
234
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

LETTER

Light Space Partitioned Shadow Maps

Bin TANG†, Nonmember, Jianxin LUO†, Member, Guiqiang NI†a), Weiwei DUAN†, and Yi GAO†, Nonmembers

SUMMARY This letter proposes a Light Space Partitioned Shadow
Maps (LSPSMs) algorithm which implements shadow rendering based on
a novel partitioning scheme in light space. In stead of splitting the view
frustum like traditional Z-partitioning methods, we split partitions from the
projection of refined view frustum in light space. The partitioning scheme
is performed dual-directionally while limiting the wasted space. Partitions
are created in dynamic number corresponding to the light and view direc-
tions. Experiments demonstrate that high quality shadows can be rendered
in high efficiency with our algorithm.
key words: projection plane, dual-directional partitioning, light frusta

1. Introduction

Shadow rendering is a hot topic in Computer Graphics. It is
very important to enhance the realism in games and movies.
Shadow maps are one of the most popular techniques for
rendering shadows. A two pass shadow map algorithm was
firstly proposed by Williams [1], which creates a depth map
by rendering the scene in light space firstly, and then renders
the scene again in view space to display shadows with the
help of depth comparison techniques.

Many researchers have dedicated to the generation of
shadows from different aspects [2]. Among these aspects,
partitioning is one of the fundamental techniques which par-
titions the view frustum into splits for generating shadow
maps. Determining the number of partitions and viewport
of each partition are essential issues for rendering the high
quality shadows in high efficiency. In this letter, we concen-
trate on a novel partitioning algorithm which creates shadow
maps more efficient than traditional partitioning algorithms.
More precisely, the main contribution of this letter are as
follows:

Light Space Partitioning. Shadow maps are created
by partitioning the projection the refined view frustum in
light space dual-directionally. Overlapping problem is elim-
inated easily for improve image quality.

Auto-tuned Shadow Maps. Shadow maps are auto-
tuned in dynamic number for raising rendering efficiency.
Viewport of each shadow map is calculated by limiting the
wasted space at best effort, instead of by determining the
Z-partition point like traditional methods.

Manuscript received August 18, 2016.
Manuscript publicized October 4, 2016.
†The authors are with the PLA University of Science and Tech-

nology, Nanjing, P.R. China.
a) E-mail: nigq1966@163.com

DOI: 10.1587/transinf.2016EDL8171

2. Related Works

In this section, we list some influential contributions related
to partitioning for shadow maps. Currently, most partition-
ing algorithms are originated from Cascaded Shadow Maps
(CSMs) algorithm [3], which splits the view frustum in Z-
direction and creates shadow maps based on the partitioned
sub-frusta.

A detailed discussion about determining the splitting
point (Zi in Fig. 1) is proposed in PSMs (Parallel-Split
shadow Maps) [4]. Lloyd [5] discussed low error shadow
maps by combing the partitioning with warping techniques.
However, such schemes are sensitive to a hand tuned pa-
rameter, which influences the shadow quality and must be
set depending on the scene rendered. To create partitions
automatically, Lauritzen [6] proposed a Sample Distribu-
tion Shadow Maps (SDSMs) which determines the split-
ting point by analyzing the distribution of the light space
samples. This method can raising the rendering efficiency
in local scenes, like street or indoor scenes. However, an-
other problem of viewports overlapping between shadow
maps frusta still exists, which wastes shadow map space
and increases average frame time. Liang [7] proposed
a Light Space Cascaded Shadow Maps (LiSCSMs) algo-
rithm which prevents a same geometry casting into multi-
ple shadow maps for improving rendering efficiency, but the
space overlapping problem still exists. Nikolas [8] proposed
a “Oblique Projection for Cascaded Shadow Maps (OPC-
SMs)” method to eliminate the overlapping problem in their
“CryENGINE”. However, this method is still based on Z-
partitions of view frustum, and light frusta are created based
on the partitions in 3 view frustum clip planes for wholly
covering the view frustum. CryENGINE consumes 2 times
more rendering passes than traditional CSMs algorithms [3],

Fig. 1 Large proportion of view ports of light frusta overlap with each
other in tradition partitioning algorithms. Left: light direction is parallel
with view direction. Right: light is in an arbitrary angle to view direction.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

LETTER
235

showing a poorer performance in rendering efficiency. Be-
sides, current partitioning methods, to our knowledge, cre-
ate partitions in fixed number in whatever light and view di-
rections. The fixed partitions make it difficult to raise higher
efficiency for traditional Z-partitioning based methods.

