
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017
1903

LETTER

Kernel CCA Based Transfer Learning for Software Defect
Prediction

Ying MA†a), Shunzhi ZHU†, Yumin CHEN†, Nonmembers, and Jingjing LI††, Member

SUMMARY An transfer learning method, called Kernel Canonical
Correlation Analysis plus (KCCA+), is proposed for heterogeneous Cross-
company defect prediction. Combining the kernel method and transfer
learning techniques, this method improves the performance of the predictor
with more adaptive ability in nonlinearly separable scenarios. Experiments
validate its effectiveness.
key words: machine learning, defect prediction, transfer learning, kernel
canonical correlation analysis

1. Introduction

Software defect prediction should identify defect-prone
modules to improve software quality and testing efficiency.
Many researchers apply software defect prediction on the
basic assumptions, the source and target data must be in the
same feature and must follow the identically distributed con-
dition [1], [2]. In practice, the local software defect data sets
are not available in many circumstances [3]–[5], such as a
new project is started in a new domain, the defect predic-
tion technique is applied for the first time, and defect data
might not be collected in the software development process.
At the same time, the auxiliary software defect data sets are
available from open source software, which has become in-
creasingly prevalent for software development.

To the best of our knowledge, few researchers have in-
vestigated the kernel based technology to support the defect
prediction with auxiliary heterogeneous sources. Transfer
learning [6] provides an approach to construct reliable clas-
sifiers through exploiting the useful knowledge from related
auxiliary data sets. In order to improve the performance and
enhance the adaptive ability of the predictor, we propose a
method called Kernel Canonical Correlation Analysis based
transfer learning algorithm (KCCA+), combining the kernel
method with transfer learning technique in generalized way.
The main feature of KCCA+ is transforming the source and
target software data into high space to find the most appro-
priate weight matrix for learning, as shown in Fig. 1. The
data in source domains can be represented with the mapping
functions and transferred to the target domain.

Our experimental results on real data sets show that

Manuscript received December 9, 2016.
Manuscript revised April 7, 2017.
Manuscript publicized April 28, 2017.
†The authors are with Xiamen University of Technology, Xia-

men, China.
††The author is with University of Electronic Science and Tech-

nology of China, Chengdu, China.
a) E-mail: maying@xmut.edu.cn

DOI: 10.1587/transinf.2016EDL8238

Fig. 1 Construct defect prediction model based on KCCA+ method.

KCCA+ results in better performance than state of the art
prediction methods. Since local labeled data sets are rare
and auxiliary labeled data sets are rich, this method is help-
ful for practical application.

2. Related Work

There are a few software defect prediction studies which
exploit heterogeneous cross-company data sets in the pre-
dictors. These methods can be divided into two groups:
instance-based approach and algorithm-based approach.

In the instance-based approach, Turhan et al. [7] built
local predictor based on the similar cross-company samples
which are select by nearest neighbor filtering (NN-filter).
This method has better performance than original methods
which are trained on cross-company data diretly. In compar-
ison to Turhan’s method, Zimmermann et al. [8] analyzed
the effect of the various characteristics on prediction qual-
ity with decision trees. He et al. [9] proposed a three-step
approach to automatically select training data for projects
without historical data. After that, Turhan et al. [10] con-
structed models from a mix of within and cross project data,
and found some improvements on within project defect pre-
dictions after adding data from other projects. Devine et
al. [11] empirically investigated the affect of reuse across
products and reuse across releases on accuracy of defect
predictors. These articles are all applying traditional lean-
ing methods on different data, which were preprocessed by
different strategies.

One of the first reports for the algorithm-based ap-
proach is Transfer Naive Bayes (TNB) [12], which esti-
mated the distribution of the test data, and transfered cross-
company data information into the weights of the training
data. Nam et al. [13] extended the Transfer Component

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



1904
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Analysis (TCA) to improve cross-project prediction perfor-
mance. Chen et al. [14] proposed a novel algorithm based
on double boosting to improve the performance of cross-
company defects prediction by reducing negative samples in
cross-company data. Ryu et al. [15] proposed method called
the value-cognitive boosting with support vector machine to
combat the class imbalance problem in cross-project defect
prediction. Jing et al. [16] introduced canonical correlation
analysis (CCA), an effective transfer learning method, into
cross-company defect prediction to make the data distribu-
tions of source and target companies similar.

The most approaches are based on the assumption that
the data of source and target companies or projects should
have the same software metrics. KCCA+ builds up a map-
ping between two related feature spaces to enable the knowl-
edge transfer based on kernel technique, as shown in Fig. 1.
The data in source companies can be represented with the
mapping functions and transferred to the target companies.
Therefore, it improves the performance of the predictor with
more adaptive ability in nonlinearly separable scenarios,
without the same software metrics assumption.

