
2824
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.11 NOVEMBER 2016

LETTER

On-Line Rigid Object Tracking via Discriminative Feature
Classification

Quan MIAO†a), Nonmember, Chenbo SHI††b), Student Member, Long MENG†††,
and Guang CHENG†, Nonmembers

SUMMARY This paper proposes an on-line rigid object tracking
framework via discriminative object appearance modeling and learning.
Strong classifiers are combined with 2D scale-rotation invariant local fea-
tures to treat tracking as a keypoint matching problem. For on-line boost-
ing, we correspond a Gaussian mixture model (GMM) to each weak clas-
sifier and propose a GMM-based classifying mechanism. Meanwhile, self-
organizing theory is applied to perform automatic clustering for sequential
updating. Benefiting from the invariance of the SURF feature and the pro-
posed on-line classifying technique, we can easily find reliable matching
pairs and thus perform accurate and stable tracking. Experiments show that
the proposed method achieves better performance than previously reported
trackers.
key words: object tracking, on-line boosting, Gaussian mixture model,
self-organizing clustering

1. Introduction

Recently, on-line classification has received a lot of attention
and is widely used in non-rigid object (e.g., human body
and faces) tracking [1], [2]. The object region is localized
using a bounding box. Tracking is formulated by classifying
foreground from background.

For a rigid object (e.g., cup and notebook), the move-
ment of each point within the region can denote the whole
change. In contrast, on-line classification has been little
used in rigid object tracking. Grabner et al. used the on-
line boosting scheme [4] to learn classifier-based keypoint
descriptions [3]. However, the keypoints are detected us-
ing the Harris corner, which is sensitive to scale changes.
Thus the corresponding tracker cannot handle complex vari-
ations. Afterwards Miao et al. [5], [6] employed the scale
and rotation information of SURF features [7] to guide the
on-line classifier learning process. Although the resulting
tracking is robust to significant changes like scale, rotation
and viewpoint, it cannot ensure long-term accurate tracking.
The critical issue is the model degradation caused by inac-
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curate identification of object region. Target locating errors
will accumulate during long-term tracking and cause the ap-
pearance model to be updated with a sub-optimal positive
sample. Over time this can cause drift and degrade perfor-
mance.

The proposed method is classified as a rigid object
tracker. In contrast to the previous methods [5], [6], the
novelty and contributions of this paper are twofold. First,
we propose a new discriminative feature modeling and
classification mechanism instead of the previously used
boosting [4]. The Gaussian mixture model is employed
to describe weak classifiers. Meanwhile, we apply self-
organizing theory to perform automatic clustering for up-
dating. During updating, each correct match is used as the
positive sample and no updates are applied to the false neg-
ative samples. The combination of SURF features and the
proposed mechanism makes the resulting tracker more ac-
curate against model degradation. Experiments show better
tracking performance on challenging video sequences.

2. System Overview

The basic flow is illustrated in Fig. 1. In the first frame, we
extract local features within the object region and initialize
classifiers. When a new frame t + 1 arrives, we first detect
its keypoints, and then use classifiers to establish matching
candidates with frame t. The homography is estimated using
RANSAC over the set of matching candidates. The current
object region is tracked by geometric transformation on the
previous one. Finally, we update the classifiers to make the
tracker adaptive to subsequent changes. Both matching and
updating are closely related to the proposed GMM-based
classifying mechanism.

Each strong classifier C corresponds to one SURF fea-
ture within object region. C is composed of J selectors hsel

j
and holds a weak classifier pool. It predicts the matching

Fig. 1 Framework of the proposed algorithm.
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confidence measure of a point x by:

C(x) = con f (x) =
J∑

j=1

α j · hsel
j (x)

/ J∑
j=1

α j, (1)

where con f (•) denotes the confidence measure. The usage
of on-line classifiers allows boosting learning by collecting
samples over time. As new samples arrive sequentially, each
hsel

j re-selects the best weak classifier and updates corre-
sponding α j.

3. Proposed Algorithm

3.1 GMM-Based On-Line Boosting

In the classifier-based matching, each weak classifier judges
whether its corresponding Haar feature f j(x) is positive
or negative. Grabner builds distribution models related
to positive samples and negative samples, respectively [4].
The classifying problem is ultimately attributed to a sim-
ple binary decision criterion by comparing the probability
P(1 | f j(x)) and P(−1 | f j(x)). However, such modeling as-
sumes that positive samples should lie on one side of the de-
cision surface while negative samples should appear on the
other, which does not match the reality. Indeed the distribu-
tion of positive samples tends to be centralized; the emer-
gence of negative samples may be not sufficient to maintain
such regularity, which will confuse the classifier.

