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Codebook Learning for Image Recognition Based on Parallel Key
SIFT Analysis

Feng YANG†,††a), Member, Zheng MA†, and Mei XIE†††, Nonmembers

SUMMARY The quality of codebook is very important in visual image
classification. In order to boost the classification performance, a scheme
of codebook generation for scene image recognition based on parallel key
SIFT analysis (PKSA) is presented in this paper. The method iteratively
applies classical k-means clustering algorithm and similarity analysis to
evaluate key SIFT descriptors (KSDs) from the input images, and gener-
ates the codebook by a relaxed k-means algorithm according to the set
of KSDs. With the purpose of evaluating the performance of the PKSA
scheme, the image feature vector is calculated by sparse code with Spatial
Pyramid Matching (ScSPM) after the codebook is constructed. The PKSA-
based ScSPM method is tested and compared on three public scene image
datasets. The experimental results show the proposed scheme of PKSA can
significantly save computational time and enhance categorization rate.
key words: codebook learning, image classification, parallel key SIFT
analysis, ScSPM

1. Introduction

In recent years, the bag-of-features (BOF) method and
the spatial pyramid matching (SPM) model have been ex-
tremely popular in image classification. Over last decade,
extensive research works have been done based on these two
models and many algorithms have emerged, such as ScSPM
model in [1] used sparse coding (SC) to obtain nonlinear
codes and classified with linear classifiers, LCC mechanism
in [2] constrained the sparse coding to be local, and LLC al-
gorithm in [3] relaxed the sparse coding constraint to local-
ity and calculated feature vector by linear coding. Generally,
most of these models consist of the following four steps.
Firstly, local features (e.g. SIFT) are extracted from each
image as representations of the image regions. Secondly,
a codebook is learned according to some approaches, such
as k-means clustering, sparse coding, vocabulary tree and
hamming embedding. Thirdly, image representation vector
is formed by encoding each local feature in the codebook.
Finally, image representation vector is classified by linear
or non-linear classifiers.

As can be seen from these four stages, the step of code-
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book learning effects the quality of the final image repre-
sentation and is also very important for the image classi-
fication [4]. Traditionally, the codebook was generated by
unsupervised clustering manner, e.g. k-means, and worked
well in visual classification tasks and visual regression tasks.
However, this kind of method have two drawbacks: code-
word uncertainty and codeword plausibility. Several al-
gorithms have been proposed to improve the performance,
such as kernel codebooks learning proposed by Gemert
et al. [5], over-complete codebook learning proposed by
JJ.Wang et al. [3] and J. Mairal et al. [6], and small-sized
codebook learning by Z. Jiang et al. [4].

In this paper, we propose a scheme of codebook gener-
ation for image recognition based on parallel key SIFT anal-
ysis (PKSA). The main idea of this scheme is to iteratively
evaluate the parallel key SIFT descriptors (KSDs) from orig-
inal SIFT descriptors by using k-means clustering algorithm
and similarity analysis, and then the codebook is learned by
a relaxed clustering algorithm with the set of KSDs. The
performance of classification is improved by PKSA algo-
rithm and dual clustering method.

The rest of the paper is organized as follows: the frame-
work of our proposed scheme of codebook learning based
on parallel key SIFT analysis (PKSA) is introduced in detail
in Sect. 2 and linear ScSPM model is reviewed in Sect. 3;
Sect. 4 presents the experimental setup and results, and fi-
nally conclusions is provided in Sect. 5.

2. Scheme of PKSA Based Codebook Learning

Suppose the number of SIFT descriptors extracted from
each image is N and the dimensionality is D. The set of
SIFT descriptors of the m-th image can be denoted by Im

and Im = [x1, x2, . . . , x j, . . . , xN] ∈ RD×N . Therefore, the
training dataset with n images can be marked as I, where
I = (I1, I2, . . . , Im, . . . , In). Let V be the codebook with M
bases, V = [v1, v2, . . . , vM] ∈ RD×M .