3. Kernel Canonical Correlation Analysis Based Trans-
fer Learning for Software Defect Prediction

3.1 Back Ground

Canonical Correlation Analysis (CCA) [17] is well-known
multivariate data analysis technique to seek matrixes WS and
WT such that the random variables U = W ′S XS and V =
W ′T XT maximize the correlation, where XS = x1

S , x
2
S , . . . , x

N
S

and XT = x1
T , x

2
T , . . . , x

M
T , (�)′ refers to the transpose of a

vector or a matrix. Recently, CCA has been used in transfer
learning for heterogeneous Cross-company defect predic-
tion [16]. The projective transformation WS and WT based
on the unified software metric are as follows.

X̄S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
XC

S
Xs

S
0(dt−dc) × N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ and X̄T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
XC

T
0(ds−dc) × M

Xs
T

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (1)

where XC
S and XC

T correspond to the same common metrics,

Table 1 Symbols of the kernel canonical correlation analysis.

symbol description
ds, dt the number of metrics in source data, target

data
N,M the number of samples in source data, target

data
du = ds + dt − dc the number of unified metrics
du ↑ the du in the transformed high feature space
X̄S , X̄T ∈ Rdu×du the unified metrics
XS ∈ Rds×N , XT ∈ Rdt×M the source and target matrix
KS ,KT ∈ Rdu↑×du↑ the source and target covariance matrix
ΦS ,ΦT ∈ Rdu↑×du↑ the transformation matrix
α, β ∈ Rdu↑×du↑ the weight matrix in the transformed space
μ̄S , μ̄T mean vector of source and target unified data
U,V ∈ Rdu×du the transformed source and target matrix

Xs
S is the data in XS containing source-company metrics ex-

cept for the common metrics and Xs
T is the data in XT con-

taining target-company specific metrics.

3.2 Kernel Canonical Correlation Analysis Based Transfer
Learning for Software Defect Prediction

The canonical correlation analysis method can find an ap-
propriate representation of the source and target software
data in a linear subspace. The CCA+ transfer model con-
siders the defect data linearly separable. In order to achieve
reliable results, we exploit the kernel CCA [18] to general-
ize the transfer methods for the software data sets which are
non-linearly separable. By using the kernel method†, the U
and V can be rewritten as

U = C′ΦS (xS ) = ΣiαiΦS (x̄S ) (2)

V = D′ΦT (xT ) = ΣiβiΦT (x̄T ) (3)

where the C,D are the weight matrix in the transformed high
feature space, and α, β are the weight matrix, which are
arranged by αi, and βi respectively in the original feature
space. Then the correlation of U and V is

corr(U,V) =
αKS KTβ√
α′K2

Sα
√
β′K2

Tβ
(4)

where the source covariance matrices and the target covari-
ance matrix in the kernel form are as follows.

KS =
1
N

N∑
j=1

(Φ(x̄ j
S ) − ūS )(Φ(x̄ j

S ) − ūS )′ (5)

KT =
1
M

M∑
j=1

(Φ(x̄ j
T ) − ūT )(Φ(x̄ j

T ) − ūT )′ (6)

where ūi =
1
ni

∑ni

j=1Φ(x j
i ) is conditional mean vector, ū is

mean vector of total instances, Φ(x j
i ) is the jth instances in

the source or target data set, i ∈ {S ,T }, and ni is the number
of instances of S or T .

In order to maximize the corr(U,V) value, we get the
kernelized objective function:

Maxα,β α′KS KTβ

s.t. α′KSα = 1, β′KTβ = 1 (7)

The above problem can be modified to the following gener-
alized eigenvalue problem.
[

0 KS KT

KT KS 0

] [
α
β

]
= λ

[
K2

S 0
0 K2

T

] [
α
β

]
(8)

Note that CCA+ and KCCA+ is modified through the
original represent of CCA and KCCA, which are prone to

†Kernel function (Φ(x)) is introduced to reduce computation,
for mapping the data nonlinearly into a feature space.



LETTER
1905

Fig. 2 The F-measure results of NN-filter, TNB, TCA+, CCA+, and KCCA+.

Fig. 3 The AUC results of NN-filter, TNB, TCA+, CCA+, and KCCA+.

occur overfitting problem. To limit overfitting, the regular-
ized version should be considered as follows.