In Fig. 2, green star denotes the only positive sample
obtained from current correct match and red circles denote
negative samples randomly chosen from the detected points.
When the number of negative samples is small, the classifier
is relatively easy to train and can perhaps distinguish the
positive sample from negative samples. As negative sam-
ples arrive sequentially, the classifier hyperplane becomes
oscillating and totally puzzled. Once positive sample and
negative ones are mingled, matching accuracy will be influ-
enced seriously.

To address the problem, we only focus on positive sam-
ples. On the one hand, since each weak feature has been
scale-rotation normalized before updating, positive samples
under different transformations are prone into clusters. On
the other hand, the positive samples may belong to differ-
ent classes under different appearance changes. Therefore
we model the positive samples using mixture of K Gaussian
distributions of the form:

Fig. 2 The drawback of the original classifying mechanism. As the neg-
ative samples arrive sequentially, the classifier hyperplane becomes oscil-
lating and totally puzzled.

p(x) =
K∑

k=1

πkN(x | μk, σk). (2)

Each Gaussian density N(x | μk, σk) is a component of the
mixture and has its own mean μk and variance σk; πk is mix-
ing coefficients. If an incoming feature belongs to any inter-
val (μk − ωσk, μk + ωσk) where ω is a constant, we classify
it as positive and assign ω to 1.0.

3.2 Model Updating

First we use the estimated motion parameter to perform a
verification procedure over the set of suggested matches, ob-
taining a subset of correct matches (inliers). Each correct
match is used as the positive sample. We apply no updates
on false matching candidates.

For each weak classifier, we compute its Haar response
x within the positive sample (i.e., the current correct match).
Then we find out which mean value of GMM x is closest to.
If the response is assigned to the kth component which al-
ready has Nk observations, we adjust the relevant parameters
as follows:

Nk = Nk + 1, (3)

μk = μk +
1

Nk
(x − μk), (4)

σ2
k =

1
Nk

(x − μk)2 +

(
1 − 1

Nk

)
σ2

k . (5)

Furthermore, we pay close attention to the distribution of
each component. Self-organizing clustering is adopted to
keep optimizing the K mixtures, as is shown in Fig. 3. We
use the 1-of-K scheme to assign the nth data point of the
kth component as xkn. Then we focus on minimizing the
following distortion measure:

Q =
K∑

k=1

Nk∑
n=1

(xkn − μk)2. (6)

which depicts sum of squares of the distances between each
data point and its center. Our goal is to find for each compo-
nent its clustered data points. EM algorithm is perform for
a two-stage optimization. Current K Gaussian mixtures are
used as the initial value.

3.3 Discussion about GMM

Recently, GMM has been widely employed in non-rigid

Fig. 3 Self-organizing clustering of GMM is adopted to keep optimizing
the K mixtures.
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object tracking [1]. Each tracker shows its novelty. Take
Wang’s tracker [8] for example, a spatial-color mixture of
Gaussians appearance model was presented to encode both
spatial layout and color information. For Kim’s tracker [9],
GMM was employed to weight the influence of strong clas-
sifier which judges whether each input bounding domain be-
longs to object region.

The usage of GMM in this paper is essentially dif-
ferent from others, including object model, motion model,
classifying mechanism, and online learning. The novelty
of this paper is to combine the invariance of SURF fea-
ture and GMM-based on-line boosting technique, making
resulted classifiers accurate to establish reliable matching
correspondences. First, the proposed tracker is appropriate
for rigid objects and use homography to map consecutive
object regions. In addition, after modeling strong classifiers
using SURF-based keypoints, we correspond GMM to weak
classifiers for discriminative differentiation. Self-organizing
automatic clustering is applied. Finally, supervised learn-
ing stage is not needed and no updates are applied on false
matching candidates, which obviously saves computation
without sacrificing performance.

4. Experimental Results

Each strong classifier contains a global weak classifier pool
holding 250 weak hypotheses. Each weak classifier is mod-
eled using 3 Gaussian mixtures (K = 3). After keypoint
matching, we choose the best 40 matching candidates to
perform RANSAC. If the number of inliers exceeds 10 (the
percentage is above 25%), the object is tracked based on the
estimated homography.

