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Finding the Minimum Number of Open-Edge Guards in an
Orthogonal Polygon is NP-Hard

Chuzo IWAMOTO†a), Member

SUMMARY We study the problem of determining the minimum num-
ber of open-edge guards which guard the interior of a given orthogonal
polygon with holes. Here, an open-edge guard is a guard which is allowed
to be placed along open edges of a polygon, that is, the endpoints of the
edge are not taken into account for visibility purpose. It is shown that
finding the minimum number of open-edge guards for a given orthogonal
polygon with holes is NP-hard.
key words: open-edge guards, orthogonal polygons, art gallery problem

1. Introduction

The art gallery problem is to determine the minimum num-
ber of guards who can observe the interior of a gallery.
Chvátal [2] proved that �n/3� guards are lower and upper
bounds for this problem; namely, �n/3� guards are always
sufficient and sometimes necessary for observing the inte-
rior of an n-vertex simple polygon. This �n/3�-bound is
replaced by �n/4� if the instance is restricted to a simple
orthogonal polygon [4].

Another approach to the art gallery problem is to study
the complexity of locating the minimum number of guards
in a polygon. The NP-hardness of this problem was shown
by Lee and Lin [6]. Furthermore, Schuchardt and Hecker [9]
proved that this problem remains NP-hard if we restrict our
attention to simple orthogonal polygons. Even guarding the
vertices of a simple orthogonal polygon is NP-hard [5].

An edge guard is a guard that is only allowed to be
placed on the edges of a polygon, and the edge guard can
move between the endpoints of the edge (see Fig. 1 (b)).
For the edge guarding problem for n-vertex polygons, it is
known that �n/4� and �3n/10� are lower and upper bounds,
respectively [10], and the minimum edge-guarding problem

Fig. 1 (a) An orthogonal polygon with holes. (b) A (closed) edge guard.
(c) An open-edge guard.
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is NP-hard [6].
An open-edge guard is an edge guard such that the end-

points of the edge are not taken into account for visibility
purpose (see Fig. 1 (c)). The motivation of the open-edge
guarding problem is given in [12], where the problem is in-
formally stated as “How many windows should we place on
the walls of a dark building to illuminate its interior?”

Tóth, Toussaint, and Winslow proved that �n/3� and
�n/2� are lower and upper bounds of the minimum number
of open-edge guards, respectively [11]. They also conjec-
tured that �n/3� is both a lower and upper bound.

In this paper, we investigate the complexity of the
open-edge guarding problem. It is shown that finding the
minimum number of open-edge guards for a given orthogo-
nal polygon with holes is NP-hard.

2. Definitions and Results

The definitions of a polygon and a polygon with holes are
mostly from [7], [8]. A polygon is defined by a finite set of
segments such that every segment extreme is shared by ex-
actly two edges and no subset of edges has the same prop-
erty. The segments are the edges and their endpoints are the
vertices of the polygon. If each edge of a polygon is per-
pendicular to one of the coordinate axes, then the polygon is
called orthogonal. Thus, an orthogonal polygon is a poly-
gon all of whose edge intersections are at right angles. An
orthogonal polygon is sometimes called a rectilinear poly-
gon.

A polygon with holes is a polygon P enclosing sev-
eral other polygons H1,H2, . . . ,Ht, the holes. None of the
boundaries of P, H1,H2, . . . ,Ht may intersect, and each of
the holes is empty. P is said to bound a multiply-connected
region with t holes: the region of the plane interior to or
on the boundary of P, but exterior to or on the boundary
of H1,H2, . . . ,Ht. (Such a region is called a “polygon P
with holes” or simply “polygon P” in the rest of this pa-
per.) Similarly, we define an orthogonal polygon with holes
to be an orthogonal polygon with orthogonal holes, with all
edges aligned with the same pair of orthogonal axes (see
Fig. 1 (a)).

Given a polygon P, two points x and y are said to be
visible if the line segment xy does not contain any points
outside the polygon P. A point x in the polygon P is said to
be visible from an edge if there exists an interior point y of
the edge such that x and y are visible. Here, an interior point
of an edge is a point which is on the edge but is not on the
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endpoints of the edge. A set of edges is said to guard the
polygon P if every point in P is visible from at least one of
these edges.