Maxα,β α′KS KTβ

s.t. (1 − τα)α′K2
Sα + ταα

′KSα = 1

(1 − τβ)β′K2
Tβ + τββ

′KTβ = 1 (9)

To solve the above optimal problem, lagrange multiplier
method can be used to obtain generalized eigenvalue prob-
lem. [

0 KS KT

KT KS 0

] [
α
β

]
(10)

= λ

[
(1 − τα)K2

S + ταKS 0
0 (1 − τβ)K2

T + τβKT

] [
α
β

]

The above problem can be modified to the following
equivalent symmetry eigenvalue problem.

(R′)−1RβR
′
α((1−τα)RαR′α+ταI)−1RαR

′
βR
−1u = λu (11)

where KS = R′αRα, KT = R′βRβ, and (1 − τβ)RβR′β + τβI =
R′R are the incomplete Cholesky factorization of the kernel
matrices.

KCCA+ is summarized as in Algorithm 1. After ob-
taining the projected samples, we use the naive bayes classi-
fier [1] to build predictor. KCCA+ originates from the need
to transfer the target data information in the prediction task.
This method inherits the advantage of kernel method, which
can conduct quite general dimensional feature space map-
pings. This algorithm maximizes the correlations between

Algorithm 1 KCCA+
Require:

Source and Target data sets S, T;
Ensure:

Kernel Canonical Correlation Analysis based predictor, M;
1: Run Unifier model algorithm on data set S and T to get KS , KT .
2: Decompose KS , KT to get Rα, Rβ;
3: Decompose (1 − τβ)RβR′β + τβI to get R;

4: Compute λi, u j
β, according to Eq. (11);

5: Calculate β j = R−1uβ, β j = ‖β j‖;
6: Calculate α j = ((1 − τα)RαR′α + ταI)−1RαR′ββ

j, α j = α j/‖α j‖;
7: Compute the source and target projected samples U, V , according to

Eqs. (2) and (3);
8: Build predictor M on the projected samples;
9: Using M to Predict the result based on T corresponding to the V .

10: return M;

transformed variables based on KCCA, and solves the dif-
ferent distributions between the source and target data.

4. Experiments

4.1 Data Sets

The experimental data sets come from NASA and SOFT-
LAB, which can be obtained from PROMISE [19], as shown
in Table 2. The SOFTLAB data sets (ar3, ar4, ar5), are
drawn from three controller systems for a washing machine,
a dishwasher, and a refrigerator in Turkish domestic ap-
pliances company respectively. They are all written in C
code. Remaining data sets are developed at different sites
by different teams from NASA aerospace software compa-



1906
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Table 2 Data sets.

Company project #metrics #modules size(loc) #defective
CM1 37 327 14,763 42

NASA PC1 37 705 25,924 65
MW1 37 253 8341 27
AR3 29 63 5,624 8

SOFTLAB AR4 29 107 9,196 20
AR5 29 36 2,732 8

nies. They are all written in C++ code.

4.2 Experimental Result

In order to investigate the performance of our algorithm,
we compare it with NN-filter [7], TNB [12], TCA+ [13],
CCA+ [16] (Gaussian RBF kernel γ = 10, c = 1000). For
each data set, we perform 5-fold cross validation. We use the
area under the receiver operating characteristic curve (AUC)
and the weighted harmonic mean of precision and recall (F-
measure) performance metrics which are commonly used in
the field of software defect prediction.

The results for all the five methods are shown in Figs. 2
and 3. We can see that KCCA+ is superior to other algo-
rithms in the aspect of F-measure except for (PC1⇒AR3,
PC1⇒AR4). But even in these two cases, KCCA+ is also
comparable to CCA+. KCCA+ is also superior to other al-
gorithms in the aspect of AUC, except for (MW1⇒AR5).
Note that the number of software modules in MW1 is the
smallest, and AR5 is also the smallest data set in the target
data. It may be because the quality of the prediction not only
depends on promising method, but also depends on the ab-
solute number of labeled instances. Both of the figures show
that KCCA+ learning algorithm can improve the F-measure
and AUC performance by combining the kernel method and
transfer learning technique.

5. Conclusion

In this paper, we introduce the kernel canonical correlation
analysis based transfer learning method into software defect
prediction. The proposed algorithm KCCA+ exploits the
kernel technique and transfer learning technique to transfer
the target data information for local labeling task. Experi-
mental results on real data sets validate its effectiveness.

Acknowledgments

This research was partially supported by the National Nat-
ural Science Foundation of China (Grant No. 61502404),
Natural Science Foundation of Fujian Province of China
(Grant No. 2015J05132), Foundation of Fujian Educational
Committee (Grant No. JA14234), International S&T Coop-
eration Program (Grant Nos. E201402000). We thank the
anonymous reviewers for their great helpful comments.

