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PAPER

Optimum Nonlinear Discriminant Analysis and Discriminant
Kernel Support Vector Machine

Akinori HIDAKA†a), Member and Takio KURITA††, Fellow

SUMMARY Kernel discriminant analysis (KDA) is the mainstream ap-
proach of nonlinear discriminant analysis (NDA). Since it uses the kernel
trick, KDA does not consider its nonlinear discriminant mapping explic-
itly. In this paper, another NDA approach where the nonlinear discrimi-
nant mapping is analytically given is developed. This study is based on
the theory of optimal nonlinear discriminant analysis (ONDA) of which
the nonlinear mapping is exactly expressed by using the Bayesian posterior
probability. This theory indicates that various NDA can be derived by es-
timating the Bayesian posterior probability in ONDA with various estima-
tion methods. Also, ONDA brings an insight about novel kernel functions,
called discriminant kernel (DK), which is defined by also using the poste-
rior probabilities. In this paper, several NDA and DK derived from ONDA
with several posterior probability estimators are developed and evaluated.
Given fine estimation methods of the Bayesian posterior probability, they
give good discriminant spaces for visualization or classification.
key words: discriminant analysis, nonlinear discriminant analysis, kernel
method, support vector machine, discriminant kernel

1. Introduction

Fisher’s linear discriminant analysis (FLDA) [6] is one of
the well known methods of extracting the best discriminat-
ing features for multi-class classification. FLDA is formu-
lated as a problem of finding an optimum linear mapping
which maximizes a discriminant criterion defined as a ra-
tio of within-class scatter and between-class scatter in the
mapped discriminant feature space.

FLDA is useful for linear separable cases, but for more
complicated cases, it should be improved to express non-
linear boundaries. There are several approaches to ob-
tain nonlinear discriminant analysis (NDA) by extending
FLDA. NDA based on neural network (NN) model were
studied in the 1990’s [7], [14], [22], and kernel-based dis-
criminant analysis (KDA) has been the mainstream since
2000 [1], [16], [19]. By using the kernel trick, KDA effi-
ciently gives nonlinear, high-dimensional and discrimina-
tive feature space without explicitly knowing a nonlinear
discriminant mapping Φ(x) for an input feature x. Instead
of the map Φ, the kernel functions which can be implicitly
represented as K(x, x′) = Φ(x)TΦ(x′) are considered.

There are several approaches to determine the kernel
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function K. The most simple way is to use a priori functions
such as the polynomial kernel or the radial bases functions
(RBF) kernel. Since these functions are primarily not de-
signed for the tasks of classification or discrimination, this
approach usually has some unavoidable problems: How to
select the kernel function? Is the selected function really
suitable to the problem?

On the other hand, there are many studies on the dis-
criminative kernel approach in which the user’s notion or
knowledge about a target problem is incorporated into ker-
nel functions [9], [12], [20], [21]. For example, Fisher ker-
nel [12] and Tsuda’s marginalized kernel (MK) [20], [21]
are strong frameworks to integrate a generative approach
and a discriminative approach. However, in those methods,
usually the kernel function K is directly defined based on the
user’s notion of similarity, without considering the nonlinear
mapping Φ explicitly.

As one of the drawbacks of the kernel approach, hyper-
parameters in kernel functions should be tuned with ex-
pensive computational costs. To handle these problems,
many papers studied optimizing kernel functions, for in-
stances [13], [24], [26]. However, those studies also did not
directly turn their attention to the nature of the nonlinear
discriminant mapping Φ.

As far as we know, there have been few reports on
nonlinear discriminant analysis which are not based on
the common (NN or KDA) approaches. As a few excep-
tions, Otsu proposed optimum nonlinear discriminant anal-
ysis (ONDA) [17], [18] of which the exact expression of
the optimum nonlinear discriminant mapping Φ was de-
rived based on variational calculus. ONDA is closely related
to Bayesian decision theory [3]. Interestingly, the optimal
mapping Φ can be defined as a linear combination of the
Bayesian posterior probabilities, and their coefficients are
obtained by solving the eigenvalue problem of the matrices
defined by using the Bayesian posterior probabilities. Also
Otsu pointed out that FLDA could be interpreted as a lin-
ear approximation of ONDA through the linear approxima-
tions of the Bayesian posterior probabilities. These results
are fundamental to understand the nature of the discriminant
analysis.

It is important to note that ONDA is based on the ideal
probabilistic assumption. Hence, it is required to know all of
the Bayesian posterior probability P(C|x) of class C, which
are usually regarded as an output of classification tasks, to
obtain the discriminant mapping Φ. However, when viewed
from a different angle, this theory of ONDA also suggests
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that various NDA can be constructed depending on specific
approximation or estimation methods of the posterior prob-
abilities [11], [14].

Based on this suggestion, in this paper, we develop
several NDA which have the exact expression of the dis-
criminant map Φ, and evaluate their performance. We use
two estimation methods of the Bayesian posterior probabil-
ity; the Gaussian model as a simple estimator and support
vector machine (SVM) as a more complex estimator. We
show some properties and discrimination performance of
our Gaussian NDA and SVM NDA by using standard bench-
mark data sets [8]. Our NDA have good discrimination and
visualization performance compared with RBF KDA when
sufficiently good estimation of the Bayesian posterior prob-
ability could be obtained.

The theory of ONDA also brings us another insight
about novel kernel functions. By investigating the dual
problem of the eigenvalue equation of ONDA, kernel func-
tions which can be interpreted as being incorporated in
ONDA is derived from the optimum mapping Φ. The de-
rived kernel function, called discriminant kernel (DK) [15],
is also defined by using the posterior probabilities. This
means that the class information is naturally introduced in
this kernel. Since ONDA is optimum in terms of the dis-
criminant criterion, DK can be considered as the kernel
function which is designed to optimize the discriminant cri-
terion.

