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SUMMARY Many data-intensive applications need large memory to
boost system performance. The expansion of DRAM is restricted by its
high power consumption and price per bit. Flash as an existing technology
of Non-Volatile Memory (NVM) can make up for the drawbacks of DRAM.
In this paper, we propose a hybrid main memory architecture named SS-
DRAM that expands RAM with flash-based SSD. SSDRAM implements
a runtime library to provide several transparent interfaces for applications.
Unlike using SSD as system swap device which manages data at a page
level, SSDRAM works at an application object granularity to boost the
efficiency of accessing data on SSD. It provides a flexible memory parti-
tion and multi-mapping strategy to manage the physical memory by micro-
pages. Experimental results with a number of data-intensive workloads
show that SSDRAM can provide up to 3.3 times performance improvement
over SSD-swap.
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1. Introduction

With the development of Big Data, data-intensive applica-
tions increase requirements of main memory capacity to
avoid the high cost of accessing disk. DRAM has been
used as main memory for a long time. However, DRAM
has constraints of high power consumption and price per
bit. Fortunately, the advent of Non-Volatile Memory (NVM)
technologies offers a promising opportunity for memory
organization. Some projects propose to construct hybrid
main memory using NVM devices such as PCM and STT-
RAM [1], [2]. Nevertheless, the above researches are usu-
ally proceeded using architecture simulators and empirical
models because mature products based on these memory
technologies are not yet available. Among various NVM
devices, flash memory as the existing technology is well-
known to bridge the performance gap between DRAM main
memory and hard disk [3], [4]. The energy-efficiency and
cost-efficiency of flash memory make it more economical
than DRAM. On the other hand, flash memory has some
inherent defects such as high access latency and limited en-
durance, which restrict flash as a substitute of DRAM.

Existing usages of flash memory focus on the follow-
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ing aspects. Kgil et al. [5] proposed FlashCache using flash
as a disk cache which can enhance disk performance but
not main memory. Some proposals realized hybrid memory
with hardware extension [6], [7]. The software approaches
using SSD as a main memory extension will be introduced
in detail in the next section.

In this paper, we propose a hybrid main memory ar-
chitecture named SSDRAM using SSD as the extension of
main memory and using DRAM as the cache of SSD. SS-
DRAM provides several interfaces to allocate and free mem-
ory for applications. It works at an object granularity to
boost the efficiency of accessing data on SSD [8]. To reduce
the waste of physical memory caused by object granularity,
SSDRAM provides a flexible memory partition strategy and
a multi-mapping strategy to manage the physical memory
by micro-pages.

2. Related Work

Some studies use SSD as a system swap device instead of
HDD [9], [10]. Although this does not need application re-
designing, it has been proved that SSD-swap cannot explore
the raw performance of flash memory [9], [12]. As system
virtual memory works at a page (4KB) level, it leads to swap
a full page with flash even if only one byte needs to be ac-
cessed. This wastes SSD I/O bandwidth and increases la-
tency.

W. Chao et al. [11] use SSD as a secondary memory
partition and develop a NVMalloc library for applications
to access a distributed NVM store. The NVM devices are
mapped into memory in a byte-addressable fashion using
the POSIX mmap() interface. Brian Van et al. [14] redesign
the mmap() interface to fulfill an extended main memory
system using SSD with thread level concurrency. However,
applications using the above systems need to be aware of the
data access patterns for hot data caching. What’s more, us-
ing SSD as memory via mmap() interface can achieve only
a fraction of the SSD’s performance and incur significant
runtime overhead [12].

A. Badam et al. [12] present a hybrid memory named
SSDAlloc using SSD as an object store. It exposes flash via
page-based virtual memory interface, while internally works
at an object granularity. At the virtual memory level, SS-
DAlloc allocates only one object per page. At the physical
memory level, SSDAlloc divides the RAM into two cache
layers, a page buffer and an object cache. The page buffer
offers direct access for applications but wasting RAM space.
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The object cache stores objects compactly while cannot be
accessed directly by applications. So extra page faults, data
mapping and copying are caused even when objects are lo-
cated in the object cache of RAM.