Rigid object trackers are essentially different from non-
rigid object trackers in many aspects, such as motion model,
classifying mechanism and online learning. The non-rigid
object trackers cited in [1], [2] are not appropriate for com-
parison. Thus we use Grabner’s tracker [3] and our original
tracker [6]. The speed of Grabner’s tracker is 15fps on a PC
with 2.93 GHz CPU and 4 GB RAM. The original tracker
runs at a speed of about 7fps. The proposed tracker runs at
a speed of about 9fps. To further accelerate the proposed
tracker, we implement the SURF-based keypoint detection
using CUDA [10]. The CPU-GPU cooperative tracking sys-
tem runs at a real-time speed of 18fps. All these trackers are
suitable for planar objects because homography is used as
motion model.

4.1 Results on Public Datasets

In this subsection, experiments are carried on published
videos for an intuitive comparison. First, Grabner’s
datasets [3] are downloaded and used. The results are shown
in Fig. 4, in which the proposed tracker (in white) overcomes
the upcoming object changes (e.g., frame 106 of line 1 and
frame 323 of line 2) and is superior to Grabner’s tracker (in
yellow).

In addition, our previous video [6] is used. Figure 5

Fig. 4 Tracking results using published datasets.

Fig. 5 Tracking results using published datasets. From left to right
column, the first, 52nd, 55th and 67th frame.

Fig. 6 Tracking a CD under various changes. From left to right column,
the first, 563rd, 663rd and 825th frame.

indicates that the proposed tracker is at least comparable to
the original tracker and is better than Grabner’s tracker. The
sequence containing occlusion change is not long, which is
not difficult for both trackers.

4.2 Results on Challenging Scene

Figure 6 shows the performance of tracking a CD. The
longer sequence is captured by moving the CD back and
forth and rotating it, causing rapid scale, rotation, illumi-
nation and viewpoint variations. For Grabner’s tracker, the
identified region in the 663th frame becomes completely out
of shape. For the original tracker, distorted object region
appeared in the 663th frame, which will influence tracking
performance in later frames. Tracking failure occurs in the
825th frame. In contrast, our tracker does not exhibit this
error.

To show the strength of GMM-based classifying mech-
anism, we analyze the distribution of a certain weak Haar re-
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sponse of both positive and negative samples used over out-
put frames. First we crop out a short sequence of 50 frames,
from Frame 854 to Frame 903. Figure 7 (a) shows the used
Haar feature of a strong classifier corresponding to a certain
object keypoint. The scale and rotation information is re-
flected. Figure 7 (b) gives four example frames of this short
sequence. All the 50 frames undergo successful tracking,
during which viewpoint change and illumination variation
occurs continuously. For each frame, the correspondence
to the marked object keypoint in Fig. 7 (a) is proven to be
correct matches (inliers) by the verification step.

For further validation of using GMM, Fig. 8 depicts
the Haar feature distribution over both positive and nega-
tive variables, using normalized histogram. Positive sam-
ples under different transformations are combined into clus-
ters while distribution of negative samples is totally random.
Our approach of using GMM is highly suitable for differ-
entiating positive samples from negative ones, making the
formed classifiers preserve sufficient discriminative power.

Fig. 7 (a) Used Haar feature of a strong classifier. (b) Four example
frames of the output sequence.

Fig. 8 Histogram distribution of a certain Haar feature over both positive
and negative samples, from Frame 854 to Frame 903. Normalization is
performed over the 20 bins.

Fig. 9 Number of the matches of the proposed tracker versus Grabner’s
tracker and the original tracker.

For quantitative comparison, Fig. 9 shows the num-
ber of matches over time. When the percentage of correct
matches is above 25%, we consider tracking is successful.
Tracking loss occurs continuously from frame 700 to frame
900 using Grabner’s tracker and the original tracker. How-
ever, our tracker can handle the phenomenon, except around
some frames where the object drastically changes its appear-
ance. In most cases, the proposed tracker establish more
correct matches than those in the other two methods, which
demonstrates the matching accuracy against model degrada-
tion and the adaptiveness of model matching and updating.

5. Conclusion

This paper treats rigid object tracking as a keypoint match-
ing problem. SURF features are matched by on-line classi-
fiers. During on-line boosting, we propose a Gaussian mix-
ture model based classification mechanism. In the subse-
quent classifier updating scheme, self-organizing theory is
employed to perform automatic clustering. Only the dis-
tribution of positive samples is focused on, and no updates
are applied to the false matching candidates. Experimental
results show the robustness and accuracy of the proposed
method.
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