According to this theory, we develop a novel DK,
called linear discriminant kernel (LDK), which is derived
from linear approximation of ONDA. LDK can be regarded
as the kernel function which is implicitly incorporated in
FLDA. Also, we develop another DK derived from Gaussian
NDA, called Gaussian DK [10]. In this paper, we also show
a theoretical relationship between DK and Tsuda’s MK [21],
and compare the performance of Gaussian DK and Gaussian
MK.

In experiments, we use DK and MK as the kernel func-
tion of SVM. We evaluate and compare the performance
of DK SVM, MK SVM and usual (linear and RBF kernel)
SVM by using standard benchmark data set [8].

The rest of this paper is organized as follows: Section 2
reviews FLDA, KDA, ONDA and MK. Then our ONDA-
based NDA are described in Sect. 2. The discriminant ker-
nel functions and our DK SVM are introduced in Sect. 4.
The experiments are described in Sect. 5. Finally, Sect. 6
concludes the paper.

2. Discriminant Analysis

2.1 Fisher’s Linear Discriminant Analysis

Fisher’s linear discriminant analysis (FLDA) [6] is one of
the well known methods to extract the best discriminating
features for multi-class classification. FLDA is formulated
as a problem to find an optimum linear mapping by which
the within-class scatter in the mapped discriminant feature
space is made as small as possible relative to the between-

class scatter.
Consider K classes denoted by C = {C1, . . . ,CK}. As-

sume that we have n training samples {xi, ti}ni=1 where xi ∈
Rm×1 is an m dimensional feature vector and ti ∈ C is a class
label. Then FLDA constructs a dimension reducing linear
mapping from the input feature vector x to a new feature
vector y as

y = AT x (1)

where A = [ai j] is the coefficient matrix.
The discriminant criterion

J = tr
(
Σ̂−1

T Σ̂B

)
(2)

is used to evaluate the performance of the discrimination of
the new feature vectors y, where Σ̂T and Σ̂B are the within-
class and the between-class covariance matrix of the new
feature vectors y, respectively.

The discriminant criterion J is the objective function
of FLDA to obtain the optimal coefficient A in Eq. (1). This
criterion can be maximized by solving the following gener-
alized eigenvalue problem

ΣBA = ΣT AΛ (ATΣT A = I) (3)

where Λ is a diagonal matrix of eigenvalues, I denotes the
unit matrix, and ΣT and ΣB are the total and the between-
class covariance matrix of the input feature vectors x, re-
spectively.

2.2 Kernel Discriminant Analysis

There are several approaches to obtain nonlinear discrim-
inant analysis (NDA) by extending FLDA. Especially, the
kernel discriminant analysis (KDA) seems to be one of the
most powerful and popular approaches [1], [16], [19].

Let us consider a nonlinear mapping Φ from an input
feature vector x to the new feature vector Φ(x).

By considering αi = [α1, · · · , αn]T which is a coeffi-
cient vector for the sample xi, the kernel discriminant map-
ping is given by

y =
n∑

i=1

αiΦ(xi)
TΦ(x) =

n∑
i=1

αiK(xi, x) = AT k(x) (4)

where

K(xi, x) = Φ(xi)
TΦ(xi), (5)

A = (α1, · · · ,αn)T , (6)

k(x) = [K(x1, x), · · · ,K(xn, x)]T . (7)

The optimum coefficient matrix A is obtained by solving the
eigenvalue problem

Σ
(K)
B A = Σ(K)

W AΛ (8)

where Σ(K)
B and Σ(K)

T are the total and the between-class co-
variance matrix of the kernel feature vector k(x), respec-
tively.
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Typically, the kernel function K(x, x′) is defined a pri-
ori. The polynomial kernel K(x, x′) = (xT x′ + h)p and the
RBF kernel K(x, x′) = exp

(
− 1
σ
||x − x′||2

)
are often used.

Generally kernel functions have several hyper-parameters
such as p and h in the polynomial kernel or σ in the RBF
kernel.

In real applications, those kernel functions must be
manually selected without theoretical validity, and their
hyper-parameters must be experimentally determined with
expensive computational costs. This is seen as one of the
drawbacks of the kernel approach. Also, the kernel func-
tions are primarily not designed for the tasks of classifica-
tion or discrimination, namely they do not contain in them-
selves any information about target objects or classes.

In order to deal with those drawbacks, there are many
studies to incorporate user’s notion or knowledge about a
target problem into kernel functions [9], [12], [20], [21].
Fisher kernel [12] embeds appropriate distance metric into
a space of probability distributions. Marginalized ker-
nel [20], [21] is defined by using the posterior distribution
p(h|x) where x and h are visible and hidden variable, re-
spectively. It can incorporate information or knowledge of
target problems in the kernel, by estimating p(h|x) from
given training samples.

However, KDA approach usually consider not the non-
linear mapping Φ but the kernel function K. In this article,
we show a novel viewpoint about NDA and kernel approach
via paying attention to the non-linear mapping Φ.

2.3 Optimal Nonlinear Discriminant Analysis

KDA efficiently gives their nonlinear feature space by con-
sidering the kernel functions K(x, x′) instead of the nonlin-
ear discriminant mapping Φ. The articles directly consider-
ing the nature of the nonlinear discriminant mapping Φ is
limited [17], [18], [25].

As the few exceptions, Otsu proposed optimal nonlin-
ear discriminant analysis (ONDA) [17], [18]. By assuming
the ideal probabilistic condition similar to the Bayesian de-
cision theory, the exact expression of the optimal nonlinear
mapping Φ(x) which maximizes the discriminant criterion
can be derived.