2.1 Traditional Codebook Learning Model

Traditional codebook learning method uses classical k-
means clustering algorithm to solve the following minimiza-
tion formulation.

argmin
B,V
||X − VB||2F s.t.Bi j ∈ {0, 1} (1)

Where X is the set of SIFT descriptors I, V = [v1, v2, . . . , vM]
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is the learned codebook with M entries determined by clus-
ter centers, ‖ • ‖F is Frobenius norm, B = [b1, b2, . . . , bN]
and bi is M-dimensional binary vector.

The constraint of classical k-means algorithm is too
strict and each local feature in the codebook is assigned
to just one visual word. A relaxed binary condition named
non-negative matrix factorization (NMF) [7] is introduced to
solve the minimization problem in Eq. (2). The NMF model
is a special constrained sparse coding algorithm with the aim
of alleviating the information loss of the sparse coding plus
max pooling.

argmin
B,V
||X − VB||2F s.t. ‖bi‖l1 = 1, bi � 0,∀i (2)

2.2 Codebook Learning Based on PKSA

With the aim of improving the quality of the codebook and
reducing the computational time, the strategy of parallel key
SIFT analysis (PKSA) is introduced in this paper, which
makes use of the combination of k-means clustering and
NMF algorithm.

The basic idea of PKSA is selecting the key SIFTs (a
subset of SIFT descritors) from each image with more rep-
resentative characteristics but much fewer numbers by it-
eratively using k-means algorithm and similarity analysis,
and learning the codebook with the selected collection of
key SIFTs from training dataset by clustering algorithm of
NMF. Therefore, representative and useful features in the
image are selected so that the time for codebook learning
is greatly reduced and the learned codebook V is likely to
represent all of the images well.

According to the pseudocode in Alg.1, the strategy of
PKSA can be divided into two steps: parallel key SIFT se-
lection (PKSS) and codewords clustering. The former aims
at selecting the key SIFT descriptors (KSDs) from each im-
age by iteratively deleting the redundant SIFT descriptors
(with smaller S values comparing with the similarity ad-
just factor σ) so as to increase the representativeness of the
selected key SIFTs, while the later learns the codebook by
NMF algorithm.

The process of PKSS is quite simple, including an iter-
ative parallel identification of K KSDs and an elimination of
non-key ones. The KSDs are identified according to the cen-
ter of k-means clustering and the non-key ones are selected
by similarity analysis.

S i j = ‖xi − x j‖l1 (3)

σ = w ∗ 1
N

N−K∑

j=1

S i j (4)

Based on all of the KSDs selected from the training
dataset I in Z, Z = (I12, I22, . . . , Im2, . . . In2), the codebook V
is efficiently generated by using codewords clustering algo-
rithm of NMF with a relaxed binary condition as defined in
Eq. (2), where V = [v1, v2, . . . , vM] is codebook to be evalu-
ated.

Algorithm 1 The pseudocode for Parallel Key SIFT Analy-
sis
Input: The SIFT descriptors of training dataset I = (I1, I2, . . . , Im, . . . , In)
Output: The learned codebook V
//1. parallel key SIFT selection
for m from 1 to n, Im is the SIFT descriptors of the m-th image, Im =

[x1, x2, . . . , xN ], do
//1.1 initialization
Candidate key SIFT descriptors (CKSD) set Y1← Im

Size of CKSD set N’← N
//1.2 iteration
while N’ ≥ K do
//1.2.1 k-means clustering
Separate N’ CKSDs into K clusters by k-means algorithm
for i from 1 to K do
//1.2.2 define KSDs
Define the center of the i-th cluster as x′i
for j from 1 to N’ do

Calculate the distance between x′i and x j

end for
Define the CKSD xi with minimun distance from x′i as KSD
//1.2.3 calculate similarity S
for j from 1 to N’ do