An instance of the open-edge guarding problem in this
paper is an orthogonal polygon with holes and a positive
integer g. The problem asks whether there exists a set of
g edges which guards the region of the orthogonal polygon
with holes.

Theorem 1: The open-edge guarding problem for orthog-
onal polygons with holes is NP-hard.

3. Proof of Theorem 1

In Sect. 3.2, we will show a polynomial-time transformation
from an arbitrary instance C of the 3SAT problem to a poly-
gon with holes and integer g such that C is satisfiable if and
only if there exists a set of g edges which guards the region
of the polygon with holes.

3.1 3SAT Problem

The definition of 3SAT is mostly from [LO1] of [3]. Let
U = {x1, x2, . . . , xn} be a set of Boolean variables. Boolean
variables take on values 0 (false) and 1 (true). If x is a vari-
able in U, then x and x are literals over U. The value of x
is 1 (true) if and only if x is 0 (false). A clause over U is a
set of literals over U, such as {x1, x3, x4}. It represents the
disjunction of those literals and is satisfied by a truth assign-
ment if and only if at least one of its members is true under
that assignment.

An instance of 3SAT is a collection C = {c1, c2, . . . , cm}
of clauses over U such that |c j| ≤ 3 for each c j ∈ C. The
3SAT problem asks whether there exists some truth assign-
ment for U that simultaneously satisfies all the clauses in C.
(An example of C is given in the caption of Fig. 8.) It is
known that the 3SAT problem is NP-complete even if each
variable occurs exactly once positively and exactly twice
negatively in C [1].

Fig. 2 An outline drawing of orthogonal polygon P of width 3w. The center part of width w has
m projections labeled with c1, c2, . . . , cm.

3.2 Transformation from 3SAT-Instance to Polygon

Figure 2 is an outline drawing of orthogonal polygon P of
width 3w. Each of the left and right parts of width w has
a comb-like structure. The top side of the center part of
width w has m projections labeled with c1, c2, . . . , cm. (See
also the detailed drawing of ci and c j in Fig. 3.)

Each comb has 2m teeth, and thick and thin teeth ap-
pear alternately. One can see that the red area of Fig. 2 can
be guarded by 2m edges, indicated by red nodes of thick
teeth. The width w of the comb-like part is sufficiently large
so that (i) at least 2m edges are required for guarding thin
teeth, and (ii) those 2m edges cannot guard any projection ci.
Let d be the thickness of thin teeth (see Fig. 2). In the figure,
the thickness of thick teeth is 4d, the depth of each projec-
tion is d, and the width of the comb-like part is w = 32d.
If the value of d is determined so that the width p of pro-
jections c1 and cm is less than the value of 4d, then condi-
tions (i) and (ii) are satisfied.

Figure 3 is a gadget for variable xh, which appears in
clause ci positively and in c j and ck negatively in C. The
detailed drawing of the variable gadget for xh is shown in
Figs. 4, 5, and 6.

In order to see the red area of Fig. 6, at least one guard
must be placed on an edge which touches that red area (see
the edge indicated by blue node s of Fig. 4). By the same
reason, at least nine guards must be placed in the variable
gadget xh in Fig. 4 (see the nine blue edges indicated by blue
nodes in that figure). Those nine edges see the left and right
rectangular halls A and B excepting two small white trian-
gular areas near the green nodes a and b.

The red area of Fig. 4 is a connecting corridor between
two halls A and B. It is not difficult to show that at least two
edges touching the red area are required to guard all points
of the connecting corridor. If there is a guard on the edge
indicated by green node a (resp. green circle b) of Fig. 4,
then small white triangular area near b (resp. a) is guarded
by one of the two green edges in the corridor indicated by
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Fig. 3 Variable gadget for xh. Here, variable xh appears in clause ci positively and in c j and ck

negatively in C. (In the figure, ck is omitted due to space limitations.)

Fig. 4 Detailed drawing of the variable gadget for xh. A simplified illustration is given in Fig. 9.

two green nodes (resp. two green circles). Three edges indi-
cated by green nodes (resp. green circles) correspond to the
assignment xh = 1 (resp. xh = 1).