Let us consider the dimension reducing nonlinear map-
ping

y ≈ Φ(x). (9)

Similar to FLDA, ONDA constructs the dimension reducing
optimum nonlinear mapping which maximizes the discrim-
inant criterion

J = tr
(
Σ̂−1

T Σ̂B
)

(10)

where Σ̂T and Σ̂B are the total covariance and the between
covariance of y, respectively. They are computed as

ΣT =
1
n

n∑
i=1

(xi − x̄T )(xi − x̄T )T , (11)

ΣB =

K∑
k=1

P(Ck)(x̄k − x̄T )(x̄k − x̄T )T , (12)

where P(Ck), x̄k and x̄T denote the prior probability of the
class Ck, the mean vector of the class Ck and the total mean
vector, respectively. Typically we compute the probability
of the class Ck as P(Ck) = nk

n , where nk is the number of the
training samples of the class Ck.

By using variational calculus, the optimal nonlinear
discriminant mapping can be obtained as

y =
K∑

k=1

P(Ck |x)uk (13)

where P(Ck |x) is the Bayesian posterior probability of the
class Ck given the input x. The vectors uk (k = 1, · · · ,K)
are class representative vectors which are determined by the
following generalized eigenvalue problem

ΓU = ΨUΛ (14)

where Γ = [γi j] is a K×K matrix whose elements are defined
by

γi j =

∫
(P(Ci|x) − P(Ci))(P(C j|x) − P(C j))p(x)dx

=

∫
P(Ci|x)P(C j|x)p(x)dx − P(Ci)P(C j)

= γ(Ci,C j) − P(Ci)P(C j). (15)

γ(Ci,C j) =
∫

p(x)P(Ci|x)P(C j|x)dx can be regarded as the
similarity between the class Ci and C j. The other matrices
in Eq. (14) are defined as

U = [u1, . . . ,uK]T , (16)

Ψ = diag (P(C1), . . . , P(CK)) , (17)

Λ = diag (λ1, . . . , λL) . (18)

Then the optimal nonlinear discriminant mapping (9), (13)
can be rewritten as

y = Φ(x) = UT B(x) (19)

where

B(x) = [P(C1|x), · · · , P(CK |x)]T (20)

is a vector of the Bayesian posterior probability. This means
that the optimum mapping can be interpreted as a linear
combination of the posterior probabilities.

Interestingly, the optimum nonlinear discriminant map-
ping Φ from a given input feature x to the new discriminant
feature y obtained by ONDA is equivalent to the linear map-
ping A obtained by applying FLDA to the posterior proba-
bility vector B(x) instead of x (see [15] for details).

As shown in the Eqs. (13) and (19), we can construct
the optimum mapping Φ if we know P(Ck |x) for all classes
C1, · · · ,CK . This means that we must approximate or esti-
mate the posterior probabilities for real applications. It also
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implies various nonlinear discriminant mapping can be de-
fined by changing the estimation methods of the posterior
probabilities.

It is important to note that the estimation of the poste-
rior probabilities is also very important in the context of the
discriminant analysis like in the Bayesian decision theory.

2.4 Linear Approximation of ONDA

According to the study of Otsu [18], FLDA can be regarded
as the linear approximation of ONDA; the linear discrimi-
nant mapping of FLDA can be interpreted as a linear approx-
imation of the nonlinear discriminant mapping of ONDA
through the linear approximations of P(Ck |x).

Consider a linear approximation of the Bayesian pos-
terior probabilities P(Ck |x) as follows:

P(Ck |x) ≈ L(Ck |x) = bT
k x + b(0)

k . (21)

To determine the coefficients bk and b(0)
k , we minimize the

mean squared errors between the Bayesian posterior proba-
bilities P(Ck |x) and their linear approximations L(Ck |x),

ε2 =

∫
(P(Ck |x) − L(Ck |x))2 p(x)dx. (22)

The optimum linear approximation of P(Ck |x) which mini-
mizes the mean squared errors is given by

L(Ck |x) = P(Ck)
[
(x̄k − x̄T )TΣ−1

T (x − x̄T ) + 1
]

(23)

where ΣT denotes the total covariance matrix of the input
feature vectors x.

It is interesting to note that this function has unit-sum
property as

K∑
k=1

L(Ck |x) = 1. (24)

This is similar with the property of the probabilities but it’s
value happens to be greater than 1 or less than 0. Namely
this function L(Ck |x) is an approximation of the Bayesian
posterior probabilities P(Ck |x) but it does not satisfy some
properties of the probability.

Consider the approximation of the optimum nonlinear
discriminant mapping obtained by ONDA by substituting
these linear approximations L(Ck |x) for the Bayesian pos-
terior probabilities P(Ck |x) in (13) and (14). By this substi-
tution, the Eq. (13) becomes

y =
K∑

k=1

L(Ck |x)uk = UTΨMTΣ−1
T (x − x̄T ) + UTψ (25)

where

M = [(x̄1 − x̄T ), · · · , (x̄K − x̄T )]T , (26)

ψ = [P(C1), · · · , P(CK)]T . (27)

Also by substituting these linear approximations L(Ck |x) for
the Bayesian posterior probabilities P(Ck |x), the matrix Γ in

Eq. (14) of ONDA becomes

Γ = ΨMTΣ−1
T MΨ. (28)

By multiplying M from the left and substituting A for
Σ−1

T MΨU, we have

ΣBA = ΣT AΛ. (29)

This is the same as the eigenvalue problem (3) of FLDA.
This means that the linear mapping AT x of FLDA can be
considered as the linear approximation of the nonlinear
mapping UT B(x) of ONDA through the linear approxima-
tion P(Ck |x) ≈ L(Ck |x).