3. Light Space Partitioning

We describe Light Spaced Partitioned Shadow Maps
(LSPSMs) algorithm in this section, whose core principle is
creating non-overlapped partitions for shadow maps in light
space. Partitions are generated in dynamic number corre-
sponding to the light and view directions. Our goal is raising
the rendering efficiency while keeping high image quality.
The LSPSMs is simple enough to add to existing shadow
maps systems easily.

3.1 Light Projection Plane

We introduce a terminology “light projection plane”, which
refers to a virtual plane perpendicular to the light direction,
as Fig. 2 shows. Instead of splitting the view frustum di-
rectly like traditional partitioning based algorithms [2], [3],
we split the projection of the view frustum in light projec-
tion plane.

Before projecting, the view frustum can be refined to
bound the shadow-viewed space tightly by removing the
space below the base plane, as well as the space without
any shadow object inside. We name the projection of the
refined view frustum in light space as the projective re-
gion, which is in a shape of isosceles trapezoid. Parti-
tions are then split from the projective region according to
a dual-directional partitioning scheme, which is detailedly
discussed in Sect. 3.2. Finally, shadow maps are generated
by the light frusta, whose viewports are defined by these
partitions.

In the perspective of light, the shadow viewed space
inside the view frustum is wholly covered by the projec-
tive region. Non-overlapped partitions can be directly split
from the projective region to create light frusta. Overlap-
ping problem is easily eliminated in this way. Comparing
to CryENGINE, which creates partitions from 3 clip planes,
our LSPSMs implements partitioning operations only in one
plane. This novelty make LSPSMs owning the potential to
create shadow maps with high sample density in more effi-
cient way.

Fig. 2 An overview of of LSPSMs. Left: shadow viewed space is pro-
jected into light space to create the projective region. Middle: partitions are
created based on the projective region in two directions. Right: light frusta
are created based on the partitions for shadow maps generating.

3.2 Dual-Directional Partitioning

Our dual-directional partitioning strategy performs based on
shape of the projective region, which indicates the sam-
ple distribution in reverse proportion to the size. As Fig. 3
shows, n and f denote the length of near and far base re-
spectively. L is the length of the projective region in view
direction. θ (0 ≤ θ < π/2) is the angle between view direc-
tion and a leg of the isosceles trapezoid-shaped projective
region. Their values vary corresponding to two factors, in-
cluding view and light directions. In the case of both view
and light directions being orthogonal to the ground, the pro-
jective region expands to a rectangle, which tells θ = 0 and
n = f . Samples inside the viewport own close footprints in
this case. In other cases, footprints of samples around the
near side are smaller than the farther samples.

There are two steps to split the projective region, in-
cluding lengthways partitioning in first, and transverse par-
titioning in second.

Lengthways partitioning intends to create partitions
in rectangle shape. For creating shadow maps with high
sample density, we determine the sides of each partition by
limiting the the maximum waste space at best effort, rather
than creating splitting points in Z-direction like traditional
methods [3], [8].

Let’s denote the orthogonal side and lengthways side
of a partition as Wi and Hi respectively (i is the index of a
partition starting from 1). The space wasting factor of parti-
tion i is calculated as ρ = Hi∗tanθ

Wi
. ζ is introduced to represent

the maximum space wasting tolerance, which means ρ < ζ
(0 ≤ ζ < 0.5). Based on this limitation, we compute the
sides of each partition as

Wi =

⎧⎪⎪⎨⎪⎪⎩
(1

1−2·tan θ)
i · n θ ∈ [0, arctan ζ)

(1
1−2·ζ)

i · n θ ∈ [arctan ζ, π/2)

Hi =

⎧⎪⎪⎨⎪⎪⎩
(1

1−2·tan θ)
i · n θ ∈ [0, arctan ζ)

(1
1−2·ζ)

i · ζtan θ · n θ ∈ [arctan ζ, π/2)

(1)

Equation (1) shows a scheme to create partitions
heuristically from the near side of the projective region. It
can be easily proved that, in any case, the space wasting fac-
tor is limited as ρ ≤ ζ.

The lengthways partitioning accomplishes once the
whole projective region is covered by the partitions when

the partition number hmax meets
hmax∑
n=1

Hi ≥ L. From Eq. (1)

we know that the value of Hi is only subject to θ and ζ. The
value of ζ is set by user, which is a constant parameter in all

Fig. 3 Dual-directional partitioning. (a) The projective region. (b) Parti-
tions are created in lengthways direction. (c) Transverse partitioning.

236
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

Fig. 4 Distribution of θ during viewer wandering.

frames in fact. So, the number of lengthways partitions is
tuned by θ automatically corresponding to the changing of
light and view directions in each frame.