Unlike SSDAlloc, Chameleon [13] provides direct ac-
cess to the entire physical memory for applications without
extra page faults. It provides object-based virtual memory
with multiple virtual page sizes ranging from 512 bytes to
4KB that is power of 2. However, objects with sizes out of
these fixed values cause memory fragmentation that wastes
RAM space. For example, a 513B object needs a 1024B
physical size. Additionally, the experiments of this work
do not include evaluation on varied-sized objects and even
multithreaded applications.

3. Design

3.1 The SSDRAM Architecture

SSDRAM implements a library to offer interfaces for appli-
cations to allocate and free memory transparently like sys-
tem standard interfaces malloc and free. In comparison with
using SSD as system swap which manages data at a page
level, SSDRAM works at an object granularity to boost sys-
tem performance and the efficient use of SSD. In order to
perform the fine-grained data accessing, a custom page fault
handler is realized to intercept system SIGSEGV signals and
bypass OS page fault mechanism. To reduce the waste of
physical memory caused by object granularity, SSDRAM
partitions physical pages into a few micro-pages accord-
ing to a fixed growth in size. And it implements a multi-
mapping strategy which can map multiple virtual pages to
the micro-pages of the same physical page.

3.2 Memory Partition and Multi-Mapping

SSDRAM divides physical memory into multiple slabs
which include a few pages. And each page is partitioned
into some micro-pages to load objects. The minimum size
of micro-page is application configurable, then other larger
sizes ascend at the step of this minimum size. Breaking
through the original OS page boundary limit, micro-pages
in various 4KB pages with the same size and same offset are
classified as one pattern. A physical page should be assigned
to micro-pages with the same size as possible as it can. If
the size cannot meet the boundary of a 4KB page, the rest
space of this page will be collected to other patterns by pick-
ing out larger size from the end of the page. For example,
assuming that the minimum micro-page is 256B, the page
with partition size 1536B remains 1024B of space. The rest
space will be preferred to incorporate into the pattern whose
size is 1024B and offset is 3072B instead of four patterns
with smaller size 256B and different offset values.

SSDRAM allocates one object per virtual page to im-
plement fine granularity management. Therefore, a multi-
mapping strategy is needed to map between multiple virtual

Fig. 1 The management of micro-pages for one pattern.

pages and micro-pages within one physical page. This re-
quires each object in virtual page to align with the offset of
each mapped micro-page.

3.3 Micro-Page Management

SSDRAM keeps a set of lists for each pattern to manage free
and used micro-pages. Furthermore, the used micro-pages
are organized into an active list and an inactive list. The ac-
tive list contains micro-pages which have been accessed re-
cently and the inactive list contains micro-pages which have
not been used recently. When there is no free micro-page for
the required object, SSDRAM adopts a two-fifo clock algo-
rithm for the specific pattern to perform the eviction process
as can be seen in Fig. 1, which begins from the head of the
inactive list. If the accessed bit in PTE of the object is set,
SSDRAM moves the object to the tail of the active list with
accessed bit unset. Otherwise, the object is chosen as a can-
didate for eviction. If it is dirty, it should be written to SSD
before reclaiming its micro-page to the free list. When the
inactive list is not enough, SSDRAM checks the accessed
bit from the head of the active list. If the accessed bit is set,
the object will be linked to the tail of the active list and the
accessed bit will be unset. If not, the object will be moved
to the tail of the inactive list.

3.4 SSD Management

SSD is partitioned into 256KB logical blocks and managed
in a log-structured manner. Each block contains several
pages and each page owns a few sectors whose size is equal
to the minimum size of micro-pages. To minimize the la-
tency of SSD random write operations, SSDRAM assem-
bles the evicted objects into blocks in the write buffer and
writes a whole block to SSD every time in the background.
SSDRAM creates a mapping table called Sector Table to
record the SSD location, object size and offset. Each entry
is indexed by virtual memory address which is stored at the
head of each block.

Because SSD does not support to write back in place,
even the same object should be written to a different SSD
location which needs to be updated in the Sector Table. To
reclaim the former location on SSD, the garbage collection
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strategy scans a SSD block which meets the reclaiming con-
dition and picks out valid objects in the background. A valid
object is confirmed by comparing the current SSD location
with that stored in the Sector Table. If they are the same, the
copy of the object is valid and it needs to be written to a new
SSD block. If not, it can be discarded directly for garbage
collection.