3. Nonlinear Discriminant Analysis Based on ONDA

As far as we know, there has been few reports about NDA
which are not based on the kernel approach. In this paper,
we develop another approach for NDA, based on the approx-
imation or the estimation of the Bayesian posterior probabil-
ity in ONDA.

As described in the previous section, linear approxi-
mation of P(Ck |x) in ONDA becomes equivalent to FLDA.
Since FLDA is suitable to only linear separable problems,
P(Ck |x) should be approximated or estimated based on non-
linear ways when we treat more complex problems. In this
section, we introduce nonlinear estimation methods of the
posterior probability to construct more reliable NDA than
FLDA for more complicated problems.

3.1 Gaussian NDA

One of the most simple methods to estimate the Bayesian
posterior probabilities P(Ck |x) is to assume the conditional
probability densities of each class as multivariate Gaussian
distribution. Let us consider multivariate Gaussian distribu-
tion

N(x|x̄k,Σk) =
exp
[
− 1

2 (x − x̄k)TΣ−1
k (x − x̄k)

]
√

(2π)d |Σk |
(30)

where the parameters x̄k and

Σk =
1
nk

∑
ti=Ck

(xi − x̄k)(xi − x̄T )T (31)

have to be estimated from the given training samples.
If the conditional probability densities P(x|Ck) of each

class Ck can be expressed as a Gaussian distribution (30),
the Bayesian posterior probabilities are given by

P(Ck |x) =
P(Ck)p(x|Ck)

p(x)
(32)

=
P(Ck)N(x|x̄k,Σk)∑K

k=1 P(Ck)N(x|x̄k,Σk)
. (33)

By substituting this into Eq. (15) and solving the eigen-
value equation (14), the optimal coefficient matrix U in
Eq. (19) is obtained. We call it Gaussian NDA [11].
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3.2 SVM NDA

The Bayesian posterior probabilities P(Ck |x) can also be es-
timated by using more advanced classification models. Wu
et al. proposed probability estimation algorithm for multi-
class classifier by pairwise coupling [23]. Their algorithm
can estimate the posterior probabilities P(Ck |x) by using a
set of classifiers Hi j which classifies sample x into class Ci

or class C j. This estimation algorithm, in which support
vector machine (SVM) is used as the classifier Hi j, is imple-
mented in libsvm [4].

Let PS V M(Ck |x) be the estimated posterior probabilities
by Wu’s algorithm for a given input feature vector x which
belongs to the class Ck. Then the posterior probability can
be simply written as

P(Ck |x) = PS V M(Ck |x). (34)

We call NDA which is brought by this estimation by the
name of SVM NDA.

Wu’s probability estimation algorithm [23] is available
in libsvm [4] by using the training option ’-b 1’.

4. Discriminant Kernel

In the previous sections, we described our ONDA-based
NDA. The theory of ONDA also brings us the idea of the
novel kernel function [15]. By investigating the dual prob-
lem of the eigenvalue equation of ONDA, an optimum ker-
nel function is derived from the optimum discriminant map-
ping (19).

4.1 Dual Problem of ONDA

By multiplying Ψ−1/2 from the left of (14) which is the gen-
eralized eigenvalue problem of ONDA, it can be rewritten
as the usual eigenvalue problem as

Ψ−1/2ΓΨ−1/2Ψ1/2U = Ψ1/2UΛ. (35)

By denoting Ũ = Ψ1/2U, we have the following usual eigen-
value problem as

(Ψ−1/2ΓΨ−1/2)Ũ = ŨΛ. (36)

Then the optimum nonlinear discriminant mapping of
ODNA is rewritten as

y = UT B̃(x) = ŨTΨ−1/2B̃(x) = ŨTφ(x) (37)

where B̃(x) = [P(C1|x) − P(C1), · · · , P(CK |x) − P(CK)]T

and φ(x) = Ψ−1/2B̃(x).
For the case of n training samples, the eigenvalue prob-

lem to determine the class representative vectors (36) is
given by

(ΦTΦ)Ũ = ŨΛ, (38)

where Φ = (φ(x1), · · · ,φ(xn))T .

The dual eigenvalue problem of (38) is then given by

(ΦΦT )V = VΛ. (39)

From the relation on the singular value decomposition of
the matrix Φ, these two eigenvalue problems (38) and (39)
have the same eigenvalues and there is the following relation
between the eigenvectors Ũ and V as Ũ = ΦT VΛ−1/2.

By inserting this relation into the nonlinear discrimi-
nant mapping (37), we have

y = Λ−1/2VTΦφ(x) =
n∑

i=1

Λ−1/2uiφ(xi)
Tφ(x)

=

n∑
i=1

αiK(xi, x) − α0 (40)

where

K(xi, x) = φ(xi)
Tφ(x) + 1

=

K∑
k=1

P(Ck |xi) − P(Ck)(P(Ck |x) − P(Ck))
P(Ck)

+ 1

=

K∑
k=1

P(Ck |xi)P(Ck |x)
P(Ck)

. (41)

This shows that the kernel function of the optimum nonlin-
ear discriminant mapping is given by

K(x, x′) =
K∑

k=1

P(Ck |x)P(Ck |x′)
P(Ck)

. (42)

This is called the discriminant kernel (DK) function. This
theory shows that ONDA can be interpreted as one of KDA
using DK as the kernel function. DK is defined by using the
Bayesian posterior probabilities. This means that the class
information is directly introduced in our kernel.

