1).

4. Computational Complexity Analysis and Compari-
son

Because the total computational complexity of the proposed
set of algorithms is equal to that of the total independent
sub-equation sets, the computation time of the proposed al-
gorithm is dependent on the computational complexity of
each sub-equation set. The single sub-equation set carries
M̄2 multiplications, two M̄-point fast DFT (with computa-
tional complexity M̄log2M̄), one M̄-point fast IDFT (with
computational complexity M̄log2M̄), and the computational
complexity of λ (can be ignored under critical sampling
case) is the order of βM̄. Table 1 gives a comparison be-
tween the proposed algorithms and the main existing algo-
rithms, which clearly demonstrates that the computational
complexity of the proposed algorithm is lower than that of
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Table 1 Comparison of computational complexity related to total com-
putation time

References Computational complexity Applicability

[16] CM̄(M̄2/D2 + M̄log2D) + L2 CS,OS
[17] (M̄N̄)3 + 2(M̄N̄)2L + (M̄N̄)L CS,OS
[18] M̄3N̄ + 2M̄2L + LM̄ CS,OS
[19] 2Llog2 M̄ + 2M̄N̄ + L2 CS,OS

Proposed 3Llog2 M̄ + M̄L CS
algorithms 3Llog2 M̄ + M̄L + L OS

Table 2 Numeric comparison of total number of multiplications related
to total computational time

L M N β
Total number of multiplications

[16] [17] [18] [19]
Proposed
algorithms

256
16 16 1 82176 50397184 200704 68096 7168
32 16 2 73856 110518528 167936 67840 7424
32 32 4 67136 2375680 38912 67200 4608

512
16 32 1 295424 402915328 401408 267264 14336
32 32 2 278784 84017152 335872 266752 14848
32 64 4 265344 18939904 77824 265472 9216

1024
32 32 1 1213440 3.2223×109 3178496 1060864 48128
64 32 2 1131008 671612928 2654208 1059840 49152
64 64 4 1065216 151257088 606208 1057280 29696

the others. In Table 1, the symbols CS and OS denote the
critical sampling case and the oversampling case respec-
tively. C = gcd(N, N̄), D = gcd(M, M̄), where gcd denotes
greatest common divisor. A numeric comparison on the to-
tal number of multiplications related to the total computa-
tional time between the proposed algorithms and the main
existing algorithms is given in Table 2, which is calculated
by using the formulas in Table 1.

5. Conclusions

Solving the analysis window for any given synthesis win-
dow is a crucial step in Gabor time-frequency analysis. This
paper proposed a fast algorithm for solving analysis window
for any given synthesis window in the RDGT based on the
new biorthogonal relationship between analysis window and
synthesis window, which can be derived in terms of the com-
pleteness of the RDGT. We decomposed the linear equation
set, related to the new biorthogonal relationship, into a cer-
tain number of independent sub-equation sets so that each
of them could be fast and independently solved by using
convolution operations and FFT to obtain the analysis win-
dow for any given synthesis window. Computational com-
plexity analysis and comparison showed that the proposed
algorithm can compute the analysis window efficiently with
much less computational complexity as compared to other
existing algorithms.
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