In Fig. 3, there are four pairs of narrow rectangular

portions of size l1 × d1 and 2l1 × d1. Those portions can be
guarded by four edges (see the four red nodes of rectangular
portions of size 2l1 × d1). Here, we assume that width d1

is sufficiently small as compared with length l1 so that the
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Fig. 5 Visible areas from four vertical edges indicated by blue nodes.

Fig. 6 Visible areas from five horizontal edges indicated by blue nodes.

value d1 + 2δ in Fig. 3 is almost equivalent to d1. Namely,
for an arbitrary small constant δ > 0, the value d1 is deter-
mined so that d1

2l1
≤ δ

8dm holds (i.e., d1 ≤ δl1
4dm ), where 8dm is

the height of the red area of Figs. 2 and 3. One can see four
edges are sufficient and necessary to guard the four pairs of
rectangular portions.

Similar rectangular portions of size l2 × d2 and 2l2 × d2

can be found in Fig. 4; four edges are sufficient and neces-
sary for guarding such portions (see the four edges indicated
by four red nodes of Fig. 4). Here, width d2 is sufficiently
small as compared with l2. (The exact value of d2 can be
computed by a manner similar to the previous paragraph.)

Consider a “hammer-shaped” gadget labeled with vh
of Fig. 3. This gadget is for guarding the grey area V of
Fig. 4. Obviously, one blue edge is sufficient and necessary
for guarding both grey area V and the inside of the hammer.

Consider projections labeled with ci, c j, and ck of
Figs. 3 and 4. Edges a and b of Fig. 4 can see edges labeled
with c j, ck and ci, respectively. (Recall that variable xh ap-
pears in clauses c j and ck negatively and in ci positively.)

The position of blue dotted segment ci of Fig. 4 can be
controlled by moving all the 26 vertices placed on the right
side of dotted line r, to the right or to the left. The length
of the blue dotted segment ci can be controlled by changing
the gap d3. The position and length of segments c j and ck

can be controlled similarly. If the movement of those 26 ver-
tices causes a collision with a 2l1 × d1 rectangular portion in
Fig. 3, then we reconstruct a variable gadget so that halls A
and B have a free space for the movement as shown in Fig. 7.
Figure 7 (a) is a simplified illustration of hall B of Fig. 4. We
reconstruct the variable gadget so that the size of halls is re-
duced as shown in Fig. 7 (b). Note that two green visibility
lines in Fig. 7 (a) are coincident with those in Fig. 7 (b). Fur-
thermore, in Fig. 7 (a), a hammer-shaped portion (illustrated
by dotted lines) can be replaced with smaller one such that
both of them have the same visibility line.

Fig. 7 (a) Simplified figure of hall B. Large and small hammer-shaped
portions have the same visibility line. (b) Small-sized hall, which has the
same pair of green visibility lines as (a).

Fig. 8 Orthogonal polygon P transformed from C = {c1, c2, c3, c4},
where c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, and c4 =

{x2, x3, x4}. From this figure, one can see that there is a truth assignment
(x1, x2, x3, x4) = (1, 0, 1, 1) satisfying all clauses. (In this figure, the de-
tailed drawing of Fig. 4 is illustrated as a simplified figure of Fig. 9.)

Fig. 9 Simplified illustration of Fig. 4.

Figure 8 is an orthogonal polygon P (with holes) trans-
formed from a 3SAT-instance C, where C is given in the cap-
tion of Fig. 8. In this figure, the detailed drawing of Fig. 4
is illustrated as a simplified figure of Fig. 9. Figure 10 is the
variable gadget for x3. The variable gadget for x4 is a mirror
image of this figure. From Fig. 8, one can see that there is
a truth assignment (x1, x2, x3, x4) = (1, 0, 1, 1) satisfying all
clauses.

In Fig. 3, there are 2 red nodes for every clause ci ∈
{c1, c2, . . . , cm}; 10 blue nodes, 4 red nodes, and 3 green
nodes for every variable xh ∈ {x1, x2, . . . , xn}. In Fig. 2, there
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Fig. 10 Variable gadget for x3 in Fig. 8. Variable gadget for x4 is a mirror
image of this figure.

are 2m red nodes. Hence, let g = 2m+ (10+ 4+ 3)n+ 2m =
4m + 17n. From this construction of polygon P with holes,
one can see that C is satisfiable if and only if there exists a
set of g edges which guards polygon P with holes.
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