Usually, kernel functions are designed to incorporate
prior knowledges of target problems into classifiers. In this
sense, it can be said that DK is naturally designed to maxi-
mize the discriminant criterion J (10). For real applications,
we must approximate or estimate the posterior probabilities
from given samples. Instead, since DK has no kernel param-
eters, we do not need to tune them.

4.2 Mercer’s Condition

By using the Bayes’ theorem (32), Eq. (42) can be rewritten
as

K(x, x′) =
K∑

k=1

P(Ck)
P(Ck |x)

p(x)
P(Ck |x′)

p(x′)
. (43)

Then, it can be expressed as the matrix form,

K(x, x′) = D(x)TΨD(x′) (44)

where
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D(x) =

[
p(x|C1)

p(x)
, · · · , p(x|CK)

p(x)

]T
(45)

is the vector of the likelihood ratio. Thus, the discriminant
kernel can be interpreted as the inner product of the likeli-
hood ratio weighted by Ψ which has the class prior P(Ck) as
the k-th diagonal component.

Since the diagonal matrixΨ (17) has only non-negative
components P(Ck) ≥ 0, every eigenvalue of Ψ, λk = P(Ck),
is obviously non-negative. Therefore, the matrix Ψ is posi-
tive semidefinite. Also, Ψ is symmetric because it is a diag-
onal matrix. Thus, the kernel function (44) is a valid kernel
(see [2]). In other words, the discriminant kernel is a Mercer
kernel.

4.3 Relationship between DK and MK

Tsuda proposed the marginalized kernel (MK) [21],

KM(x, x′) =
∑
h∈H

∑
h′∈H

p(h|x)p(h′|x′)Kz(z, z
′), (46)

where h is a hidden variable in a finite set H , z = (x, h) is
a combined variable and Kz(z, z′) is a joint kernel function.
The posterior probability p(h|x) is unknown in general, and
has to be estimated from given samples. By using the joint
kernel

Kz(z, z
′) = I(h = h′)(xTΣ−1

h x) (47)

where Σh is a covariance matrix of the variable h and I is the
indicator function

I(H) =

{
1 if H is true
0 otherwise,

(48)

Equation (46) can be rewritten as

KM(x, x′) =
∑
h∈H

p(h|x)p(h|x′)xTΣ−1
h x′. (49)

By regarding the hidden variable h in Eq. (49) as the
class label Ck, MK (49) can be rewritten as

KM(x, x′) =
K∑

k=1

P(Ck |x)P(Ck |x′)xTΣ−1
k x′ (50)

where Σk is a covariance matrix calculated from samples in
the class Ck. This function can be transformed into a matrix
form using B in Eq. (20),

KM(x, x′) = B(x)T WB(x′) (51)

where W = diag(xTΣ−1
1 x′, · · · , xTΣ−1

K x′).
On the other hand, by using Eqs. (17) and (20), Eq. (42)

can also be expressed as another matrix form,

K(x, x′) = B(x)TΨ−1B(x′). (52)

Equations (51) and (52) show the relationship between
MK and DK; they are expressed in the same form that is the

inner product of the vector of the Bayesian posterior proba-
bility with a certain weighting matrix (W or Ψ−1). DK uses
the weighting matrixΨ−1, which includes the prior informa-
tion of each class Ck. On the other hand, MK uses the matrix
W, which includes the information of normalized original
features.

These weight matrices will indicate the characteristics
of DK and MK; DK purely relies on the probabilistic infor-
mation, p(Ck |x) and P(Ck). In other words, it no longer re-
lies on the original feature x. On the other hand, MK forms
the intermediate expression between the posterior probabil-
ity p(Ck |x) and the original feature x.

4.4 A Family of Discriminant Kernel Functions

Similar to the derivation of ONDA-based NDA, we can de-
fine various DK by changing the estimation method of the
Bayesian posterior probability P(Ck |x). In this paper, we de-
velop two types of DK and evaluate their performance. The
one is a new discriminant kernel which is derived from the
linear approximation of the posterior probability of ONDA.
The other one is derived from Gaussian NDA [11].

4.4.1 Linear Discriminant Kernel

By regarding L(Ck |x) in Eq. (23) as the approximation of
P(Ck |x) in Eq. (42), we obtain

KL(x, x′) =
K∑

k=1

L(Ck |x)L(Ck |x′)
P(Ck)

=

K∑
k=1

P(Ck)
[
(x̄k − x̄T )TΣ−1

T (x − x̄T ) + 1
]

×
[
(x̄k − x̄T )TΣ−1

T (x′ − x̄T ) + 1
]

= (x − x̄T )TΣ−1
T ΣBΣ

−1
T (x′ − x̄T ) + 1. (53)

We call it linear discriminant kernel (LDK).
When we recall that FLDA can be given by linear

approximation of ONDA through the linear approximation
P(Ck |x) ≈ L(Ck |x), LDK is considered as the kernel func-
tion which is implicitly used in FLDA.

As can be seen in Eq. (53), LDK could be regarded as
one of the normalizing operation for input x and x′ by the
linear transformation using ΣT and ΣB. It seems to be con-
sistent with the essence of FLDA to maximize the ratio of
the between covariance and the total covariance.

4.4.2 Gaussian Discriminant Kernel

Similar to Gaussian NDA, by using multivariate Gaussian
distribution N for the class Ck, the vector of the likelihood
ratio (45) can be estimated as

DG(x) =

[N(x|x̄k,Σk)
p(x)

, · · · , N(x|x̄k,Σk)
p(x)

]T
(54)

where p(x) =
∑K

k=1 P(Ck)N(x|x̄k,Σk). Thus, Gaussian DK
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Fig. 1 The maps of kernel values from fixed points. The left two and the right two figures are the
maps of RBF kernel and GDK, respectively. Circle and triangle markers indicate the training samples of
class 1 and 2, respectively. The grayscale gradations show the kernel values, i.e. the similarity measure,
between the class center (illustrated as the filled big markers) and each location. Brightness indicates
high similarity.