4. Implement

SSDRAM realizes a runtime library to replace the stan-
dard library. It provides interfaces for applications including
nv malloc, nv calloc, nv realloc and nv free.

To perform the communication between user space and
OS kernel, SSDRAM implements a linux kernel module
which is used to read and modify PTE. In order to reduce
the overhead of the communication, SSDRAM binds mul-
tiple PTE operations together and packages the information
into one message to transfer to the kernel space.

SSDRAM provides the support for multithreaded ap-
plications to response the concurrent requests. To reduce the
conflicts of multiple threads for the shared data, SSDRAM
performs locks with different fine granularities for different
operations to achieve more parallelism.

5. Performance Evaluation

In this section, we compare the performance of SSDRAM
with SSD-swap using various workloads such as mi-
crobenchmarks, Sorting, B-tree and so on.

5.1 Experiment Setup

We conduct experiments on a server with a 64-bit Linux
2.6.32 kernel. It owns eight Intel7-4790 3.6GHz CPU and
6GB DRAM. A 120GB Kingston SSD is adopted for SS-
DRAM and SSD-swap respectively. If main memory is suf-
ficient or object size is larger than 4KB, there is no need
to call SSDRAM because it is the same with the standard li-
brary. We only evaluate the performance that the capacity of
memory is not enough and object size is smaller than 4KB.
To simulate the out-of-DRAM behavior, we restrict memory
capacity to 64MB for both systems.

5.2 Microbenchmarks

We evaluate the basic performance of random access with
certain object size ranging from 256B to 4KB and random
object size. In all experiments, 10GB worth of objects are
allocated initially, and then 1GB worth of them are accessed
randomly.

(1) Read/write ratio of 80%/20%: Figure 2 (a) shows
the average latency when random read/write ratio is
80%/20%. It can be seen that SSDRAM outperforms SSD-
swap obviously, especially with the decrease of object size.
For 512B object size, SSDRAM obtains an object in 158
µs, while SSD-swap needs 282 µs, which incurs 78.5%

Fig. 2 The average latency of random access under microbenchmarks.

higher latency. SSD-swap manages data at a page granular-
ity, which leads to a waste of IO bandwidth. The smaller
the object size is, the less valid data each physical page
can fetch from system swap. SSDRAM operates data at an
object granularity which can improve the utilization of IO
bandwidth.

(2) All read: Figure 2 (b) gives the average latency of
random read operations. SSDRAM saves 33.3%-78.7% la-
tency compared to SSD-swap for object size ranging from
256 bytes to 4KB. When a required object is not in memory,
SSD-swap has to read a full page from SSD and copy ex-
cessive data to the memory. Whereas, SSDRAM loads the
desired object that is really needed. It can hold more valid
and hot objects in memory, which help to improve the hit
ratio of application requests and reduce the read operations
to SSD.

(3) All write: Figure 2 (c) presents the comparison
between both systems of random write operations. SS-
DRAM performs better than SSD-swap in accordance with
the above results. Overwriting an object which is not in
memory needs to load data from SSD into memory first. SS-
DRAM loads the exact data at a finer granularity than SSD-
swap. And when there is no space in memory, SSDRAM
evicts cold objects instead of full pages. The dirty objects
are assembled compactly into blocks in the write buffer and
evicted to SSD in the background.

(4) Random object size: Figure 2 (d) shows the average
latency of accessing random object size when read/write ra-
tio is 80%/20%. Random (4K) means that object size is dis-
tributed randomly from 8 bytes to 4KB. SSDRAM outper-
forms SSD-swap in three sets of object size under different
ranges. For the situation of object size ranging from 8 bytes
to 1KB, SSD-swap consumes 90.3% more latency than SS-
DRAM. Because SSDRAM provides a flexible memory par-
tition strategy, which makes more effective use of physical
memory and provides better support for accessing objects
with random size than that of SSD-swap as long as the ob-
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Fig. 3 Sorting workload.

Fig. 4 B-tree workload.

ject size is smaller than 4KB page.