One of the advantages of the varied partition number is
that the rendering efficiency can be raised due to decreased
average rendering pass. This feature makes our partition-
ing scheme different from all existed partitioning algorithms
in fixed partition number and facilitates the high quality
shadow rendering in energy sensitive devices.

Transverse partitioning is performed after the length-
ways partitioning. Usually, shadow maps are created in res-
olution of N×N. uv footprint difference would be introduced
by the different length of viewport sides. To improve the
image quality by balancing the uv footprints, we introduce
a maximum footprint difference tolerance factor σ, which
represents the upper limit of the uv footprint difference as
Wi

Hi
≤ (1 + σ) (σ > 0). Once a lengthways partition exceeds

the uv footprint difference tolerance as Wi

Hi
> (1 + σ), an

transverse partitioning is performed to split it into Nw sub-
partitions (Nw =

⌈
Wi/Hi

1+σ

⌉
). Transverse side length of newly

split partitions are calculated as Wi j =
Wi

Nw
.

4. Results

We have implemented Light Space Partitioned Shadow
Maps (LSPSMs) on a desktop computer equipped with Core
I7 CPU, 8G memory, and GTX 780 GPU. All the shadow
maps are set in size of 1024 × 1024. The screen viewport is
1440 × 1080. The field of view is 60 degree and the aspect
ratio of the view frustum is 1.33 (1440/1080).

4.1 Performance

From Eq. (1) we know that the partition number in length-
ways direction is influenced by two parameters including ζ
and θ, the former is defined by user and the latter is auto-
tuned during the viewer wander through the scene.

Figure 4 is a histogram which shows the distribution of
θ during viewer wandering through an arbitrary pass. The
motion of the viewer includes stepping forward and back-
ward, and turning its view direction around. Light direction
also changes during the motion. The distribution of θ is in-
fluenced by light and view changing and irrelative to the
scene used. From this figure we can see that θ located in the
range of 25 degrees to 30 degrees at a large proportion. This

Fig. 5 Average partition number (N) to the wasting factor ζ.

is because characters in a movie or game usually take a great
proportion of time at stepping forward or backward. Actu-
ally, θ is never greater than 40 degrees in all experiments.

Figure 5 shows the average partition number influenced
by ζ in a same wandering path. We can learn from this figure
that the average partitions needed for shadow rendering de-
creases with the increment of the wasting factor. The value
of ζ is set scene-independently by considering the tradeoff
between image quality and rendering efficiency.

To demonstrate the advantage of our LSPSMs method
in rendering efficiency, we compare it with latest contribu-
tions, including LiSCSMs [7], SDSMs [6] and OPCSMs in
CryENGINE [8]. In our LSPSMs, uv resolution difference
tolerance factor is set as σ = 0.5. The maximum lengthways
partition number is limited as hmax ≤ 4 and the transverse
partition number is limited as Nw ≤ 2. The wasting factor
ζ is set as ζ = 0.25, a value which is proved helpful for
both high quality and efficiency, after repeated experiments.
For all the competent algorithms, the splitting number in Z-
direction is 8. Under such parameter settings, LSPSMs will
consume same(8) rendering passes at most with LiSCSMs
and SDSMs for the worst case. Four scenes are used in our
comparisons, including a Tree scenario, a Power Plant, a
Sponza and a Geometries scenario. Table 1 demonstrates
the comparison result in the average partition number and
average frame time (in millisecond).

Among all the competent methods, our LSPSMs and
CryENGINE have the ability to eliminate the overlapping
problem. But as Table 1 shows, CryEngine consumes nearly
3 times rendering passes to our LSPSMs in average, mak-
ing its efficiency much lower. Only in the indoor scene of
Sponza, SDSMs shows best performance due to its ability to
create the tightest light space bounding to cull the occluded
objects. In all the other cases, our LSPSMs get better perfor-
mance than the competent algorithms because less rendering
passes are consumed in average.

4.2 Quality

LSPSMs has the ability to produce shadow in nearly con-
stant “texel-per-pixel” ratio. Suppose the resolution in the
far transverse side of each shadow map is same with screen,
from Eq. (1) we know that the maximum screen error in this
shadow maps is less than ζ (2Hi tan θ

Wi
≤ ζ). The efficient tex-

ture space utilization and the high sample density make the
shadow quality rendered by LSPSMs in high precision.

LETTER
237

Table 1 Comparison of average partition number (N) and average frame time (T , in milliseconds) in
different scenes (ζ = 0.25).