References

[1] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code at-
tributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol.33,

no.1, pp.2–13, 2007.
[2] C. Catal, “Software fault prediction: A literature review and current

trends,” Expert Systems with Applications: An International Jour-
nal, vol.38, no.4, pp.4626–4636, 2011.

[3] T. Menzies, E. Kocaguneli, F. Peters, B. Turhan, and L.L. Minku,
“Data science for software engineering,” International Conference
on Software Engineering, pp.1484–1486, 2013.

[4] Y. Kamei and E. Shihab, “Defect prediction: Accomplishments and
future challenges,” 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering, pp.33–45, 2016.

[5] T. Menzies, L. Minku, and F. Peters, “The art and science of analyz-
ing software data; Quantitative methods,” 2015 IEEE/ACM 37th In-
ternational Conference on Software Engineering, pp.959–960, 2015.

[6] S.J. Pan and Q. Yang, “A survey on transfer learning,” Technical Re-
port HKUST-CS 08-08, Department of Computer Science and Engi-
neering, Hong Kong University of Science and Technology, 2008.

[7] B. Turhan, T. Menzies, A.B. Bener, and J. Di Stefano, “On the rela-
tive value of cross-company and within-company data for defect pre-
diction,” Empirical Software Engineering, vol.14, no.5, pp.540–578,
2009.

[8] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: A large scale experiment on data
vs. domain vs. process,” Proc. 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC/FSE),
pp.91–100, 2009.

[9] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on the
feasibility of cross-project defect prediction,” Automated Software
Engineering, vol.19, no.2, pp.167–199, 2012.

[10] B. Turhan, A.T. Misirli, and A. Bener, “Empirical evaluation of the
effects of mixed project data on learning defect predictors,” Informa-
tion and Software Technology, vol.55, no.6, pp.1101–1118, 2013.

[11] T. Devine, K. Goseva-Popstojanova, S. Krishnan, and R.R. Lutz,
“Assessment and cross-product prediction of software product
line quality: Accounting for reuse across products, over mul-
tiple releases,” Automated Software Engineering, vol.23, no.2,
pp.253–302, 2016.

[12] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for
cross-company software defect prediction,” Information and Soft-
ware Technology, vol.54, no.3, pp.248–256, 2012.

[13] J. Nam, S.J. Pan, and S. Kim, “Transfer defect learning,” Proc.
35th International Conference on Software Engineering (ICSE),
pp.382–391, 2013.

[14] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples reduc-
tion in cross-company software defects prediction,” Information and
Software Technology, vol.62, pp.67–77, 2015.

[15] D. Ryu, O. Choi, and J. Baik, “Improving prediction robustness of
VAB-SVM for cross-project defect prediction,” 2014 IEEE 17th In-
ternational Conference on Computational Science and Engineering,
pp.994–999, 2014.

[16] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, “Heterogeneous
cross-company defect prediction by unified metric representation
and CCA-based transfer learning,” Proc. 10th Joint Meeting of the
European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), pp.496–507, 2015.

[17] D.R. Hardoon, S.R. Szedmak, and J.R. Shawe-Taylor, “Canonical
correlation analysis: An overview with application to learning meth-
ods,” Neural Comput., vol.16, no.12, pp.2639–2664, 2004.

[18] K. Fukumizu, F.R. Bach, and A. Gretton, “Statistical consistency of
kernel canonical correlation analysis,” Journal of Machine Learning
Research, vol.8, pp.361–383, 2007.

[19] G. Boetticher, T. Menzies, and T. Ostrand, The PROMISE Reposi-
tory of Empirical Software Engineering Data, 2007.
http://promisedata.org/repository

http://dx.doi.org/10.1109/tse.2007.256941
http://dx.doi.org/10.1109/tse.2007.256941
http://dx.doi.org/10.1016/j.eswa.2010.10.024
http://dx.doi.org/10.1109/icse.2013.6606752
http://dx.doi.org/10.1109/saner.2016.56
http://dx.doi.org/10.1109/icse.2015.306
http://dx.doi.org/10.1007/s10664-008-9103-7
http://dx.doi.org/10.1145/1595696.1595713
http://dx.doi.org/10.1007/s10515-011-0090-3
http://dx.doi.org/10.1016/j.infsof.2012.10.003
http://dx.doi.org/10.1007/s10515-014-0160-4
http://dx.doi.org/10.1016/j.infsof.2011.09.007
http://dx.doi.org/10.1109/icse.2013.6606584
http://dx.doi.org/10.1016/j.infsof.2015.01.014
http://dx.doi.org/10.1109/cse.2014.198
http://dx.doi.org/10.1145/2786805.2786813
http://dx.doi.org/10.1162/0899766042321814