Table 1 Statistics of the data sets

Tic-Tac-Toe German Iris Wine Balance Vehicle Vowel
# of classes 2 2 3 3 3 4 11
# of samples 958 1000 150 178 625 846 990
# of features 9 24 4 13 4 18 10

Table 2 Comparisons of classification performance. Averaged classification rate (%), standard devi-
ation and P values of paired t-test are shown. The classification rate of the winner is written in bold if
the P value < 0.01 (=1.00E-02).

Tic-Tac-Toe German Iris Wine Balance Vehicle Vowel

FLDA 57.6 (3.93) 72.1 (2.09) 83.2 (4.61) 98.6 (1.35) 57.5 (24.56) 76.2 (2.35) 49.1 (2.72)
Gaussian NDA 74.2 (2.41) 70.8 (2.12) 97.3 (2.05) 98.3 (1.91) 67.6 (36.26) 80.8 (4.28) 84.8 (2.00)

P value 1.25E-12 1.62E-02 1.01E-11 5.69E-01 1.70E-03 3.46E-04 2.22E-23

FLDA 57.6 (3.93) 72.1 (2.09) 83.2 (4.61) 98.6 (1.35) 57.5 (24.56) 76.2 (2.35) 49.1 (2.72)
LSVM NDA 54.9 (3.36) 73.8 (1.64) 96.3 (1.79) 96.8 (1.70) 67.6 (36.30) 71.2 (2.16) 79.7 (2.80)

P value 2.45E-02 1.68E-06 3.57E-11 6.13E-04 1.75E-03 9.69E-06 2.11E-19

RBF KDA 98.6 (0.65) 70.0 (1.50) 95.7 (2.82) 96.4 (2.09) 68.6 (29.40) 81.6 (2.02) 97.4 (1.06)
RBFSVM NDA 98.7 (0.82) 73.9 (2.03) 96.1 (1.80) 97.1 (1.70) 70.7 (39.68) 74.5 (2.74) 98.1 (0.98)

P value 4.53E-01 2.85E-08 5.51E-01 1.30E-01 1.40E-01 9.70E-10 4.37E-03

(GDK) can be obtained as

KG(x, x′) = DG(x)TΨDG(x′). (55)

To illustrate the property of GDK, we demonstrate a
preliminary experiment using 2-dimensional artificial data
where samples of class 1 and 2 are obtained from different
Gaussian distributions. Figure 1 shows the maps of kernel
value from fixed points. The left two figures indicate the
similarity measure given by RBF kernel with σ = 32 which
is the value manually tuned. Since RBF kernel assigns same
σ to all samples regardless of their class labels, the similar-
ity measure must become monotonous circle. On the other
hand, the right two figures indicate the similarity measure
given by our GDK. Since GDK can incorporate class infor-
mation via the estimation of the Bayesian posterior proba-
bility using given training samples, the similarity measure
given by GDK naturally express the decision boundary.

5. Experiments

We evaluated the performance of our NDA and DK SVM
by using several data sets in UCI machine learning repos-
itory [8]: Tic-Tac-Toe, German, Iris, Wine, Vehicle and

Vowel. We divided each data into a training set (2/3 of all
samples) and a test set (remaining samples) at random. We
made twenty different divisions of the training and test sets.
All values shown in Tables 2-4 were calculated as the aver-
age of the results of twenty trials.

For all experiments, we used the class prior P(Ck) =
Nk/N where Nk is the number of samples in Ck. For RBF
KDA and RBF SVM, the kernel parameter σ was tuned by
grid search with 10-fold cross validation. The grid was set
to σ = 2−15, 2−14, · · · , 2+15. Also, for linear and RBF SVM,
the soft-margin parameter c was tuned by the same way. The
grid was also set to c = 2−15, 2−14, · · · , 2+15. Thus, Linear
SVM and RBF KDA were tuned over 31 grid points and
RBF SVM was tuned over 961 points. All experiments were
performed on a standard PC with the Intel Core i7 X980
CPU (3.33GHz) and 24GB RAM.

For several classification experiments, we used paired
t-test to evaluate statistical significance of comparison re-
sults. In this article, if the P value of the t-test is smaller than
0.01 (1.0E-2), we consider that the corresponding mean val-
ues are statistically different. Also, we consider that there
is the possibility that the means are statistically different if
0.01 ≤ P ≤ 0.05.
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Table 3 Comparisons of classification performance. Averaged classification rate (%), standard devi-
ation and P values of paired t-test are shown. The classification rate of the winner is written in bold if
the P value < 0.01 (=1.00E-02).