Scene
LSPSMs LiSCSMs SDSMs OPCSMs

N T (ms) N T (ms) N T (ms) N T (ms)
Tree 4.32 5.19 8 9.26 8 9.14 17 10.02

PowerPlant 5.61 6.07 8 11.53 8 12.37 17 15.53
S ponza 5.13 6.26 8 10.95 8 5.78 17 15.14

Geometries 6.15 7.39 8 9.54 8 8.03 17 11.25

Fig. 6 Quality of shadow edges are finer in the images rendered with
transverse partitioning (left) than images rendered without transverse par-
titioning.

Fig. 7 Compared to LiSCSMs (right), LSPSMs (left) can render more
subtle details. Notice the comparison of shadow edges. Top row: power
plant scene. Bottom row: geometries scene.

With the help of transverse partitioning, subtle details
can be rendered in high precision even in the case of the
viewer being very close the shadows. As Fig. 6 shows, bet-
ter quality can be seen at the shadow edges from the image
produced with transverse partitioning.

Compared to LiSCSMs, our LSPSMs can create
shadow maps with higher sample density. The improvement
of shadow quality can be demonstrated by comparing it with
LiSCSMs, as Fig. 7 shows. More improvements can be see
in our supplemental images and video.

5. Conclusions and Future Works

We propose Light Space Partitioned Shadow Maps algo-
rithm (LSPSMs) in this letter for high quality shadow ren-
dering. LSPSMs split the projective region into partitions
in light space, which represent viewports of light frusta.
The partitioning operation is performed under the limitation

of wasted space, rather than by calculating Z-partitioning
points like traditional methods. The problem of space over-
lapping is eliminated for high sample density. Partitions are
crated in dynamic number corresponding to the light and
view directions for efficient shadow rendering. Experimen-
tal results show that LSPSMs raise the rendering efficiency
while keeping high image quality.

In the future, we would be interested in exploring the
combination of LSPSMs with warping techniques for finer
image quality. Algorithms that attempt to cast shadows on a
spherical and arbitrary surface are of particular interest.

Acknowledgements

This research work was supported by the Jiangsu Prov-
ince Science Foundation for Youths of China (Grant No.
BK20150722). Thanks to NVIDIA to provide the Tree
scene and thanks to Microsoft to provide the Power Plant
scene, Sponza scene, and Geometries scene in their SDKs.
We would like to thank all the reviewers of this letter for
their valuable and constructive comments.

References

[1] L. Williams, “Casting curved shadows on curved surfaces,” ACM Sig-
graph Computer Graphics, pp.270–274, ACM, 1978.

[2] E. Eisemann, U. Assarsson, M. Schwarz, M. Valient, and M. Wimmer,
“Efficient real-time shadows,” ACM SIGGRAPH 2013 Courses, SIG-
GRAPH ’13, New York, NY, USA, pp.18:1–18:54, ACM, 2013.

[3] W. Engel, Cascaded shadow maps, pp.197–206, Charles River Media,
2006.

[4] F. Zhang, H. Sun, L. Xu, and L.K. Lun, “Parallel-split shadow maps
for large-scale virtual environments,” Proceedings of the 2006 ACM
International Conference on Virtual Reality Continuum and Its Appli-
cations, VRCIA ’06, New York, NY, USA, pp.311–318, ACM, 2006.

[5] D.B. Lloyd, D. Tuft, S.e. Yoon, and D. Manocha, “Warping and parti-
tioning for low error shadow maps,” Proc. 17th Eurographics Confer-
ence on Rendering Techniques, EGSR ’06, Aire-la-Ville, Switzerland,
Switzerland, pp.215–226, Eurographics Association, 2006.

[6] A. Lauritzen, M. Salvi, and A. Lefohn, “Sample distribution shadow
maps,” Symposium on Interactive 3D Graphics and Games, I3D ’11,
New York, NY, USA, pp.97–102, ACM, 2011.

[7] X.-H. Liang, S. Ma, L.-X. Cen, and Z. Yu, “Light space cascaded
shadow maps algorithm for real time rendering,” Journal of Computer
Science and Technology, vol.26, no.1, pp.176–186, 2011.

[8] N. Kasyan, “Playing with real-time shadows.” http://www.crytek.com/
cryengine/presentations/playing-with-real-time-shadows, 2013.

http://dl.acm.org/citation.cfm?doid=800248.807402
http://dl.acm.org/citation.cfm?doid=2504435.2504453
http://dl.acm.org/citation.cfm?doid=1128923.1128975
https://doi.org/10.1145/1944745.1944761
http://link.springer.com/article/10.1007%2Fs11390-011-9424-7