5.3 Sorting Workload

A quick-sort workload is adopted to test random access and
the data swap mechanism. We randomly choose 1GB worth
of objects from the 10GB data which are widely distributed
in SSD. The objects of the group are sorted in place, which
needs random read and write operations.

Figure 3 presents the results of the sorting workload
at different object sizes. With the decrease of object size,
the latency gap between SSDRAM and SSD-swap becomes
greater. For 256B object size, SSDRAM obtains 1.4 times
performance gain compared to SSD-swap. When object
size reaches page size, the average accessing latency of SS-
DRAM is close to that of SSD-swap. Because the randomly
selected objects are spread across SSD, which need to be
read into memory to compare, and written in place. SSD-
swap manages data at 4KB page granularity, which caches
lots of useless objects in memory. By contrast, SSDRAM
works at an object granularity, which holds more valid ob-
jects in one physical page when object size is smaller than
one page.

5.4 B-Tree Workload

B-tree algorithm is usually used to search data when large-
scale data sets are stored on the storage. It holds more keys
per node to reduce the height of the tree to improve the
search efficiency. To explore the performance of such read-
heavy applications, we create a B-tree structure to search
1GB worth of objects from entire 10GB data with several
fixed object sizes.

Figure 4 gives the average latency of both systems run-
ning the search algorithm. SSDRAM runs 2.9-3.3 times
faster compared to SSD-swap for object size ranging from
256 bytes to 4KB. When a key in one node which is not in

Fig. 5 Bloomfilter workload.

Fig. 6 Multiple threads.

the memory is required, SSD-swap needs to access two full
pages to obtain the node metadata and the object data re-
spectively. This leads to load more invalid data and waste
space in physical pages. On the contrary, SSDRAM makes
smaller granularity read operations and loads the exact data
that is really needed.

5.5 Bloomfilter Workload

We adopt a bloomfilter to verify the performance of write-
heavy workloads. It is used to retrieve whether an element
is in a set by marking the bits. Bloomfilter consists of a
long bit vector and a series of random mapping functions. A
vector of 80 billion bits (10GB) is created and the bits are
managed by objects with certain size. We use 8 bytes keys
to index elements and adopt eight various hash functions to
map eight positions for each element.

Figure 5 shows the results of running the bloomfilter.
The average latency of SSD-swap is much higher than SS-
DRAM. At 512B object size SSDRAM performs 76.5% bet-
ter than SSD-swap. Each element has eight positions which
may locate in several objects. Therefore, it needs to write
more than one object by marking the bits of different loca-
tions. SSD-swap produces more dirty physical pages and
causes more erasure operations on SSD. In comparison, SS-
DRAM only evicts dirty objects and amortizes the writing
cost by coalescing multiple dirty objects into one block.

5.6 Multiple Threads

At last we give the results of concurrent requests of 1/2/4/8
threads using microbenchmark workload in Fig. 6. SS-
DRAM needs less runtime than SSD-swap when the number
of threads is less than eight. SSDRAM performs different
fine grained locks in different phases to achieve more par-
allelism and fully exploit the SSD’s potential. But with the
increase of the number of threads, the latency of SSDRAM
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has a modest increase which is close to SSD-swap. There-
fore, how to improve the ability of supporting more threads
is one of our future work.

6. Conclusion

With the increase of the number of data-intensive applica-
tions, there is a growing demand to process large-scale data
in main memory. Building a large capacity of DRAM mem-
ory has become more and more difficult because of the high
power consumption and price per bit. Flash-based SSD has
some advantages of low power, high density and low price.
But it cannot replace DRAM as main memory due to its
high latency and limited endurance. Therefore, we construct
a hybrid memory SSDRAM which uses SSD as the exten-
sion of main memory and DRAM as the cache for SSD. SS-
DRAM implements a runtime library for applications and
works at a fine granularity with a few strategies. The exper-
iment results show that SSDRAM achieves higher perfor-
mance than SSD-swap under various data-intensive work-
loads.

As future work, we plan to integrate SSDRAM into
more applications to promote performance, such as in-
memory databases and so on. Additionally, support for more
multithreaded requests is also part of the future work.
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