Tic-Tac-Toe German Iris Wine Balance Vehicle Vowel

Linear SVM 65.3 (0.87) 75.7 (1.89) 96.6 (2.19) 97.7 (1.57) 91.4 (1.54) 79.4 (2.39) 80.4 (2.39)
LDK SVM 67.0 (1.65) 76.1 (1.96) 96.4 (2.14) 98.6 (1.73) 90.5 (1.67) 77.6 (1.88) 77.4 (2.84)

P values 6.16E-04 2.73E-01 6.94E-01 6.09E-02 8.80E-02 1.32E-04 4.85E-08

GMK SVM 78.0 (1.90) 73.8 (2.33) 97.3 (2.05) 98.1 (1.82) 91.0 (1.71) 83.3 (2.24) 87.5 (1.90)
GDK SVM 75.3 (2.49) 73.2 (2.01) 97.2 (2.06) 98.2 (1.87) 91.0 (1.43) 83.4 (2.31) 85.1 (1.94)

P values 2.52E-06 2.43E-02 3.30E-01 5.77E-01 6.73E-01 5.36E-01 9.36E-06

RBF SVM 98.7 (0.77) 75.2 (1.67) 96.6 (2.19) 97.5 (1.27) 98.8 (1.03) 83.4 (2.63) 98.3 (0.92)

Table 4 Averaged training time (sec) of usual SVM and DK SVM, and its standard deviation

Tic-Tac-Toe German Iris Wine Balance Vehicle Vowel
Linear SVM 1126 (84.3) 9212 (589.8) 0.46 (0.26) 0.69 (0.04) 363.2 (53.5) 1094 (74.4) 471.6 (49.8)
LDK SVM 335.2 (115.1) 452.9 (84.4) 0.59 (0.51) 0.38 (0.04) 11.9 (4.85) 254.0 (24.2) 464.5 (70.3)
GMK SVM 5950 (190.5) 14912 (438.2) 2.08 (0.27) 1.17 (0.05) 507.0 (202.4) 4193 (464.6) 1049 (49.4)
GDK SVM 93.1 (46.4) 596.7 (175.4) 0.39 (0.26) 0.32 (0.03) 52.4 (19.5) 97.0 (49.5) 125.1 (48.8)
RBF SVM 2075 (160.9) 2067 (100.6) 25.62 (0.16) 46.05 (0.17) 489.1 (11.4) 1593 (75.0) 1897 (72.5)

5.1 Comparison of Visualized Discriminant Space

To compare the property of FLDA, KDA and our NDA, the
first 2 dimensions of the discriminant spaces are illustrated
in Figs. 2 and 3. In Fig. 2, as one of a property of our NDA,
it is noticed that each NDA space compose triangular forms.
Since our NDA based on the posterior probability, i.e., the
value from 0 to 1, their discriminant spaces form K − 1 di-
mensional hyper-tetrahedron (simplex) for K classes prob-
lems. This property gives us a probabilistic interpretation
such as how a sample is close or far to each class.

It is interesting to note that the 4-th and the 5-th
columns in Fig. 3 probably show the typical difference be-
tween discriminant analysis and SVM. In the case of RBF
KDA for the training set, almost all samples precisely lo-
cate at their class center. On the other hand, for the test
set, RBF KDA shows the scattered distribution. In contrast,
although RBFSVM NDA shows slightly perturbed distribu-
tion for the training set, the concentration to the class centers
is still kept well in the test set. These differences were prob-
ably caused by the difference in the generalization perfor-
mance of discriminant analysis and SVM; the training result
of RBF KDA seems to be over-fitting.

5.2 Performance Evaluation of ONDA

Table 2 shows the average of the 20 trials of the classifica-
tion rates for the test sets. The classification rate is the result
of nearest mean classification in each discriminant spaces.
The table also shows the statistical significance in which it
is assumed that “the average classification rates of corre-
sponding two methods have no difference,” for several pairs
of methods.

The statistical test showed that Gaussian NDA is bet-
ter than FLDA for 5 data excepting German and Wine. For
German (P = 0.0162), FLDA has a possibility that it is bet-

ter than Gaussian NDA. For Wine (P = 0.569), their perfor-
mance have no significant difference. Since the computa-
tion procedure to make Gaussian model (i.e., computation of
the mean vector and the covariance matrix for each class) is
usually a part of the computation to construct the linear dis-
criminant mapping, Gaussian NDA might become a useful
substitute for FLDA, especially for problems which depend
on Gaussian distributions.

The test also showed that LSVM NDA is better for 4
data (German, Iris, Balance and Vowel) and worse for 2
data (Wine and Vehicle) than FLDA. For Tic-Tac-Toe (P =
0.0245), FLDA has a possibility that it is better than LSVM
NDA. Also, RBFSVM NDA is better than RBF KDA for 3
data (German, Vehicle and Vowel), and for other 4 data (Tic-
Tac-Toe, Iris, Wine and Balance), their performance have
no significant difference. Though our SVM NDA seem to
work well, we of course require the expensive training of
LSVM or RBF SVM with grid search and cross validation.
Especially in the case of RBFSVM NDA, the improvements
seem to be not sufficient to pay those additional costs.

5.3 Comparison of Visualized Kernel Matrices

In this section, we show the visualized kernel matrices of
DK, MK and usual RBF kernel. For a comparison of
DK and MK, we use Gaussian DK (GDK) and Gaussian
MK (GMK) in which the Bayesian posterior probability
in Eqs. (52) and (51) are estimated by a simple Gaussian
model. The hyper-parameter of RBF kernel, σ, was tunned
by the grid search and the cross validation for RBF SVM
together with the soft margin c.

The left columns in Figs. 4 and 5 show the kernel ma-
trices of an ideal discriminant kernel. These are computed
from the ideal Bayesian posterior probability, namely, K di-
mensional vector whose k-th component is 1 and other com-
ponents are 0 if the sample belongs to the class Ck. In
this experiment, samples are sorted by their class number.
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Fig. 2 Discriminant spaces (from left, FLDA, Gaussian NDA, LSVM NDA, RBF KDA and RBFSVM
NDA) of Vehicle (Top: training, Bottom: test).

Fig. 3 Discriminant spaces (from left, FLDA, Gaussian NDA, LSVM NDA, RBF KDA and RBFSVM
NDA) of Vowel (Top: training, Bottom: test).