Calculate similarity S i j between KSD xi and non-KSD x j

according to Eq. (3)
end for
//1.2.4 calculate σ
Evaluate the similarity adjust factor σ according to Eq. (4)
//1.2.5 update the CKSD set by comparing each similarity S i j

with the similarity adjust factor σ
for j from 1 to N’ do

if (S i j < σ) and ( j � i) then
Delete x j from Y1

end if
end for
//1.2.6 update
Save KSD xi in set Y2
Update N’

end for
end while
Im2 ← Y2

end for
//2. codewords clustering
Generate the codebook V by NMF algorithm according to Eq. (2) based
on the KSD set Z = (I12, I22, . . . , Im2, . . . In2)
Return V

The proposed method can increase the representative-
ness of the codewords and reduce the dimensionality of the
codebook significantly so as to increase the classification
rate. Suppose the number of SIFT descriptors in original
training dataset is Nbe f ore and the number after PKSA is
Na f ter. Since Na f ter is much less than Nbe f ore, about 5%-
10% of Nbe f ore, the size of codebook V can be greatly re-
duced. Therefore, the time of codebook learning can be sig-
nificantly reduced.

3. Linear ScSPM Model for Classification

In order to shown the effectiveness of the scheme, the final
feature vectors are calculated and the images are classified
by using linear ScSPM model in [1] with the aim to solve
the following optimization problem.
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argmin
C

N∑

i=1

‖xi − Vci‖2 + λ‖ci‖l1 (5)

where C = [c1, c2, . . . , cN] is the cluster membership indica-
tor, λ‖ci‖l1 is the sparsity regularization term with the pur-
pose of achieving a unique solution and much less quantiza-
tion error.

4. Experimental Results

In the experimental section, we report the performance of
our PKSA algorithm on three public datasets: fifteen scenes
dataset, Caltech-101 dataset and Caltech-256 dataset. Our
experiments use only a single SIFT descriptor of each im-
age, with dimension of 128, extracted from patches of 16*16
pixels and densely sampled by a step of 8 pixels. The paral-
lel parameter K in our experiments is preseted to be 2. With
the aim of achieving reliable results, all experimental results
are repeated 10 times by randomly selecting training and
testing data according to the common benchmarking proce-
dures. The average recognition rate of every class is calcu-
lated for each run and the mean and standard deviation of
the recognition rates are recorded as the final results. All the
experiments were implemented using Matlab on a PC with
3.30GHz Intel(R) Xeon(R) CPU and 32G memory.

4.1 Fifteen Scenes Dataset

The first dataset is fifteen scenes dataset with 4485 images
in 15 categories. The average size of each image is 300*250
pixels and the image number in each category ranges from
200 to 400. The number of training images is 100 per class
and the detailed experimental results of this database is il-
lustrated in Fig. 1 (a) with different sizes of codebook (M):
200, 400, 1024 and 2048. As shown in Fig. 1 (a), the classifi-
cation rates are increased with larger value of M and almost
stable with different values of weight parameter w.

The comparison results of different methods in classifi-
cation accuracy are shown in Table 1. All methods are under
the same set of training on 100 images per class and test-
ing on the rest. Our scheme outperforms LSS by more than
11% and ScSPM by more than 3%. It also can be concluded
from Table 1 that not all of deep neural networks work very
well on this kind of small scale datasets for the limitation of
the number of training images. For example, although the
method DDSFL+Caffe achieves impressive improvement,
LDANet and DLANet only obtain a slight improvements

Fig. 1 Performance of the proposed algorithm on Fifteen scenes and
Caltech-101 with different M

and PCANet even a bitter lower than our proposed method.

4.2 Caltech-101 Dataset

Our second dataset is Caltech-101, which contains 9144 im-
ages of 101 categories with significant variance in shape,
such as brain, airplane, bass, anchor and so on. The im-
age resolution is 300*300 pixels and the number of images
in each class is quite different, varies from 31 to 800. Ac-
cording to the common experimental setup for Caltech-101,
we trained on 30 images per class and tested on the rest.
And the final performance is measured by calculating aver-
age accuracy of 101 classes and one background class. The
performance of different sizes of codebook (M), 1024 and
2048, are compared in Fig. 1 (b).

The comparison results of different methods in clas-
sification accuracy are shown in Table 2 with the codebook
trained on 1024 bases. We tested the PKSA algorithms on 5,
10, 15, 20, 25 and 30 training images per class, respectively.
Our scheme outperforms ScSPM more than 0.7% and even
better than LLC on all test results. The deep neural networks
algorithm of DeCAF outperforms our method with 30 train-
ing images per class, while the classification of PCANet is
less than our algorithm both in 15 and 30 training images
per class.

4.3 Caltech-256 Dataset

The last dataset of experiments is Caltech-256 consisting of
30,607 images in 256 categories with much higher variabil-
ity in object size, pose and location. There are more than 80
images in each category with image size less than 300*300
pixels. The proposed algorithm is performed with the code-
book of 1024 bases on 15, 30, 45 and 60 training images per
class, respectively. The experimental results of the proposed

Table 1 Comparisons with different methods on fifteen scenes dataset.

Algorithms Accuracy (%)
ScSPM [1] 80.28±0.93
KSPM [1] 76.73±0.65

OB [8] 80.9
LSS [9] 72.20±0.20

PCANet [10] 82.73±0.40
LDANet [10] 84.75±0.69
DLANet [11] 85.13±0.38
DDSFL [12] 84.42

DDSFL+Caffe [12] 92.81
Ours 83.27±0.39

Table 2 Experimental results on Caltech-101 dataset

Training images 5 10 15 20 25 30
ScSPM [1] - - 67.0 - - 73.2
LLC [3] 51.15 59.77 65.43 67.74 70.16 73.44
D-KSVD [13] 49.6 59.5 65.1 68.6 71.1 73.0
K-SVD [14] 49.8 59.8 65.2 68.7 71.0 73.2
DeCAF [15] - - - - - 86.91
PCANet [10] - - 61.46 - - 68.56
Ours 52.5 61.4 67.8 69.1 71.6 73.8
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Fig. 2 Classification accuracy with different training images on Caltech-
256.

Table 3 Experimental results on Caltech-256 dataset

Training images 15 30 45 60
LScSPM [16] 30.00±0.14 35.74±0.10 38.54±0.36 -
SIFT LLC [17] 25.06±0.07 31.22±0.24 34.92±0.39 37.22±0.35
ScSPM [1] 27.73±0.51 34.02±0.35 37.46±0.55 40.14±0.36
Ours 30.66±0.22 35.68±0.32 38.73±0.28 41.59±0.06

Fig. 3 Experimental comparisons between ScSPM model and ours

scheme with different values of training images are shown
in Fig. 2 and the comparison results with other models are
listed in Table 3.

4.4 Performance Analysis over Three Datasets

The performances of computational time for codebook
learning and classification accuracy over three datasets are
compared with ScSPM in Fig. 3 (a) and Fig. 3 (b), respec-
tively. Different from more than 50 hours of codebook learn-
ing method in ScSPM model, the proposed PKSA scheme
takes much less time even in the database of Caltech-256
and achieves approximately 1.5%∼3% enhancement in clas-
sification.

5. Conclusion

In this paper, we propose a scheme of codebook learning
for image recognition based on parallel key SIFT analy-
sis (PKSA). The method iteratively uses k-means clustering
algorithm and similarity analysis to evaluate key SIFT de-
scriptors and filter out others, and generates the codebook
by a relaxed clustering algorithm of NMF according to the
selected set of KSDs. We perform experiments on 3 widely
used image databases based on ScSPM model. And experi-
mental results show that our algorithm reduces the computa-
tional time for codebook learning significantly while obtains
higher categorization accuracy.
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