Fig. 4 Kernel matrices (from left, ideal DK, RBF kernel, LDK, GMK and GDK) of Iris (training).

Fig. 5 Kernel matrices (from left, ideal DK, RBF kernel, LDK, GMK and GDK) of Vowel (training).
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Therefore, the diagonal block in the ideal DK shows the
group of each class.

We can see that the kernel matrices of RBF and LDK
show complicated responses, and the diagonal blocks which
imply the groups of classes are unclear. On the other hand,
GMK and GDK show clear responses similar to the ideal
DK. The class structures clearly illustrated in GMK and
GDK will be helpful to analyze the relationship between
classes visually.

In the figure, also we can see the difference of the prop-
erties between MK and DK; Since GDK consists of only the
information of the Bayesian posterior probability, it is more
similar to the ideal DK than GMK. On the other hand, since
the intermediate form between the posterior probability and
the original feature, GMK seems to include more practical
information for classification tasks.

5.4 Performance Evaluation of DK SVM

In this section, we describe the performance evaluation for
usual (linear and RBF) SVM, MK SVM and our DK SVM.
In this experiment, we mainly focus on the comparison of
two pairs of similar classifiers; (1) Linear SVM and LDK
SVM, and (2) GMK SVM and GDK SVM.

Table 3 shows the averaged classification rates and the
statistical tests for them. The experimental results showed
that (1) LDK SVM is better for Tic-Tac-Two and worse
for Vehicle and Vowel than Linear SVM. For other 4 data
(German, Iris, Wine and Balance), the performance of LDK
SVM and linear SVM have no significant difference. In
this comparison, their performance seem to be in the almost
same level.

The tables also showed that (2) GMK SVM is better
than GDK SVM for Tic-Tac-Toe and Vowel. For German
(P = 0.0243), GMK SVM has a possibility that it is better
than Gaussian GDK SVM. And for other data (Iris, Wine,
Balance and Vehicle), their performance have no significant
difference. Though the difference of the averages were rela-
tively small (less than 3%), the performance of GMK SVM
seems to be consistently equal to or greater than GDK SVM.

Though it is not directly related to the discussion here,
RBF SVM showed the best performance in many cases; For
Tic-Tac-Toe, Balance and Vowel, RBF SVM is clearly better
than other SVM. Meanwhile, RBF kernel of course needs
expensive training costs to tune the hyper-parameter σ.

Table 4 shows the average of the training time of the
grid search with 10-fold CV for each SVM. Note that these
times will depend on the implementation and usage of SVM
library. We used LibSVM [4] for Matlab with probability
option ’-b 1’. For Linear SVM and RBF SVM, we use ker-
nel option ’-t 0’ and ’-t 2’, respectively. Also for GDK and
GMK SVM, we use pre-computed kernel option ’-t 4’. Note
that we did not perform any scaling or normalizing process
for original feature x.

In this situation, about the grid search training, LDK
was faster than linear SVM in many cases. Perhaps, one of
the cause of this result is the scaling or normalizing effect of

LDK which is described in Sect. 4.4.1. Also, grid search for
GDK SVM is faster than GMK SVM in all cases. This is
probably because our GDK SVM has strongly normalized
kernel matrices in which each component takes the value in
[0,K].

Due to their low training cost and moderate perfor-
mance, LDK SVM and GDK SVM may become good sub-
stitutes for linear SVM.

6. Conclusions

In this article, we showed a novel viewpoint of NDA and
kernel methods by paying attention to the non-linear map-
ping Φ. We developed ONDA-based NDA where the non-
linear discriminant mapping Φ(x) can be analytically ob-
tained. Also, we developed discriminant kernel (DK) which
is the novel kernel function derived from ONDA. Our NDA
and DK are defined by using the Bayesian posterior prob-
ability. It implies that our NDA and DK explicitly include
class information of target problems.

Given fine estimation methods of the Bayesian poste-
rior probability, our NDA and DK can be used as the good
visualization tools to illustrate the probabilistic relationship
between classes. Gaussian NDA, LDK SVM and GDK
SVM showed modest classification accuracies in spite of
their low training costs. Thus, for simple objectives (e.g.
problems which have simple distribution, preliminary ex-
periments of new data, and so on), they may be used as good
substitutes for FLDA or linear SVM.

Also, we theoretically and experimentally showed the
relationship between our DK and the special case of Tsuda’s
MK; They are both formulated as the weighted inner prod-
uct of the vector B which consists of the Bayesian poste-
rior probability, but their weight matrices are different from
each other. For the generalization ability, Gaussian MK may
be better than Gaussian DK because MK relies on both of
the probabilistic information and original feature informa-
tion while DK relies only on the probabilistic information.

These findings may bring a novel direction to develop
kernel methods; We can consider and may develop a family
of kernel functions K(x, x′) = B(x)TWB(x′) where W is
an arbitrary weight matrix calculated from original feature
x.

While maximizing Fisher’s discriminant criterion, our
NDA and DK do not consider any other criterions related
with the generalization ability. Thus, there will be room to
incorporate some kind of mechanisms to improve such abil-
ity. In our methods, we can introduce regularization terms
or criterions by two different ways; To introduce it into the
matrix form of our NDA or DK directly, or into the esti-
mation algorithm (such as Gaussian model, SVM, logistic
regression, etc....) for the Bayesian posterior probability. As
Mika et al. [16] pointed out, the regularization term intro-
duced into the covariance matrix of KDA improves the per-
formance of KDA. Also, Clemmensen et al. [5] proposed
sparse LDA which is based on L1-regularization. Such reg-
ularizations will also be helpful for our methods. Also we
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might be able to consider and develop a way to improve such
ability by appropriately designing the weight matrixW.
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